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Abstract: Phase equilibria in the Ti-Nb-Mn ternary system at 1173K, 1273K and 1373K were studied
through the equilibrated alloy method by using scanning electron microscopy (SEM), electron probe
microanalysis (EPMA) and X-ray diffraction (XRD) techniques. A new stable ternary phase K was
confirmed and the composition was around Ti50Nb7Mn43. A wide-range continuous solid solution
phase (Ti,Nb)Mn2 with the C14 Laves structure had been found at these temperatures due to the
same phase structures of TiMn2 and NbMn2 phases. The solubility of Nb in TiMn4, αTiMn and
βTiMn intermetallic compounds was determined. Based on the experimental results and reasonable
extrapolations, the isothermal sections of Ti-Nb-Mn ternary system at 1173K, 1273K and 1373K
were constructed.
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1. Introduction

In recent years, titanium and its alloys have been extensively used for biomedical
applications, due to their high strength-to-density ratio, outstanding biocompatibility, rich
microstructural features, and excellent environment and corrosion resistance [1–5]. In
general, Ti-Ni alloy is widely used as bone implant material because continuing research
and developmental efforts have shown its superelasticity and shape memory effect [6].
However Ni needs to be replaced by other elements due to the problems of carcinogenic
and hypersensitive effects for the human body [7,8]. Ti-Nb is expected to replace Ti-Ni
as a new bone implant material because of its low biological toxicity [9,10]. However,
substitution of Nb also reduces the phase transformation strain, which is adverse for the
application of Ti-Nb alloy in load-bearing implants [11]. Alshammari et al. found that the
addition of Mn would increase the phase transformation strain of Ti-Nb alloy, and Mn, as a
β -phase stable element with low cytotoxicity, was also favorable to its application in bone
implants [12].

In order to optimize the microstructure and mechanical properties of a material, it is
essential to have a detailed understanding of the phase equilibria and phase transformation
characteristics of the alloy system [13]. Hernán et al. [14] have measured the isothermal
section of Ti-Nb-Mn system in 1423K and 1473K. In order to analyze the phase relationship
of this system in a larger temperature range, the phase diagrams of the Ti-Nb-Mn system at
1173K, 1273K and 1373K were investigated in this work.

In order to speculate the phase relationships of the Ti-Nb-Mn system and judge its
rationality, we calculated the relevant three binary systems used CALPHAD (CALculation
of PHAse Diagram) method by Pandat software, as shown in Figures 1–3. Information of
binary Ti-Mn system has been extensively investigated experimentally and thermodynamic
calculation [15]. As for the Ti-Mn system, Murray et al. [16] summarized a variety of
experimental phase equilibria firstly, later it was optimized by Khan et al. [17] and Chen
et al. [15] The assessments by Chen et al. are well consistent with the reported experiments
results and thus are adopted in this work, as shown in Figure 1. There are five intermetallic
compounds included-αTiMn, βTiMn, TiMn2 (C14 Laves phase), TiMn3 and TiMn4.
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nikov et al. [21] NbMn2(C14 Laves phase) is the only stable intermetallic compound in Nb-
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reported the thermodynamic optimization of the Mn-Nb binary system, as shown in Fig-
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Figure 2. The calculated Mn-Nb phase diagram based on the work of Liu et al. [18]. 

Figure 1. The calculated Ti-Mn phase diagram based on the work of Chen et al. [15].

The Nb-Mn system was thermodynamically assessed by Liu et al. [18], mainly adopt-
ing the experimental data obtained by Hellawell et al. [19], Savitskii et al. [20] and Svech-
nikov et al. [21] NbMn2(C14 Laves phase) is the only stable intermetallic compound in
Nb-Mn phase diagram. Based on the previous research work mentioned above, Liu
et al. [18] reported the thermodynamic optimization of the Mn-Nb binary system, as shown
in Figure 2.
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The Ti-Nb phase diagram has been investigated by several groups [22–27]. Bellen
et al. [22], Zhang et al. [26] and Matsumoto et al. [27] made a critical evaluation of this binary
system. It is simple and there is no intermetallic compound and no invariant reaction, as
shown in Figure 3.

