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ABSTRACT
Bispectrum phase, closure phase and their generalization to kernel phase are all independent of
pupil-plane phase errors to first order. This property, when used with sparse aperture masking
behind adaptive optics, has been used recently in high-contrast observations at or inside the
formal diffraction limit of large telescopes. Finding the limitations to these techniques requires
an understanding of spatial and temporal third-order phase effects, as well as effects such as
time-variable dispersion when coupled with the non-zero bandwidths in real observations. In
this paper, formulae describing many of these errors are developed, so that a comparison can
be made to fundamental noise processes of photon noise and background noise.

I show that the current generation of aperture-masking observations of young solar-type
stars, taken carefully in excellent observing conditions, are consistent with being limited
by temporal phase noise and photon noise. This has relevance for plans to combine pupil
remapping with spatial filtering.

Finally, I describe calibration strategies for kernel phase, including the optimized calibrator
weighting as used for LkCa15, and the restricted kernel phase POISE (phase observationally
independent of systematic errors) technique that avoids explicit dependence on calibrators.

Key words: instrumentation: adaptive optics – instrumentation: high angular resolution –
techniques: image processing – techniques: interferometric.

1 IN T RO D U C T I O N

The concepts of closure phase, bispectrum phase (e.g. Hofmann &
Weigelt 1993), self-calibration and now kernel phase (Martinache
2010) are well known as techniques that cancel out many instru-
mental effects due to pupil-plane phase errors. Despite the very
long history of aperture masking with a focus on fringe visibility
amplitude (Fizeau 1868; Michelson 1891; Schwarzschild 1896), it
was the use of closure phase that first enabled image reconstruction
from this technique (Baldwin et al. 1986) as well as recent efforts
in high-contrast imaging (e.g. Lloyd et al. 2006; Kraus & Ireland
2012).

A simple explanation of closure phase comes from a counting
argument. From an interferometer with M (sub)-apertures, the com-
plex visibilities can be independently measured on each of the
M(M − 1)/2 baselines consisting of each pair of (sub)-apertures.
An optical aberration consisting of a piston on each of the (sub)-
apertures amounts to M − 1 degrees of freedom in the phase differ-
ences, leaving (M − 1)(M − 2)/2 additional measured quantities,
which are the linearly independent set of closure phases. A set of ob-
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servables which are independent of pupil-plane phase form an ideal
starting point for precise model fitting and imaging at the diffraction
limit. This argument applies to both redundant and non-redundant
pupil geometries, as realized by Martinache (2010). But if phase
errors on a pupil are large, a redundant pupil configuration is at
a disadvantage, because the pairs of pupil locations that form any
given Fourier component may add out of phase and destructively
interfere. In the case of observations taken behind adaptive optics
(AO), the choice of one technique over the other is not obvious.

In this paper, I will outline the causes of contrast limitations in
the aperture-masking interferometry and kernel phase techniques,
and methods to maximize contrast. In Section 2, the main causes
of kernel phase errors will be outlined. In Section 3, I will describe
why the statistical correlations between closure phases mean that
kernel phases are preferred as a primary observable, and will com-
pare the contrast limits achievable by different pupil geometries.
In Section 4.1 I will describe standard closure phase calibration
and its limitations, in Section 4.2 I will describe the calibration
strategy as used in Kraus & Ireland (2012) to maximize contrast in
aperture-masking interferometry observations, and in Section 4.3
I will describe the simpler phase observationally independent of
systematic errors (POISE) calibration strategy. In Section 5, I will
conclude and outline the key areas where further research is needed.
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Phase errors in diffraction-limited imaging 1719

1.1 Kernel phase

The definition of kernel phase as used in this paper will be slightly
simplified from the definition of Martinache (2010), as we will avoid
the use of the ‘redundancy’ matrix R. To first order in pupil-plane
phase (i.e. with a nearly flat wavefront), we can write the observed
phase �m in the Fourier transform of an image as

�m = Aϕ + �o, (1)

where ϕ is the pupil-plane phase and �o is the phase of the Fourier
transform of the object. These are represented as vectors where
each vector element is one discrete point in the model pupil plane
or the image discrete Fourier transform. The matrix A encodes
the information about which parts of the pupil form each Fourier
component. For example, a non-redundant baseline formed by two
discrete pupil components only would have a +1 and −1 in that
row of A, with all other elements taking the value 0. This matrix
is described in detail in Martinache (2010). Using singular value
decomposition, we then find a matrix K, the kernel of A, such that
KA = 0. By choosing K such that its number of non-zero rows is
equal to its rank, this matrix enables us to project the Fourier phases
on to a subspace, which we will call the kernel phases θ by θ = K�.
On this subspace, the observables are not affected by pupil-plane
phase errors at first order:

θm = K�m

= (KA)ϕ + K�o

= K�o. (2)

A model of the object can therefore be directly compared to the
observed kernel phases by computing the Fourier transform and
multiplying by the matrix K. For all reasonable two-dimensional
pupils, the rank of A is at least half the length of �o, meaning that
at least half the object Fourier phase information is preserved when
transforming from Fourier phase to kernel phase.

2 C AU SES O F K ERNEL PHASE ERRO RS

There are three broad classes of kernel phase errors: those that vary
rapidly approximating white noise in a sequence of exposures (ran-
dom errors), those that are static throughout an observing run and
can therefore be calibrated by observation of unresolved calibrator
stars (static errors) and those which vary from one target to another
(calibration errors). Calibration errors include quasi-static errors
with a time variability measured in minutes or hours, as well as
errors that depend on e.g. the sky position or the spectrum of the
source observed. The goal of any combination of observing tech-
nique and analysis strategy is both to minimize the random errors
and to develop a calibration strategy where residual calibration er-
rors are smaller than typical random errors. The following sections
include error causes that could manifest themselves as one or several
of these error classes.

2.1 General pupil-plane phase errors

We will examine first an abstract representation of pupil-plane phase
errors that could cause random, calibration or static errors. We con-
sider a closing triangle containing apertures A, B and C, as depicted
in Fig. 1. Each aperture has the same size and shape, and each base-
line 1 ≡ A → B, 2 ≡ B → C and 3 ≡ C → A has data taken at the
same time. That is, there are equivalent coordinate systems describ-
ing apertures A, B and C, centred on each aperture. This means that

Figure 1. An abstract representation of closure phases formed by baselines
1, 2 and 3, in turn formed by congruent apertures A, B and C.

the visibility on each baseline is formed by the incoherent integral
of visibilities arising from common spatio-temporal coordinates in
sub-apertures A, B and C.

