

TITLE:

Phase Equilibria in the System Calcium Oxide-Manganese Zinc Ferrite

AUTHOR(S):

Bando, Yoshichika; Kato, Takeshi; Ikeda, Yasunori; Takada, Toshio

CITATION:

Bando, Yoshichika ...[et al]. Phase Equilibria in the System Calcium Oxide-Manganese Zinc Ferrite. Bulletin of the Institute for Chemical Research, Kyoto University 1969, 46(6): 289-294

ISSUE DATE: 1969-03-31

URL: http://hdl.handle.net/2433/76255

RIGHT:

Y. BANDO, T. KATO, Y. IKEDA and T. TAKADA

determined by measuring the lattice constant of the ferrite. The ferrite has a spinel structure, and the lattice constant of the pure ferrite was determined to be 8.4812 Å with (731) and (553) lines using Fe-K α_1 , and Fe-K α_2 radiations. The lattice constant of the series of spinel-the 3:1 compound, all equilibrated at 1277°C for 12 hr, was plotted against composition in Fig. 2. The horizontal line gives the maximum change in the lattice constant observed in a two-phase mixture, suggesting that solid solution of the 3:1 compound in spinel extends to approximately 12.2 mol% CaO at 1277°C.

The eutectic between the ferrite and the 3:1 compound was located at 1277° C with a composition containing 62.0 mol% CaO. This temperature was obtained by thermal analysis of samples containing 60.0, 62.0 and 64.0 mol% CaO. The photomicrograph for the composition containing 62.0 mol% CaO(Fig. 3) is essentially

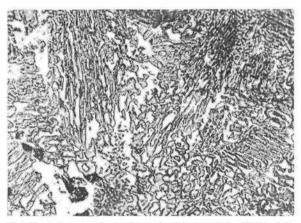


Fig. 3. Microstructure of sample of composition 62.0 mol% CaO (Etched ×400)

all eutectic and is the basis for positioning the eutectic at this composition. The liquidus line was determined by the quenching technique and thermal analysis below 1350°C as shown in Fig. 1. The solid solubility of the ferrite or CaO in the 3:1 compound was not observed both by x-ray diffraction and in microstructure.

2. The 3:1 Compound

The 3:1 compound was determined to have the $2\text{CaO} \cdot \text{Fe}_2\text{O}_3$ -type structure. The space group of $2\text{CaO} \cdot \text{Fe}_2\text{O}_3$ was classified as $\text{Pcmm}(D_{2h}^{16})$. Bertaut *et al*³) suggested that the iron ion should be found on two different sites in the crystal lattice of $2\text{CaO} \cdot \text{Fe}_2\text{O}_3$. One of the sites has a tetrahedron environment, the other an octahedron environment. The replacement of the iron ions on the two lattice sites by the manganese and zinc ions was analysed by x-ray diffraction and the Mössbauer technique. In $2\text{CaO} \cdot \text{Fe}_2\text{O}_3$ the replacement of the iron ions by the manganese ions caused a change in the lattice parameter. The formula for this system is $2\text{CaO} \cdot (\text{Mn}_2 \text{O}_3)_x \cdot (\text{Fe}_2\text{O}_3)_{1-x}$. For O < x < 0.25 homogeneous crystals could be obtained by calcination of mixture of CaCO_3 , MnCO_3 and $\alpha - \text{Fe}_2\text{O}_3$. The zinc ions could be observed not to replace the iron ions in $2\text{CaO} \cdot \text{Fe}_2\text{O}_3$ by x-ray diffraction examination; there existed three phases of CaO, ZnO and $2\text{CaO} \cdot \text{Fe}_2\text{O}_3$ in the composition of $2\text{CaO} \cdot x\text{ZnO} \cdot (1 - x/2)\text{Fe}_2\text{O}_3$ ($x = 0.05 \sim 0.2$). However, the iron ions in $2\text{CaO} \cdot (\text{Mn}_2\text{O}_3)_{1/6} \cdot (\text{Fe}_2\text{O}_3)_{5/6}$ were replaced by the zinc ions when the zinc ions were less than the manganese ions.