So far, no information about phase relations in the Ti-Nb-Mn ternary system has been
reported. The present work is an experimental study of phase relations in the Ti-Nb-Mn
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system at 1173K, 1273K and 1373K through alloy samples approach. The crystallographic
data of solid phases of Ti-Nb-Mn system are listed in Table 1.
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Table 1. Experimental and literature data on crystal structures and lattice parameters of the solid
phases in Ti-Nb-Mn system.

Phase Phase Prototype Space Group
Lattice Parameters (nm)

Reference
a b c

βNb cI2 Im-3m 0.3320 - - [18,28]
αTi hP2 P63/mmc 0.2951 - 0.4684 [17]
βTi cI2 Im-3m 0.3307 - - [17]
αMn cI58 I-43m 0.8913 - - [17]
βMn cP20 P4312 0.6315 - - [17]
γMn cF4 Fm-3m 0.3860 - - [17]
αTiMn tP30 P42/mnm 0.8731 - 0.4390 [29]
βTiMn - - 0.8159 - 1.2767 [29]
TiMn2 hP12 P63/mmc 0.47141 - 0.78038 [17]
TiMn3 oP74 Pbam 0.79081 2.58557 0.47931 [17]
TiMn4 hR53 R-3 0.1007 - 0.194411 [17]

NbMn2 hP12 P63/mmc 0.4802 - 0.7930 [18,28]

2. Experimental Procedure

Samples have been prepared from purity materials of 99.99% Ti, 99.99% Nb and
99.99% Mn (all in wt. %). The weight of each sample was limited to about 6 g. All the alloy
samples were produced by arc-melting with a water-cooled copper plate under purified
argon atmosphere, at the same time, a block of pure titanium was used as getter material
placed in the arc chamber. Annealing was performed at 1173K, 1273K and 1373K for 90, 30
and 20 days respectively, alloys were taken out quickly and quenched into ice water.

Electron probe microanalysis (EPMA, JAXA-8800 R, JEOL, 15 kV, 1 × 10−8 A, Tokyo,
Japan) equipped with OXFORD INCA 500 wave dispersive X-ray spectrometer (WDS) was
used to detect the microstructure of equilibrated alloys and composition of each phase,
including solubility. X-ray diffraction (XRD, Rigaku d-max/2550 VB, Cu K, 40 kV, 250 mA,
Tokyo, Japan) was employed to analyze the crystal structure of typical alloys, with the
scanning range of 10◦–90◦ and a speed of 0.133◦/s. Backscattering electron (BSE) images
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of the alloy samples were acquired using a scanning electron microscope (SEM, TESCAN
MIRA3 LMH, 15 kV, working distance of 15 mm, Brno, The Czech Republic).

3. Experimental Results

According to the results of EPMA-WDS data and the result of XRD patterns, the
isothermal section of the Ti-Nb-Mn ternary system at 1173K has been established in Figure 4.
As can be seen in Figure 4 that four intermediate compounds were detected in the Ti-Mn
end at 1173K: αTiMn, βTiMn, TiMn2 and TiMn4. The maximum solid solubility of Nb in
αTiMn and βTiMn was 1.71 at % and 3.91 at %, respectively. According to the optimization
results of Ti-Mn binary system from Chen at al. [17], the composition range of αTiMn
detected in this paper is very narrow, so αTiMn is treated as a linear compound in this
system. At 1173K, both Ti and Nb exist in the bcc structure, so there is an area where Ti and
Nb are mutually dissolved. It is worth noting that a ternary compound K-Ti50Nb7Mn43
phase, which has never been reported before, was found in the isothermal section of the
Nb-Mn-Ti ternary system at 1173K. It was mainly detected in the equilibrium alloys A7
and A10 that two three-phase equilibrium fields comprise the K-Ti50Nb7Mn43 phase. The
presence of the K-Ti50Nb7Mn43 phase was also detected in the surrounding two-phase
fields, and the composition of this ternary phase was around Nb7Mn43Ti50. Although alloy
samples of pure K-Ti50Nb7Mn43 phase were not obtained, the existence of K-Ti50Nb7Mn43
can be proved combining the EPMA-WDS data with the XRD results. There is only one
intermediate compound at the Mn-Nb end: Mn2Nb, and its microstructure is the same as
TiMn2 at the Ti-Mn end, both of which are C14 Laves phases. As shown in Table 1, because
the crystal structures are completely consistent and lattice parameters are similar between
βNb and βTi, the two elements Ti and Nb can be arbitrarily replaced with each other and
shown as infinite solid solution β(Ti,Nb) within their composition range in Figures 4–6 [30].
Similarly, TiMn2 and NbMn2 can form infinite solid solution (Ti,Nb)Mn2. At the Mn-rich
end, the maximum solid solubility of Nb in TiMn4 was determined to be 9.31 at.%, and the
composition range of TiMn4 was determined to be from 81.76 at % to 83.11 at %. Meanwhile,
αMn and βMn were also detected with a certain solid solubility, but due to the strong
volatility of manganese, the samples at Mn-rich end are insufficient, and its precise solid
solution range cannot be obtained. Therefore, some fields are indicated by dash lines in the
isothermal section.