We will assign the symbols ϕA, ϕB and ϕC to the phase in sub-
apertures A, B and C, the symbols �1, �2 and �3 to the phase on
baselines 1, 2 and 3, respectively, and will neglect amplitude vari-
ations (i.e. scintillation). The complex visibilities are then formed
by

V1 = exp i(ϕB − ϕA)

V2 = exp i(ϕC − ϕB )

V3 = exp i(ϕA − ϕC), (3)

where the bar represents an average over the spatio-temporal co-
ordinates corresponding to each aperture. This can be expanded to
third order in phase to

V1 ≈ 1 + i(ϕB − ϕA) − 1

2
(ϕB − ϕA)2 − i

6
(ϕB − ϕA)3, (4)

with similar expressions for V2 and V3. The bispectrum is given by
the product of these three visibilities, which can be again expanded
to third order in phase:

bABC = V1V2V3 (5)

�(bABC) ≈ 1 − 1

2

[
(ϕ′

B − ϕ′
A)2 + (ϕ′

C − ϕ′
B )2 + (ϕ′

A − ϕ′
C)2

]
(6)

�(bABC) ≈ −1

6

[
(ϕ′

B − ϕ′
A)3 + (ϕ′

C − ϕ′
B )3 + (ϕ′

A − ϕ′
C)3

]
, (7)

where we have considerably simplified the expansion by introducing
the piston-corrected phases:

ϕ′
A = ϕA − ϕA (8)

ϕ′
B = ϕB − ϕB (9)

ϕ′
B = ϕB − ϕB. (10)

A more complete derivation of this expansion is given in Ap-
pendix A. The closure phase φcp = �1 + �2 + �3 is then most
simply approximated by taking the leading terms in the real (zeroth
order) and imaginary (third order) components of the bispectrum,
giving φcp = �(bABC).

It is also worthwhile briefly considering the effects of averaging
the visibilities for baselines 1, 2 and 3 over different spaces. This
could be caused by differing sub-aperture shapes in conventional
aperture-masking interferometry (amounting to non-closing trian-
gles), or by disjoint integration times as found in other forms of
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1720 M. J. Ireland

interferometry. In this case, the leading terms in the closure phase
errors become first order rather than third order in pupil-plane phase.
Clearly, this is something to be avoided at considerable effort in the
case of high-contrast aperture masking. The pupil ‘shape’ can also
be thought of as the pupil-plane amplitude within each sub-aperture.
Where amplitude errors are taken into account, these closure phase
errors then become second order, i.e. first order in phase and first
order in amplitude, and could plausibly be the leading term.

2.2 Temporal phase errors

Our first application of equation (7) to closure phase errors is rapid
temporal effects, which cause a random kernel phase error. There
are two key regimes that temporal errors operate in behind an AO
system. Either exposure times are comparable to or shorter than the
inverse of the AO system bandwidth (the short-exposure regime) or
exposure times are significantly longer than these time-scales (the
long-exposure regime). Given typical coherence times at ∼2.2 μm
or shorter wavelengths of <50 ms, and typical AO system band-
widths in the range 10–100 Hz, exposure times longer than ∼100 ms
in the near-infrared are in the long-exposure regime.

In the long-exposure regime, we can make the approximation that
piston noise is white up to some cutoff frequency fc. This is not very
unrealistic, because in the frozen turbulence approximation, the at-
mosphere has an amplitude spectrum proportional to f−5/6, while
the error signal from a proportional–integral–differential controller
in the mid-frequency range where the proportional term dominates
gives residual errors proportional to the input signal amplitude mul-
tiplied by the frequency f. This gives a resultant error amplitude
proportional to f1/6, up to the servo loop cutoff. At this cutoff,
three independent phenomena all tend to cut off the error spectrum
rapidly: the f−5/6 atmospheric amplitude spectrum, the rapidly low-
ering gain of the servo approaching its Nyquist sampling frequency
and effects of spatial filtering.

We will now make a second set of approximations by assuming
that the phase piston on each sub-aperture making a closing triangle
is uncorrelated and has identical phase noise σϕ . This may not be
reasonable for some AO systems (e.g. if tip/tilt errors dominate due
to tip/tilt mirror bandwidth) but as this depends on reconstructor
and wavefront sensor details, it is a good first approximation.

An exposure of total time T can then be split into fcT sub-
exposures, each of which has independent phase noise, so that in
each exposure we have pupil-plane sub-aperture piston phases given
by normal distributions:

ϕA ∼ N (0, σϕ) (11)

ϕB ∼ N (0, σϕ) (12)

ϕC ∼ N (0, σϕ). (13)

Applying equation (7) to this phase noise distribution for fcT 

1 gives the standard deviation of closure phase (see Appendix B for
a derivation):

σ (φcp,temporal) = σ 3
ϕ

√
3/fcT rad. (14)

In the short-exposure regime, we are dominated by atmospheric
piston, as in the case with aperture-masking interferometry without
AO (e.g. Tuthill et al. 2000). In this regime, for typical exposure
times �t less than ∼20 ms at a 2.2 μm wavelength, or ∼50 ms
at 4 μm wavelength without AO or fringe tracking, we can still
consider phase errors at third order with reasonable accuracy. By

evaluating equation (7) numerically based on Kolmogorov turbu-
lence, we arrive at

σ (φcp,temporal) = 0.0177

(
�t

t0

)15/6

rad, (15)

which is valid for �t � t0. This kind of relationship also has rele-
vance to long-baseline interferometry in the case of measurements
where visibilities are measured simultaneously. Examples of this
are the Michigan InfraRed Combiner (Monnier et al. 2006) or the
Precision Astronomical Visible Observations combiner (Ireland
et al. 2008) at the Center for High Angular Resolution Astronomy
array. This relationship does not apply to scanning beam combin-
ers, where fringes can be recorded non-simultaneously depending
on group delay tracking accuracy.

2.3 Spatial closure phase errors

In this section, we will examine how wavefront phase corrugations
affect closure or kernel phases, occurring as random, calibration and
static errors. Calibration errors occur when there are slowly time-
variable spatial aberrations (often called quasi-static speckles). To
most easily compare kernel phase to closure phase, we adopt a
factor of 1/

√
3 scaling to the closure phase, so that adding the three

baseline phases is equivalent to multiplying by a unit vector (e.g.
one of the orthonormal columns of the matrix V from Martinache
2010).