Based on the analysis of the typical alloy samples at 1173K, the isothermal section of
the Ti-Nb-Mn system at 1173K was obtained. Two three-phase equilibrium regions and ten
two-phase equilibrium regions were actually detected in the isothermal section, which are:
K + (Ti,Nb)Mn2 + (βTi,Nb), K + (βTi,Nb) + βTiMn, (Ti,Nb)Mn2 + (βTi,Nb), (βTi,Nb) + K,
(βTi,Nb) + αTiMn, αTiMn + βTiMn, βTiMn + (Ti,Nb)Mn2, K + (Ti,Nb)Mn2, (Ti,Nb)Mn2
+ TiMn4, (Ti,Nb)Mn2 + αMn, TiMn4 + αMn and αMn + βMn. Then according to the
extrapolation of the three binary optimized phase diagrams and the actual determination
of the phase equilibrium relationships, four undetected three-phase regions are drawn by
prediction (shown by dashed lines in Figure 4), which are: βTiMn + K + (Ti,Nb)Mn2, βTiMn
+ αTiMn + (βTi,Nb) and αMn + TiMn4 + (Ti,Nb)Mn2 and αMn + βMn + (Ti,Nb)Mn2.

Based on the analysis of BSE images, EPMA-WDS data and XRD patterns, the isother-
mal section of the Ti-Nb-Mn system at 1273K is constructed, as presented in Figure 5.
The maximum solid solubility of Nb in βTiMn and TiMn3 was 3.07 at.% and 4.50 at.%,
respectively. In this isothermal section, two three-phase fields and eight two-phase fields
were determined by 25 equilibrium alloy samples, which are: K + (Ti,Nb)Mn2 + (βTi,Nb),
K + (βTi,Nb) + βTiMn, (Ti,Nb)Mn2 + (βTi, Nb), (βTi,Nb) + K, K + (Ti,Nb)Mn2, (Ti,Nb)Mn2
+ TiMn3, TiMn3 + TiMn4, TiMn4 + αMn, (Ti,Nb)Mn2 + αMn, and (Ti,Nb)Mn2 + βMn. Com-
bining the three binary optimized phase diagrams, phase rules and experimental results,
two undetected three-phase fields are speculated, as shown by dashed lines in Figure 5,
which are: K + (Ti,Nb)Mn2 + βTiMn, TiMn4 + αMn + (Ti,Nb)Mn2.

The isothermal section of Ti-Nb-Mn ternary system at 1373K is similar to the system at
1273K, as plotted in Figure 6. Since the isothermal section is measured at a high temperature
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of 1373K, samples at the manganese-rich end are easily burned and volatilized at this
temperature for a long time, by measuring only 12 equilibrium alloy samples, two three-
phase equilibrium fields and four two-phase equilibrium fields are determined,which are:
K + (Ti,Nb)Mn2 + (βTi,Nb),K + (βTi,Nb) + βTiMn, (Ti,Nb)Mn2 + (βTi,Nb), (βTi,Nb) + K,
K + (Ti,Nb)Mn2, (βTi,Nb) + βTiMn.
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Figure 6. Isothermal section of Ti-Nb-Mn ternary system at 1373K determined in this work.

4. Discussion

To determine the phase relationships of the Ti-Nb-Mn ternary system at 1173K, 1273K
and 1373K, a series of specimens were prepared. Tables 2–4 list the nominal composition of
the ternary alloy samples respectively. All phases formed in the specimens, together with
the chemical composition of the phases are included in Tables 2–4.

Table 2. Constituent phases and compositions in the annealed Ti-Nb-Mn alloys at 1173K for 90 days.

Alloys
No.

Nominal Composition (at %) Experimental Results (at %) Phase
DeterminationTi Nb Mn Ti Nb Mn

A1 10 50 40 13.91 76.62 9.47 (βTi,Nb)
10.75 29.81 59.44 (Ti,Nb)Mn2

A2 20 50 30 21.78 68.53 9.69 (βTi,Nb)
19.9 23.21 56.89 (Ti,Nb)Mn2

A3 25 30 45 23.61 66.7 9.69 (βTi,Nb)
26.44 18.38 55.18 (Ti,Nb)Mn2

A4 35 25 40 40.37 48.39 11.24 (βTi,Nb)
30.66 14.91 54.43 (Ti,Nb)Mn2

A5 40 20 40 48.18 38.97 12.85 (βTi,Nb)
34.77 11.91 53.32 (Ti,Nb)Mn2

A6 40 15 45 48.68 38.57 12.75 (βTi,Nb)
34.27 11.91 53.82 (Ti,Nb)Mn2
49.24 7.92 42.84 K

A7 55 15 30 60.07 22.79 17.14 (βTi,Nb)
50.89 8.37 40.74 K

A8 55 5 40 70.13 8.04 21.83 (βTi,Nb)
50.88 6.89 42.23 K
45.63 3.45 50.92 βTiMn

A9 68 2 30 49.39 0.68 49.93 αTiMn
72.53 2.26 25.21 (βTi,Nb)

A10 42 9 49 48.99 8.23 42.78 K
36.94 9.41 53.65 (Ti,Nb)Mn2
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Table 2. Cont.

Alloys
No.

Nominal Composition (at %) Experimental Results (at %) Phase
DeterminationTi Nb Mn Ti Nb Mn

A11 47 4 49 45.69 3.01 51.3 βTiMn
49.98 7.36 42.66 K

A12 40 2 58 36.67 2.18 61.15 (Ti,Nb)Mn2
44.99 1.9 53.11 (βTi,Nb)

A13 7 30 63 6.79 30.27 62.94 (Ti,Nb)Mn2
A14 20 15 65 19.91 15.11 64.98 (Ti,Nb)Mn2
A15 30 5 65 28.42 6.93 64.65 (Ti,Nb)Mn2
A16 17.5 4 78.5 17.16 3.57 79.27 TiMn4

19.06 5.7 75.24 (Ti,Nb)Mn2
A17 10 10 80 7.02 2.95 90.03 αMn

12.78 15.65 71.57 (Ti,Nb)Mn2
A18 15 2 83 17.96 2.39 79.65 TiMn4
A19 14 1 85 14.44 1.51 84.05 TiMn4

10.73 1.32 87.95 αMn
A20 9 1 90 8.91 2.06 89.03 αMn
A21 5 1 94 7.04 0.72 92.24 αMn

3.39 0.97 95.64 βMn
A22 3 2 95 6.91 2.16 90.93 αMn

2.1 2.03 95.87 βMn

4.1. Phase Equilibria at 1173K

Twenty-two alloy samples were prepared in order to determine the isothermal section
and phase relationship of the Ti-Nb-Mn ternary system at 1173K. The constituent phases of
each alloy sample were listed in Table 2. In this table, nominal composition was set before
synthesizing alloy and the content of each element in phase is measured by WDS.