Fig. 2 shows a comparison between simulated sparse aperture
masking and kernel phase data analysis for a variety of aberration
spatial frequencies and aberration amplitudes. For each amplitude
and spatial frequency, the position angle of a sinusoidal aberration
was randomly varied and the overall rms kernel phase computed.
It can be seen that although both kernel phase and closure phase
appear equivalent to first order, they have quite different responses
to high-order pupil-plane errors. The spatial filtering of an aper-
ture mask means that it can be effectively used at much lower
instantaneous Strehl ratios than unobstructed pupil kernel phase,
but in a high-Strehl regime, kernel phase is in principle superior.
For the 0.35 rad rms phase error case (right-hand figure), equation
(7) predicts closure phases approximately two times lower than the
simulation, possibly due to Fourier sampling and windowing effects
in the sparse aperture-masking pipeline used, and possibly due to
effects higher than third order in pupil-plane phase. For very high
instantaneous Strehls, kernel phase in both geometries is expected
to scale as the cube of the pupil-plane phase error, which is (1 −
S)3/2 in the Maréchal approximation.

A comparison between imaging with an unobstructed aperture
and with sparse aperture masks is complicated somewhat by the
ability to window data, which smoothes over high-spatial-frequency
aberrations. This gives a further advantage in principle to an unob-
structed aperture or a mask with large holes where the interfero-
gram has a relatively small spatial extent. An example of a regime
where fine spatial scale aberrations may dominate phase errors post-
calibration is when aberrated pupil-plane elements or masks shift
due to flexure effects.

2.4 Flat field errors

In sparse aperture masking, many pixels are used to record fringes
from objects with intrinsically small spatial extents. If target and
calibrator objects are not acquired on the same pixels, then the ef-
fect of flat-field errors is to add random phase errors across the
Fourier plane. These random errors are only static if alignment is
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Phase errors in diffraction-limited imaging 1721

Figure 2. The effect of rms pupil-plane phase errors of 1 (left), 0.7 (centre) and 0.35 rad (right) on raw aperture-masking Fourier phase (black dot–dashed),
full-pupil kernel phase (blue solid) and aperture-masking closure phase (red dashed) scaled by a factor of 1/

√
3 as described in the text. The pupil geometries

are the Keck non-redundant nine-hole mask and the full Keck pupil.

perfect between target and calibrator star observations – otherwise
flat-field errors become a calibration error. A flat-field error can be
modelled as multiplication in the image plane by a function that
is 1.0 everywhere plus white noise with standard deviation σ F. A
typical value of σ F is 10−3, arising from a series of flat-field expo-
sures with a total of 106 photoelectrons per pixel. Multiplication by
this flat is equivalent to convolution in the Fourier domain, which
spreads the power from the zero to near-zero spatial frequency com-
ponents over the full Fourier plane. Clearly, phase errors will then be
proportional to σ F and inversely proportional to visibility. Numeri-
cal simulations give the following relationship for closure phase in
sparse aperture-masking observations:

σ (φcp,photon) � 0.3
σF

V
rad, (16)

where V is the fringe visibility, referenced to a perfect Strehl inter-
ferogram of a point source. The constant of ∼0.3 varies between
approximately 0.2 and 0.3 for different bandpass filters and aperture
masks. To ensure that these errors are less than 10−3 rad with typical
visibilities of 0.3, we need σ F < 10−3, meaning at least 106 photons
per pixel recorded when taking flat-fields.

2.5 Bad pixels

The existence of bad pixels on an imaging array can often destroy
sensitivity in traditional imaging over a small portion of the field of
view. Like flat-field errors, incorrectly accounting for bad pixels can
cause significant calibration errors. By spreading the information
over many pixels, it may seem that at first glance bad pixels would
always do significant harm to the information content in aperture-
masking observations. However, the limited Fourier support of this
kind of observation, as long as it is better than Nyquist sampled,
means that bad pixels can be very effectively corrected. In simula-
tions, the algorithm below has proved effective at contrasts beyond
106 for arrays far worse than those found at telescopes where aper-
ture masks are installed, meaning that if properly corrected, bad
pixels are not a cause of kernel phase errors.

The principle of this bad pixel correction algorithm is to assign
the values to the bad pixels so that the power in the Fourier domain
outside the region of support permitted by the pupil geometry is
minimized. We will call this region of the Fourier plane the zero
region Z. We can turn this problem into a linear one by realizing
that the Fourier components corresponding to the set of bad pixel
coordinates xb form a subspace of Z, and we can find a vector of
bad pixel offsets b to subtract so that the image Fourier transform
on this subspace is identically zero.

The first step in this process is to create the matrix BZ which
maps the bad pixel values on to Z. The measured values fZ in the
Fourier-plane region Z are then modelled as

fZ = BZ b + εZ, (17)

with εZ being the remaining Fourier-plane noise. The bad pixel
adjustments b are then found using the Moore–Penrose pseudo-
inverse of B:

b = B+
ZfZ (18)

= (B∗
ZBZ)−1B∗

ZfZ. (19)

The Moore–Penrose pseudo-inverse can also be found by other
methods such as singular value decomposition rather than direct
computation of an inverse as in equation (19), but this method
suffices for a relatively small number of bad pixels. Although this
algorithm is very quick (the matrix B+ is pre-computed), the bad
pixel correction (equation 18) has to be applied for every frame, with
the computed values b subtracted off each frame. It can also be used
to correct for saturated pixels at the core of a point spread function
(PSF), pixels affected by transient events such as cosmic rays, or
an acquisition error where a small portion of the interferogram is
truncated by the detector edge.

2.6 Dispersion and wavelength-dependent phase errors

Kernel phase observations are often made in a broad-band filter
where different wavelengths are affected by both the atmosphere
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and optics in different ways. This causes a static kernel phase error,
which can become a calibration error unless observing conditions
and spectrum are matched between target and calibrator observa-
tions. A general analysis of these errors is particularly difficult and
beyond the scope of this paper, because the definition of kernel
phase is inherently monochromatic. However, we can put some
limits on when this effect might become important and the order of
magnitude of the effect. We write the air refractive index difference
of �n between the blue and red edges of a filter, and the spectral
difference between a target and calibrator is �F covering a fraction
f of the bandpass. Assume that both objects are observed at the
same airmass. The image Fourier-plane phase error arising from
this difference is

�ϕ ≈ 2π�Ff �αBmax/λmean, (20)

where the change in angle on the sky between long- and short-
wavelength part of the filter is

�α = �n tan(z). (21)

Here z is the zenith distance angle, and this formula gives only the
value for airmasses less than approximately 3. The kernel phase
signature of this dispersion effect is very similar to that of a close
companion of separation �α and magnitude difference f�F. For
values of �α greater than about 0.5λmean/Bmax, the kernel phase
error �θ is of the same magnitude as �ϕ, and for smaller values
of �α, the kernel phase error goes as (�αBmax/λmean)3 (e.g. see
equation 5 of Le Bouquin & Absil 2012). As an example, observing
in the full H band with a zenith angle of 45◦ from an altitude of
2600 m gives �α = 31 mas, which is larger than 0.5λmean/Bmax

for Bmax = 8 m. A 10 per cent difference in the spectrum over the
long-wavelength 10 per cent of the H bandpass would then give
�θ ≈ �ϕ ≈ 0.01 rad.