As shown in Figure 7a, EPMA analysis indicates that it contains a two-phase region.
With the help of XRD method (Figure 7b), these two phases were confirmed as (βTi,Nb)
(white base phase) and TiMn2 (gray phase). Considering TiMn2 and NbMn2 phases have
the same C14 crystal structure, they can form a wide-range continuous solid solution
phase (Ti,Nb)Mn2. A similar situation occurs in another system [18], they found that the
(Zr,Ti)Mn2 phase maintained the C14 structure with the change of the composition ratio of
Zr and Ti. In order to confirm it, samples of A12, A13 and A14 alloys were prepared.
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The microstructure of A7 and A10 are shown in Figures 8a and 9a. Using SEM-EDS
and EPMA, we found the phase composition of the A7 alloy sample is (βTi,Nb) (white
base phase) and K-Ti50Nb7Mn43 phase (dark gray phase), while the A10 alloy comprises
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(Ti,Nb)Mn2 (light-colored base phase) and K-Ti50Nb7Mn43 phase (dark phase). According
to Figures 8a and 9a, the equilibrium alloys A7 and A10 are both composed by two different
phases, including an unknown ternary compound whose microstructure and XRD result
have never been reported. This ternary compound is referred to herein as K-Ti50Nb7Mn43
phase. Since there is no corresponding PDF card, the XRD results of the two equilibrium
alloys containing the K-Ti50Nb7Mn43 phase are put together for comparative analysis, as
presented in Figures 8b and 9b. In Figures 8b and 9b, after the characteristic peaks of the
other phases were matched, the remaining diffraction peaks can be well matched with the
obtained unknown ternary phase K-Ti50Nb7Mn43. Thus, the existence of K-Ti50Nb7Mn43
can be determined. The composition of this ternary phase was around Ti50Nb7Mn43 from
the results of EPMA.
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Figure 9. Alloy A10 annealed at1173K for 90 days: (a) back-scattered electron (BSE) images and
(b) XRD patterns.

Three different phases can be observed in Figure 10a: βTiMn (white phase), K-
Ti50Nb7Mn43 phase (light gray phase) and (βTi,Nb) (dark gray phase). Although the
contrast between the K-Ti50Nb7Mn43 phase and (βTi,Nb) doesn’t have a significant dif-
ference, there is a boundary between these two phases and the XRD results of them are
completely different. Based on this, it can be judged that the alloy A8 is located in the
three-phase equilibrium field: K + βTiMn + (βTi,Nb), which is also consistent with the XRD
results from Figure 10b.

Based on the microstructure results and XRD pattern analyses of Figures 11–13, it can
be judged that the alloy A12, A16 and A17 are composed of two phases after reaching
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equilibrium at 1173K. The A12 alloy is located in the two-phase equilibrium field: βTiMn
+ (Ti,Nb)Mn2; The dark gray base phase in the equilibrium alloy A16 is (Ti,Nb)Mn2, and
the white globular phase attached to the base phase is TiMn4; A17 contains two phases:
(Ti,Nb)Mn2 (gray phase) and αMn (white dendritic phase).
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Figure 13. Alloy A17 annealed at 1173K for 90 days: (a) back-scattered electron (BSE) images,
(b) XRD patterns.

4.2. Phase Equilibria at 1273K

Twenty-five alloy samples were prepared in order to determine the isothermal section
and phase relationship of the Ti-Nb-Mn ternary system at 1273K for 30 days. The constituent
phases of each alloy sample were listed in Table 3.

Table 3. Constituent phases and compositions in the annealed Ti-Nb-Mn alloys at 1273K for 30 days.

Alloys
No.

Nominal Composition (at %) Experimental Results (at %) Phase
DeterminationTi Nb Mn Ti Nb Mn

B1 11 47 42 8.56 84.95 6.49 (βTi,Nb)
12.6 29.3 58.1 (Ti,Nb)Mn2

B2 22 38 40 19.2 73.13 7.67 (βTi,Nb)
22.5 22.57 54.93 (Ti,Nb)Mn2

B3 27 27 46 23.99 67.7 8.31 (βTi,Nb)
26.73 19.31 53.96 (Ti,Nb)Mn2

B4 35 27 38 40.37 48.39 11.24 (βTi,Nb)
31.66 15.62 52.72 (Ti,Nb)Mn2

B5 40 15 45 53.86 29.12 17.02 (βTi,Nb)
36.37 12.86 50.77 (Ti,Nb)Mn2

B6 47 12 41 58.19 24.83 16.98 (βTi,Nb)
38.69 11.25 50.06 (Ti,Nb)Mn2
51.96 7.4 40.64 K