The effect of observing at different airmasses is much more com-
plex, because for flat spectra, dispersion does not give a non-zero
kernel phase. In general, it may be a non-linear interaction between
pupil-plane aberrations and dispersion that dominate the calibration
errors.

2.7 Photon, background and readout noise

Finally, we consider the fundamental limitation of random errors
caused by photon, background and readout noise. The closure phase
error due to photon (shot) noise is

σ (φcp,photon) = Nh

NpV

√
1.5

(
Np + Nb + npσ 2

ro

)
, (22)

where V is the fringe visibility, Np is the total number of photons
collected in an interferogram, Nb is the number of background
photons and Nh is the number of holes in the aperture mask. The
factor of

√
1.5 includes a factor of

√
3 due to photon noise from

three independent baselines making up the closure phase, as well
as a factor of

√
1/2 due to the shot noise power at any non-zero

spatial frequency being split equally between the real and imaginary
parts. The readout noise in photon units is σ ro and the number of
pixels is np. The effect of both readout and background noise is
affected by the size of the window function used prior to making
the Fourier transform to compute the visibilities, and this effect can
be minimized if fringes are directly fitted to the data (e.g. the SAMP

pipeline of Lacour et al. 2011).

2.8 Dominant error terms

The most common kinds of kernel phase data taken so far have been
sparse aperture masking behind natural guide star AO, particularly
at 1.5–2.4 μm wavelengths, so we will consider this regime first. We
will also consider that adequate flat-fields have been taken and bad
pixels properly corrected. The AO system only locks when there
are at least ∼100 visible photons per Shack–Hartmann lenslet in
∼0.01 s, or ∼106 photons in 100 s. With a similar near-infrared and
visible photon rate, and a similar masking sub-aperture size to a
Shack–Hartmann lenslet size, equation (22) would predict an ∼0.◦4
photon-limited closure phase uncertainty for a 100 s integration and
a nine-hole aperture mask.

We can use equation (14) to predict the effect of temporal
phase errors: in particular good seeing, σ (ϕ), could be as low as
0.3 rad (giving a temporal-phase-noise-limited Strehl of ∼0.9) and
fc could have a value of 10 Hz. This would give a temporal phase
noise component to closure phase uncertainty of ∼0.◦1. Perhaps not
surprisingly, given how much light an aperture mask blocks, photon
noise would dominate in this regime. However, for less than ideal
seeing conditions and targets which are brighter in the infrared, the
temporal phase noise dominates over photon noise. A characteris-
tic ‘typical seeing’ predicted closure phase error for 0.5 rad rms
pupil-plane phase error is 0.◦5 for a 100 s integration.

The closure phase uncertainties predicted here are similar to the
typical closure phase uncertainties computed from the standard error
of the mean of individual observation sets in survey papers such as
Kraus et al. (2008). However, it is certainly true that the residuals
when subtracting closure phases from two point sources are not
always statistically consistent with these standard errors. This kind
of residual is often called a calibration error, where the non-zero
closure phases described in Section 2.3 are not fully corrected by
observations of a calibrator star. Typical uncalibrated closure phases
from the Keck nine-hole aperture mask are 3.◦5 in the H and K bands
(CH4S and Kp filters), and 7◦ in the L band (Lp filter). These non-
zero closure phases are consistent with having quasi-static spatial
aberrations of ∼0.5 rad amplitude in the CH4S and Kp filters (e.g.
Fig. 2) and atmospheric dispersion in the Lp filter (Section 4). A
small change in the amplitude of these non-zero closure phases leads
to miscalibrations that can be larger than the temporal (sub-aperture
piston) phase and photon noise effects.

3 C L O S U R E P H A S E C O R R E L AT I O N S

One of the more confusing aspects of aperture-masking data anal-
ysis is knowing what to do with a linearly dependent set of clo-
sure phases. As described in Kulkarni (1989), these phases may
be linearly independent in the case of very low signal-to-noise per
exposure when the bispectrum is averaged, but in the high signal-to-
noise limit considered here, with M non-redundant sub-apertures,
there are M(M − 1)(M − 2)/6 closure phases but only (M − 1)(M
− 2)/2 linearly independent closure phases. A redundant aperture
has an even higher degree of correlation of the bispectrum phases.

Simply choosing an arbitrary independent set of closure phases
for the purpose of modelling is not possible without a full consid-
eration of the covariance matrix. If one considers only the simplest
forms of closure phase errors, namely that due to readout noise,
then the problem of modelling the covariance matrix is not diffi-
cult. However, there are many other kinds of errors that can cause
correlations between closure phase errors.

Previous work has either gone to great lengths to diagonalize
the measured covariance matrix of closure phase (e.g. Kraus et al.
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2008) or has made an approximate scaling of fitting errors to ac-
count for the closure phase correlations (e.g. Hinkley et al. 2011).
The difficulty in any approach based on real data is that the sample
covariance matrix must be modelled and cannot in general be mea-
sured completely from the data. The reason for this is that where
there are fewer data frames taken than independent closure phases,
the sample covariance matrix is necessarily singular.

These difficulties are all avoided if rather than considering closure
phases as a primary observable, the linear combinations that make
the kernel phases are seen as the primary observables. This has
added benefits of being able to extend the aperture-mask technique
to considering baselines within each sub-aperture (consequently
extending the usable field of view) and using the same language for
all AO image analysis that is independent of pupil-plane phase to
first order.

Of course, there are many different ways to form a set of kernel
phases from a set of closure phases, or indeed a linearly independent
set of kernel phases. Martinache (2010) suggested that kernel phases
should be constructed so that only orthonormal linear combinations
of Fourier phase are considered. However, this does not guarantee
statistical independence. In the simplest case of a centrally concen-
trated image limited by photon noise, the spatial concentration of
the image variance means that neighbouring Fourier components
have highly correlated phase errors. This amounts to a contrast loss
when considering n-sigma excursions of kernel phase, because just
like aperture masking, the kernel phase technique, as described by
Martinache (2010), has a nearly flat contrast limit curve beyond
separations of ∼λ/D. However, standard imaging can have increas-
ing contrasts as separations increase beyond the PSF centre. This
apparent loss in sensitivity can be regained by properly considering
the correlation between Fourier phases, as shown below.

3.1 Statistically independent kernel phase

Following from Section 1.1 we will define the matrix that transforms
the Fourier phase vector � to the vector of kernel phases Ko. This is
an NK by NF matrix, where NK is the number of kernel phases and NF

is the number of Fourier phases. The subscript o indicates that this
matrix produces an orthonormal set of phase linear combinations.
We can compute the sample covariance matrix of kernel phases
CK either directly or from the sample covariance matrix of Fourier
phases C. This matrix can be diagonalized by the finite-dimensional
spectral theorem

STDS = CK = KoCKT
o . (23)

The matrix S is then a unitary matrix which allows us to construct
a set of statistically independent kernel phases based on a new kernel
phase operator KS :

θS = KS� = SKo�. (24)

As an example of the utility of this approach, I have simulated
the effects of photon noise on kernel phase contrast limits, as shown
in Fig. 3. The contrast standard deviation was estimated by first es-
timating the standard deviation of each kernel phase (i.e. neglecting
covariances), forming a vector σ (θ ), then computing the contrast
error using standard formulae for weighted averages:

θm = K�m (25)

σ 2
c = 1

/ ∑
k

θ2
m,k

σ 2
k (θ )

. (26)

Figure 3. The effect of photon noise on kernel phase detections, based on
a simulated photon-limited image with 106 photons taken with the unob-
structed Keck telescope in the Lp filter. The decreased number of photons
far from the PSF core means that kernel phases sensitive to these spatial
locations have smaller errors, increasing the achievable contrast. Although
the kernel phases in each situation are equivalent, the uncertainties are not
equivalent and would require a full covariance matrix in the case of the
orthogonal kernel phase.

Here �m is the model phase divided by the contrast in the high-
contrast limit, e.g. for a 100:1 brightness ratio companion, the phase
would be approximated well by 0.01�m. It is clear that the contrast
achieved by considering statistically independent kernel phases de-
fined by KS is superior to the contrast achieved by orthonormal
kernel phases defined by Ko, for companions away from the PSF
core.

4 C A L I B R AT I O N S T R AT E G I E S

For the situation where phase errors are mostly random, calibra-
tion is not required. This has been the case for faint aperture-mask
observations with a laser-guide star system, where obtaining cali-
bration observations has a very significant observing time cost (e.g.
Dupuy, Liu & Ireland 2009). When static phase errors dominate
and random errors are larger than calibration errors, only a single
suitable calibrator observation is required. A more typical situation
in sparse aperture masking has been where random errors are small
compared to calibration errors, and the choice and weight assigned
to calibrator observations are critical in achieving the lowest possi-
ble model fit residuals and the highest contrasts. In this regime, there
is an obvious danger – where calibrators are chosen to minimize the
calibrated kernel phase, this biases the kernel phase away from a
detection, and may result in deeper contrast limits being quoted for
a non-detection than is justified by the data. This problem is also
in common with the Locally Optimised Combination of Images
(LOCI) algorithm (Lafrenière et al. 2007).

4.1 Nearest-neighbour calibration

The simplest calibration technique is to subtract the kernel phases
from a calibrator observed closest to the target in time or space. A
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Figure 4. An illustration of a situation where negative weighting of a cal-
ibrator may be optimal. Dispersion (illustrated by the lower red and upper
blue circles) causes systematic kernel phases such that the kernel phases
of Calibrator 2 (φC2) is the average of kernel phases of the Target (φT)
and Calibrator 1 (φC1). The best estimate of the kernel phases caused by
dispersion for the Target is then 2φC2 − φC1.

small extension to this technique (e.g. Evans et al. 2012) is to use
the average of several calibrators observed nearby in time, rejecting
outlier calibrator observations. Outliers are most easily rejected by
looking for calibrators that when used to calibrate the target give
spuriously large closure phases. For Nc calibrators, this amounts to
calibrator weightings {ak}Nc

k=1, where each ak is either 0 or 1/Nu,
with Nu the number of calibrators used. There are, however, several
weaknesses to this technique.

(i) With small numbers of calibrator observations, it is difficult
to avoid subjectivity in the choice to reject particular calibrators.

(ii) For particularly noisy calibrator observations and small sys-
tematic kernel phases, this process only adds noise.

(iii) All calibrators are weighted evenly, when the optimal
weighting of individual calibrators may even be negative.

(iv) Any astrophysical structure in calibrators, e.g. undetected
faint companions, contributes to any signal in final calibrated data.

The third point may not be obvious and is illustrated in Fig. 4.
Whenever calibrators are all on one side of the calibrator in some
space, then optimal calibration may extrapolate past the position
of the calibrators to the target. This space may be real (such as
zenith distance which produces non-zero kernel phases due to dis-
persion) or a one-dimensional parametrization of a hidden variable
describing a time-variable aberration. This approach is similar to
the potentially negative weighting of astrometric reference stars in
precision astrometry (Lazorenko 2006).

4.2 Optimized calibrator weighting

We will now proceed to define a more optimal set of calibrator
weightings {ak}Nc

k=1. This set of calibrator weightings must mini-
mize the residual closure phases after fitting a model, without sig-
nificantly biasing the model fit. In this section, we will describe this
process as applied in Kraus & Ireland (2012), where the starting
point is closure phases rather than kernel phases.

Following appendix A of Kraus et al. (2008), we begin by con-
sidering the closure phases only on a subspace spanned by the Nind

linearly independent set of closure phases. Furthermore, we con-
struct a basis vector set on this subspace such that the closure phase
covariance matrix is diagonal (or nearly so) when projected on to
it. To see how this is done, first note how closure phases can be
constructed linearly from phases:

φcp = Tθp. (27)

The matrix TTt then projects any set of closure phases on to the
set spanned by the linearly independent set of closure phases. This
matrix can be diagonalized as TTt = Ut

1D1U1 by a diagonal matrix
D1 and a unitary matrix U1. The eigenvalues on the diagonal of D1

are either 0 or 1. By considering only the non-zero eigenvectors of
D1, we can write

TTt = Pt
1P1 (28)

for an Nind × Ncp projection matrix P1. P1 projects on to a subspace
S spanned by an orthonormal set of linear combinations of closure
phases.