B7 54 16 30 58.07 24.45 17.48 (βTi,Nb)
37.97 11.45 50.58 (Ti,Nb)Mn2
51.88 7.34 40.78 K

B8 59 10 31 65.8 13.78 20.42 (βTi,Nb)
54.84 5.9 39.26 K

B9 56 4 40 69.01 4.8 26.19 (βTi,Nb)
53.13 4.21 42.66 K
46.89 2.22 50.89 βTiMn

B10 42 8 50 39.24 8.24 52.52 (Ti,Nb)Mn2
52.38 6.01 41.61 K

B11 42 6 52 39.24 5.37 55.39 (Ti,Nb)Mn2
52.37 5.42 42.21 K

B12 14 24 62 51.91 5.42 42.67 (Ti,Nb)Mn2
B13 20 15 65 20.05 14.78 65.17 (Ti,Nb)Mn2
B14 27 8 65 26.7 8.11 65.19 (Ti,Nb)Mn2
B15 34 8 58 35.12 8.37 56.51 (Ti,Nb)Mn2
B16 23 4 73 24.28 4.56 71.16 (Ti,Nb)Mn2

22.71 2.54 74.75 TiMn3
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Table 3. Cont.

Alloys
No.

Nominal Composition (at %) Experimental Results (at %) Phase
DeterminationTi Nb Mn Ti Nb Mn

B17 20 5 75 19.65 8.66 71.69 (Ti,Nb)Mn2
21.38 3.74 74.88 TiMn3

B18 22 2 76 22.45 1.65 75.9 TiMn3
B19 20 1 79 21.73 1.12 77.15 TiMn3

18.33 0.95 80.72 TiMn4
B20 15 2 83 17.63 1.24 81.13 TiMn4
B21 12 1 87 11.73 0.32 87.95 αMn

14.44 0.51 85.05 TiMn4
B22 10 10 80 8.01 2.45 89.54 αMn

12.58 15.62 71.8 (Ti,Nb)Mn2
B23 5 7 88 4.29 3.98 91.73 αMn

7.42 20.46 72.12 (Ti,Nb)Mn2
B24 1 12 87 0.24 1.79 97.97 βMn

1.27 25.67 73.06 (Ti,Nb)Mn2
B25 4 2 94 4.23 2.93 92.84 αMn

3.94 1.56 94.5 βMn

According to the microstructure results in Figures 14a and 15a, the alloy B6 consists of
three phases: (βTi,Nb) (white base phase), (Ti,Nb)Mn2 (light gray phase) and the K phase
(dark gray phase); the alloy B9 is composed of βTiMn (white phase), the K-Ti50Nb7Mn43
phase (gray striped phase) and (βTi,Nb) (black phase). In Figures 14b and 15b, after the
characteristic peaks of the other two phases were matched, the remaining diffraction peaks
can be well matched with the previously obtained unknown ternary phase K-Ti50Nb7Mn43.
Thus, the existence of K-Ti50Nb7Mn43 can be determined.
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Figure 14. Alloy B6 annealed at 1273K for 60 days: (a) BSE images, (b) XRD patterns.
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As shown in Figure 16a, there are two distinct phases in the alloy B1. Based on the
XRD pattern analysis in Figure 16b, the alloy should be located in the two-phase field:
(Ti,Nb)Mn2 + (βTi,Nb). Figure 17a,b are BSE images of alloys B2 and B4 also located in the
two-phase field. It can be clearly observed that the phase (Ti,Nb)Mn2 continues to grow
with increasing Ti content.
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Figures 18–22 respectively show the EPMA micrographs and XRD results of alloy
B8, B10, B16, B19 and B25, which featured 5 two-phase equilibriums: K + (βTi,Nb),
K + (Ti,Nb)Mn2, TiMn3 + TiMn2, TiMn3 + TiMn4 and αMn + βMn.
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4.3. Phase Equilibria at 1373K

12 alloy samples were prepared in order to determine the isothermal section and phase
relationship of the Ti-Nb-Mn ternary system at 1373K for 20 days. The constituent phases
of each alloy sample were listed in Table 4.