Next, given a closure phase covariance matrix Ccp, we can modify
the projection matrix so that it projects on to a set of basis vectors
for S with a diagonal covariance matrix. To accomplish this, we
diagonalize the projection of Ccp:

P1CcpP
t
1 = Ut

2D2U2. (29)

Then our new matrix P2 = U2P1 is a projection matrix on to S

satisfying

P2CcpP
t
2 = D2. (30)

Representing the data in this way enables, for example, the con-
struction of χ2 variables that can be computed by the sum over
variance-normalized square deviates of a set of independent data,
without the explicit use of covariance matrices. A potential problem
with this approach is that the sample covariance matrix estimated
from the data has a rank equal to min(Nind, Nfr − 1), where Nfr is
the number of data frames. Taken at face value, with Nfr < Nind,
this process unreasonably restricts the closure phases of a model
of the target to lie on a very limited subspace in the space spanned
by the observed departures from the mean closure phase. For this
reason, we take Ccp above to be the weighted mean sample covari-
ance matrix of all target and calibrator observations weighted by
the inverse of the trace of each sample covariance matrix. We form
the estimated errors of the target by

P2CtP
t
2 = D′

2. (31)

Our data and errors are then transformed to a set of kernel phases
x:

x = P2φcp (32)

σ 2(x) = diag(D′
2) + �2. (33)

The non-diagonal terms of D′
2 are ignored, and any values on

the diagonal less than the median are set to the median. This is
a crude method to ensure that our statistics are reasonably robust,
without resorting to studentizing a multidimensional distribution.
An alternative to this approach might be a bootstrapping technique;
however, in this case there is no obvious way to estimate the ak

variables below or to account for the error in their estimation. The
additional uncertainty �2 accounts for calibration errors, to be fur-
ther defined below.

The next step is to find an optimal linear combination of weights
{ak}Nc

k=1, where Nc is the number of possible calibrators. By optimal,
we mean that we want to maximize the likelihood function for {ak}
based on a null model for calibrated kernel phases xc:

xc = xt −
Nc∑
k=1

ak xk (34)

L({ak}) = exp

(
−

∑
i

x2
c,i

2σ 2
i (xt )

)
π({ak}), (35)
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where we have explicitly subscripted xc with i and where π({ak})
is a Bayesian prior distribution for {ak}. The use of a restrictive
prior as a regularizer is essential where there are many calibrators
in use, because if Nc > Nind and there is a random error component,
then there almost surely exists an {ak} such that xc = 0, subtracting
any real astrophysical signal. The prior chosen in Kraus & Ireland
(2012)1 was

π(ak) = exp

(
−a2

k

2

∑
i

σ 2
i (xk)

σ 2
i (xt )

)
, (36)

where σ 2
i (x) is the variance of the ith component of x. This is

certainly not the only choice of such a prior, but it does have the
essential feature of preferring calibrator weights of zero and also
of reducing the weighting of calibrators with large internal sample
variances.

Once an optimal set of weights {ak} has been found by maximiz-
ing the likelihood function, the uncertainty on the calibrated kernel
phases xc is given by

σ 2
i (xc) = σ 2

i (xt ) +
∑

k

a2
kσ

2
i (xk). (37)

Note that this neglects any uncertainty in estimating the {ak}.
Finally, the calibrator observations {xk} do not necessarily span

the space of the hidden parameters causing non-zero-point-source
kernel phases. For this reason, the additional ‘calibration error’ term
�2 in equation (33) was iteratively added so that the reduced χ2 for
the null model was 1.0, i.e.

χ2
r = 1

Nind

∑
i

x2
c,i

σ 2
i (xc)

= 1.0. (38)

In approximately half of the data sets tested in the work leading
up to Kraus & Ireland (2012), no calibration error �2 was needed.
With values of the calibrated kernel phases xc and their errors σ (xc)
so computed, a model such as a bright star plus faint companion
or a more complex image can be fitted using least squares. This
is, however, a biased fit just like the LOCI technique (Lafrenière
et al. 2007), because the process of computing the weights {ak}
partly removes the binary signal, due to the null model for kernel
phase in equation (35). For this reason, in Kraus & Ireland (2012),
final values of model parameters were computed after re-computing
the {ak} with the best-fitting model subtracted iteratively from
the xc.

4.3 Restricted kernel phase (POISE)

An alternative to the complexity of the calibration strategy in the
previous section is to ignore the kernel phases that require calibra-
tion, i.e. those kernel phases that are most affected by systematic
errors. This is similar to choosing a prior in equation (35) in order
that the calibrator is ignored for some kernel phases (π(ak) = δ(0))
and left uniform for other kernel phases, so that both calibration
errors and astrophysical signal are subtracted. The difference be-
tween this and the technique described in this section is that only
the restricted set of kernel phases where calibration is not required

1 This equation, as presented in equation 1 of Kraus & Ireland (2012),
was potentially confusing, because the division (·)

(·) was element-by-element

division, and the vector l2-norm | · | was used without being explicitly
described.

is used for subsequent analysis. We will call these restricted observ-
ables the POISE observables. This technique is very similar to the
technique of ignoring dominant Karhunen–Loève eigenimages as
a means of calibrating more wide-field PSFs (Soummer, Pueyo &
Larkin 2012).

Following equation (28), we find a set of kernel phases yk for
each image k by a projection of the Fourier phases θp:

yk = Scθp (39)

for the general kernel phase, remembering that

θp = P1φcp = P1Tθp (40)

for aperture masking. The matrix Sc is formed in a similar way to
equation (23), using the matrix X = {xk} of calibrator observations,
which is an (NK by NC) matrix, with NC the total number of calibrator
frames:

ST
c DSc = XXT. (41)

This definition is almost the same as taking diagonalizing the
covariance matrix, except that we do not subtract the mean kernel
phases from the xk .

The calibrator kernel phases on this new subspace yk with zero
covariances are naturally subdivided into image sets Cj for each
PSF calibrator observation j. Within each image set, uncertainties
are dominated by random errors, but between image sets, there is
a combination of random and calibration errors. We consider the
sample variance for kernel phase i computed over all images k as
systematic if

δ2
i = s2

i ({ yk∀k}) − s2
i ({ yk : k ∈ Cj }) > 0 (42)

for all calibrator image sets j. In the POISE technique, we simply
compute the systematic error components δ2

i for each kernel phase
i, and

(i) ignore kernel phases yi whenever

δ2
i > β〈s2

i ({yk : k ∈ Cj })〉j . (43)

A typical value for β is 1, which rejects approximately 1 to 3 out of
28 kernel phases for nine-hole Keck aperture-masking data.

(ii) Add δ2
i to each target observation’s uncertainty estimate for

the remaining kernel phases i.

This means that the process of calibration is completely indepen-
dent of the target, which was not the case in Section 4.2, because
in that technique calibrator weights were chosen to minimize the
calibrated target kernel phases. The technique requires at least three
calibrator image sets to differ significantly from simpler calibration
techniques.

As an example of the use of this technique, we consider the data
set used in the 2010 November K′ sparse aperture-mask observa-
tions of the LkCa 15 system (Kraus & Ireland 2012). This data set
consisted of 13 calibrator image sets of 12 images each, and 12
target image sets of 12 images each, all taken in good (0.6 arcsec)
seeing. This is an ideal data set, especially given that all calibrators
had previous sparse aperture-mask observations and were known to
be single stars, and observations were continuous over a time period
of 3.5 h, with target and calibrator observations interspersed. This
is also the highest contrast detection published in the literature so
far, which is the K-band detection of structure modelled as three
compact sources around the star, with details reproduced in Table 1.
Although much higher contrast is possible for brighter stars, espe-
cially when extreme AO may enable negligible piston phase errors,
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Table 1. A comparison between a fit with
three additional point sources to 2010
November K′ sparse aperture-mask data us-
ing linear combinations of calibrator obser-
vations (Kraus & Ireland 2012, KI12) and
using the POISE observables. Parameters
are separation (ρ), position angle (θ ) and
magnitude difference with respect to the
primary (�m). When adding uncertainties
in quadrature, differences are always con-
sistent within 2σ and in seven out of nine
cases within 1σ .

Parameter KI12 POISE

ρ1 (mas) 67.0 ± 3.2 65.1 ± 3.1
θ1 (deg) 12.3 ± 2.8 10.9 ± 2.9
�m1 7.40 ± 0.19 6.89 ± 0.18
ρ2 (mas) 64.4 ± 1.5 62.6 ± 1.9
θ2 (deg) 334.8 ± 1.5 333.4 ± 2.5
�m2 6.59 ± 0.09 6.36 ± 0.11
ρ3 (mas) 82.5 ± 2.4 78.0 ± 4.1
θ3 (deg) 302.3 ± 1.5 302.3 ± 2.8
�m3 7.06 ± 0.12 7.02 ± 0.18

at V ∼ 12 this is roughly the brightest star of its class – no known
<5 Myr solar-mass star is in any association closer than Taurus.

When applying the POISE algorithm to this data set with a β

value of 1.0 in equation (43), only 1 of the 28 kernel phases are re-
moved as ‘systematic’ by the calibrator observations, meaning that
96 per cent of the closure phase information is retained. A three-
point-source fit to these restricted kernel phases had a reduced χ2

value of 0.92, as shown in Table 1. With a reduction of β to 0.25,
four kernel phases are removed as ‘systematic’, the reduced χ2 be-
comes 1.00 but no fitted parameters change by even 1σ . In addition,
the variance of the mean for 50 per cent of the image-set kernel
phases is dominated by random errors, and not the δ2

i values from
equation (42). This means that quasi-static spatial aberrations in this
case do not significantly limit the signal-to-noise in the final image.
For this kind of observation, spatially filtering the input wavefront
(e.g. Huby et al. 2012; Jovanovic et al. 2012) could not significantly
improve the achievable calibration-limited contrast. The random
errors of ∼0.◦5 in each 240 s image set are also consistent with tem-
poral phase piston errors, which would not be improved by spatial
filtering. This argument of course falls over for brighter targets (i.e.
generally higher mass or closer and older targets) where existing
AO systems perform much better, and extreme AO is possible. In
these situations, σϕ in equation (14) can be smaller than 0.3 rad, fc

can exceed 100 Hz and spatial filtering may become essential at the
∼10 mag contrast range enabled by this improved AO performance.

4.4 Imaging with POISE

For sufficiently complex sources, model fitting is replaced with
imaging. In general, imaging from kernel phases alone is compu-
tationally intensive because of the non-linear relationship between
the image plane and Fourier phase. However, in the high-contrast
regime, where interferometric visibility amplitudes are unity within
errors, we can approximate the Fourier transform F (u) of an image
I (x) normalized to a total flux of unity as

F (u) ≈ 1 + i
∫

sin(2πu · x)I (x) dx. (44)

In turn, the phase � becomes

�(u) ≈
∫

sin(2πu · x)I (x) dx. (45)

We can consider the image to be made of discrete pixel values
arranged in a vector p = {pj }, so that the integral in equation (45)
becomes a sum, and the values of Fourier phases φ and kernel
phases θ are represented by matrix multiplication:

� ≈ Mp (46)

θ ≈ KMp

≈ A p. (47)

This linear approximation to imaging means that minimizing ker-
nel phase χ2 subject to a differentiable regularizer can be rapidly
computed using a gradient descent method. An example of such
a regularizer is the maximum entropy regularizer (e.g. Narayan &
Nityananda 1986)

S = −
∑

j

pj ln(pj/qj ), (48)

for some prior image q, often taken to be a uniform image in some
finite field of view and zero elsewhere. The problem of maximum
entropy image construction is then simply a problem of minimizing
the sum of the χ2 value and the regularizer:

pMaxEnt = arg minp

⎧⎨
⎩

∑
i

(θi − A p)2

σ 2
i

+ α
∑

j

pj ln(pj/qj )

⎫⎬
⎭ .

(49)

The value of α is typically chosen so that the final image has a
reduced χ2 value of 1.02. Then to see the result of this approach
to imaging, we will again use the K′ data set from Kraus & Ire-
land (2012). In that original paper, the optimized calibrator weight-
ing scheme (see Section 4.2) enabled the MArkov Chain Imager
(MACIM) algorithm (Ireland, Monnier & Thureau 2006) to be used
to create images directly from the closure phases via an OIFITS input
file. This approach ignored correlations between closure phases.
The image created directly by fitting to kernel phases imaging with
the maximum entropy regularizer can be seen in Fig. 5, where the
resolved structures contain 1 per cent of the total system flux and the
reduced χ2 of the image is 1.0. Note that arbitrary point-symmetric
flux could be added to this image and it would still fit the kernel
phases. A weakness of imaging from kernel phases alone is that
point-symmetric flux added to a bright central point source does not
produce any phase information.

The image in Fig. 5 is cosmetically at least as good as that shown
in Kraus & Ireland (2012), but comes with the significant benefit
that the calibration process does not directly affect the image: the
POISE observables are independent of the calibrator observations.