The microstructure of the equilibrium alloy C5 after annealing is shown in Figure 24a.
Based on the EPMA result, (βTi,Nb) (white base phase), (Ti,Nb)Mn2 (light gray phase) and
the K-Ti50Nb7Mn43 phase (dark gray phase) with the unknown crystal structure can be
determined. In Figure 24b, After calibration of (βTi,Nb) and (Ti,Nb)Mn2 by the existing
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PDF card, the remaining characteristic peaks can correspond with the peaks of the previous
K-Ti50Nb7Mn43 phase. It is determined the alloy C5 is located in the three-phase field:
(βTi,Nb) + (Ti,Nb)Mn2 + K. And Figure 25a shows the three-phase microstructure of
K + (βTi,Nb) + βTiMn for the equilibrium alloy C7 after anneal at 1373K.

Table 4. Constituent phases and compositions in the annealed Ti-Nb-Mn alloys at 1373 K for 20 days.

Alloys
No.

Nominal Composition (at %) Experimental Results (at %) Phase
DeterminationTi Nb Mn Ti Nb Mn

C1 6 43 51 5.63 86.53 7.84 (βTi,Nb)
6.61 33.19 60.2 (Ti,Nb)Mn2

C2 20 38 42 24.98 63.99 11.03 (βTi,Nb)
18.05 25.07 56.88 (Ti,Nb)Mn2

C3 27 33 40 32.75 54.5 12.75 (βTi,Nb)
23.64 21.22 55.14 (Ti,Nb)Mn2

C4 36 28 36 42.99 41.73 15.28 (βTi,Nb)
30.31 17.07 52.62 (Ti,Nb)Mn2

C5 40 18 42 47.57 9.54 42.89 K
49.84 33.02 17.14 (βTi,Nb)
32.98 14.07 52.95 (Ti,Nb)Mn2

C6 54 13 33 49.78 9.19 41.03 K
58.94 17.35 23.71 (βTi,Nb)

C7 53 5 42 46.14 2.3 51.56 βTiMn
64.34 5.76 29.9 (βTi,Nb)
49.67 6.75 43.58 K

C8 44 9 47 36.22 8.1 55.68 (Ti,Nb)Mn2
47.58 7.64 44.78 K

C9 40 8 52 36.23 10.34 53.43 (Ti,Nb)Mn2
47.35 8.8 43.85 K

C10 13 23 64 13.3 23.31 63.39 (Ti,Nb)Mn2
C11 22 13 65 21.12 13.64 65.24 (Ti,Nb)Mn2
C12 30 7 63 28.72 6.97 64.31 (Ti,Nb)Mn2
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Figure 24. Alloy C5 annealed at 1373K for 40 days: (a) BSE images, (b) XRD patterns.

Figure 26a shows the microstructure of the equilibrium alloy C3 annealed at 1100 ◦C
for 40 days, which contains (βTi,Nb) (white base phase) and (Ti,Nb)Mn2 (gray phase) based
on the EPMA result. Figure 27a shows the two-phase K + (βTi,Nb) microstructure for the
equilibrium alloy C6 that agrees with the XRD result presented in Figure 27b.
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5. Conclusions

The isothermal section of Ti-Nb-Mn system at 1173K, 1273K and 1373K were deter-
mined by equilibrium alloy method combined with EPMA-WDS and XRD. The results are
summarized as follows: (1) A new ternary compound K-Ti50Nb7Mn43 phase was detected
at 1173K, 1273K and 1373K. And a continuous solid solution phase (Ti,Nb)Mn2 was found
at these temperatures in this ternary system. (2) Three three-phase equilibrium fields and
ten two-phase equilibrium fields were detected in the isothermal section at 1173K, the
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experimentally determined maximum solid solubility of Nb in αTiMn and βTiMn were
1.71 at % and 3.91 at %, respectively; the maximum solid solubility of Nb in TiMn4 was
9.31 at %. (3) Two three-phase equilibrium fields and eight two-phase equilibrium fields
were detected in the isothermal section at 1273K. The maximum solid solubility of Nb in
βTiMn was 3.07 at % and in TiMn3 was 4.50 at %; (4) For the isothermal section of 1373K,
the maximum solid solubility of Nb in βTiMn was measured to be 5. 68 at %.
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