5 C O N C L U S I O N S

Aperture-mask interferometry has proven to be a powerful tech-
nique to recover high-contrast (up to ∼8 mag at 1σ ), asymmet-
ric information at the diffraction limit (∼0.5–5λ/D) of large tele-
scopes. The reason for this success is the ability for closure phase,

2 Image reconstruction code in the PYTHON language using this regularizer
can be found at http://code.google.com/p/pysco, the repository where all
codes in this paper are intended to go after translation to PYTHON.
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Figure 5. An imaging fit to the 2010 November data set of LkCa 15,
originally published in Kraus & Ireland (2012). A uniform prior was used
which had a total flux of 2 per cent of the image flux, and the final fit at a
reduced χ2 of 1.0 contained 1 per cent of the image flux, with the remaining
99 per cent contained within the point source star at the image centre.

a kind of kernel phase, to give an observable largely independent of
time-variable aberrations. I have described many of the key sources
of phase errors in this technique, as well as several strategies for
mitigating them. Of note are the POISE observables, which are a
subset of all possible linear combinations of closure phases. Ob-
servations of calibrator stars inform which linear combinations of
phases constitute the POISE observables, but the analysis of the tar-
get observations is performed quite independently of the calibrator
observations, leading to a more robust calibration method.

The generalization of the aperture-mask technique to full-pupil
images shows great promise in the form of the full-pupil kernel
phase observables. Simulations show that pupil-plane phase errors
higher than third order affect full-pupil kernel phase more than
aperture-mask kernel phase, meaning that full-pupil kernel phase
will likely be restricted to moderately high Strehl observations.

The analysis presented here has implicitly involved only a
monochromatic PSF from an imaging system. Although the effect
of dispersion was discussed and the POISE calibration technique
ameliorates the effects of dispersion, a mathematical framework to
clearly predict the effects of dispersion on kernel phase was not
developed. A future study of the effect of very broad bandwidths is
needed. More importantly, an extension of this technique to work
for the simultaneous wavelength-dispersed images formed by an
integral field unit could be very powerful. The scaling of PSF with
wavelength as a speckle suppression technique could be equally
well applied to observables in the Fourier domain as it has been in
image-plane analyses.
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Ireland M. J. et al., 2008, in Schöller M., Danchi W. C., Delplancke F., eds,
Proc. SPIE Conf. Ser. Vol. 7013, SPIE, Optical and Infrared Interferom-
etry. Bellingham, p. 63

Jovanovic N. et al., 2012, MNRAS, 427, 806
Kraus A. L., Ireland M. J., 2012, ApJ, 745, 5
Kraus A. L., Ireland M. J., Martinache F., Lloyd J. P., 2008, ApJ, 679, 762
Kulkarni S. R., 1989, AJ, 98, 1112
Lacour S., Tuthill P., Amico P., Ireland M., Ehrenreich D., Huelamo N.,

Lagrange A.-M., 2011, A&A, 532, A72
Lafrenière D., Marois C., Doyon R., Nadeau D., Artigau É., 2007, ApJ, 660,
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APPENDI X A : THI RD-ORDER BI SPECTRU M
E X PA N S I O N

We will begin by writing the combination of equations (4) and (5)
explicitly:

bABC =
(

1 + i(ϕB − ϕA) − 1

2
(ϕB − ϕA)2 − i

6
(ϕB − ϕA)3

)

×
(

1 + i(ϕC − ϕB ) − 1

2
(ϕC − ϕB )2 − i

6
(ϕC − ϕB )3

)

×
(

1 + i(ϕA − ϕC) − 1

2
(ϕA − ϕC)2 − i

6
(ϕA − ϕC)3

)
.

(A1)

The zeroth-order terms in the �φs are trivially collected as 1,
and the first order terms clearly cancel to give 0. The second-order
terms are

�(bABC) ≈ −1

2

[
(ϕB − ϕA)2 + (ϕC − ϕB )2 + (ϕA − ϕC)2

]

−
[
(ϕB − ϕA) · (ϕC − ϕB ) + (ϕC − ϕB ) · (ϕA − ϕC)
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+ (ϕA − ϕC) · (ϕB − ϕA)
]
. (A2)

Moving from this equation to equation (6) requires the substitu-
tion of equations (8) through (10), as well as a recognition of the
following classes of trivial identities:

(ϕB − ϕA) = (ϕB − ϕA) (A3)

(ϕ′
B − ϕ′

A) = 0. (A4)

The third-order terms of equation (A1) are collected (after minor
simplification of the coefficient 1/2 terms) as

�(bABC) ≈ −1

6

[
(ϕB − ϕA)3 + (ϕC − ϕB )3 + (ϕA − ϕC)3

]

+ 1

2

[
(ϕB − ϕA) · (ϕB − ϕA)2

+ (ϕC − ϕB ) · (ϕC − ϕB )2 + (ϕA − ϕC) · (ϕA − ϕC)2
]

− (ϕB − ϕA) · (ϕC − ϕB ) · (ϕA − ϕC). (A5)

Again, equation (7) follows after substitution of equations (8)
through (10) as well as applying trivial identities such as A3 and
A4.

A P P E N D I X B : T E M P O R A L P H A S E E R RO R S

In applying equation (7) to temporal phase errors, we write the in-
stantaneous values of ϕA, ϕB and ϕC as random variables XA, XB and
XC, respectively, which take a new random value at N statistically
independent time steps. We can then write

Var(φcp) = 1

36
Var((ϕ′

B − ϕ′
A)3 + (ϕ′

C − ϕ′
B )3 + (ϕ′

A − ϕ′
C)3) (B1)

≈ 1

36 N
Var

(
(XB − XA)3

+ (XC − XB )3 + (XA − XC)3
)

(B2)

= 1

4 N
Var

(
X2

AXB − XAX2
B + X2

BXC

− XBX2
C + XAX2

C − X2
AXC

)
(B3)

= 3σ 6
ϕ

N
. (B4)

Here Var represents the variance of a quantity, which in this special
case of quantities of zero mean is simply the expectation of the
square. The approximately equals sign (≈) in equation (B2) is used
because we are ignoring the piston subtraction, applicable only for
N 
 1 (and with an error of the order of N−1). All the variables
XA, XB and XC are independent Gaussian variables with mean 0 and
standard deviation σϕ , so their moments are standard results, and
the expectation of a product of their moments is simply the product
of the expectation of their respective moments. The variance on the
right-hand side of equation (B3) can be thus be simply but tediously
evaluated as the sum over 36 mutual covariances to give a value of
12σ 6

ϕ . Finally, equation (14) follows directly from equation (B4),
noting that the number of independent phase samples N = fcT .
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