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In this paper the relationship between the classical density functional theory of freezing and phase-field
modeling is examined. More specifically a connection is made between the correlation functions that enter
density functional theory and the free energy functionals used in phase-field crystal modeling and standard
models of binary alloys �i.e., regular solution model�. To demonstrate the properties of the phase-field crystal
formalism a simple model of binary alloy crystallization is derived and shown to simultaneously model
solidification, phase segregation, grain growth, elastic and plastic deformations in anisotropic systems with
multiple crystal orientations on diffusive time scales.
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I. INTRODUCTION

The formalism for calculating equilibrium states was es-
tablished many years ago by Gibbs, Boltzmann, and others.
While this formalism has proved remarkably successful there
are many systems which never reach equilibrium, mainly due
to the existence of metastable or long-lived transient states.
This is most apparent in solid materials. For example, it is
very unlikely that the reader is sitting in a room containing
any single crystals except items produced with considerable
effort such as the silicon chips in computers. In fact the vast
majority of naturally occurring or engineered materials are
not in equilibrium and contain complex spatial structures on
nanometer, micron or millimeter length scales. More impor-
tantly many material properties �electrical, optical, mechani-
cal, etc.� are strongly influenced by the nonequilibrium struc-
tures that form during material processing. For example, the
yield strength of a polycrystal varies as the inverse square of
the average grain size.

The study of nonequilibrium microstructure formation has
seen considerable advances through the use of the phase-
field approach. This methodology models the dynamics of
various continuum fields that collectively characterize micro-
structure in phase transformations. For example, phase-field
or continuum models have been used to simulate spinodal
decomposition,1 order-disorder transition kinetics,2 ordering
of block-copolymer melts,3 solidification of pure and binary
systems4–8 and many other systems. In these phenomena the
evolution of the appropriate field�s� �e.g., solute concentra-
tion in spinodal decomposition� is assumed to be dissipative
and driven by minimizing a phenomenological free energy
functional.1

Advances in the phase-field modeling of solidification
phenomena have followed a progression of innovations, be-
ginning with the development of free energies that capture
the thermodynamics of pure materials4–6 and alloys.7,8 Sev-
eral modifications were then proposed9–11 to simplify nu-
merical simulations and improve computational efficiency.
Perhaps the most important innovation was the development
of matched asymptotic analysis techniques that directly con-

nect phase-field model parameters with the classical Stefan
�or sharp-interface� models for pure materials or alloys.12–15

These techniques were complimented by new adaptive mesh
refinement algorithms,16,17 whose improved efficiency sig-
nificantly increased the length scales accessible by numerical
simulations, thus enabling the first experimentally relevant
simulations of complex dendritic structures and their interac-
tions in organic and metallic alloys.18–22

A weakness of the traditional phase-field methodology is
that it is usually formulated in terms of fields that are spa-
tially uniform in equilibrium. This eliminates many physical
features that arise due to the periodic nature of crystalline
phases, including elastic and plastic deformation, anisotropy
and multiple orientations. To circumvent this problem tradi-
tional phase-field models have been augmented by the addi-
tion of one or more auxiliary fields used to describe the den-
sity of dislocations23–25 continuum stress and strain fields26,27

and orientation fields.28–30 These approaches have proven
quite useful in various applications such as polycrystalline
solidification.24,28–32 Nevertheless it has proven quite chal-
lenging to incorporate elastoplasticity, diffusive phase trans-
formation kinetics and anisotropic surface energy effects into
a single, thermodynamically consistent model.

Very recently a new extension to phase-field modeling has
emerged known as the phase-field crystal method �PFC�.33–35

This methodology describes the evolution of the atomic den-
sity of a system according to dissipative dynamics driven by
free energy minimization. In the PFC approach the free en-
ergy functional of a solid phase is minimized when the den-
sity field is periodic. As discussed in the literature33–35 the
periodic nature of the density field naturally gives rise to
elastic effects, multiple crystal orientations and the nucle-
ation and motion of dislocations. While these physical fea-
tures are included in other atomistic approaches �such as mo-
lecular dynamics� a significant advantage of the PFC method
is that, by construction, it is restricted to operate on diffusive
time scales not on the prohibitively small time scales associ-
ated with atomic lattice vibrations. The approach is similar to
the atomic density function theory that was recently pro-
posed by Jin and Khachaturyan.36 In the case of pure mate-
rials the PFC approach has been shown33,34 to model many
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phenomena dominated by atomic scale elastic and plastic
deformation effects. These include grain boundary interac-
tions, epitaxial growth, and the yield strength of nanocrys-
tals.

The original PFC model is among the simplest math-
ematical descriptions that can selfconsistently combine the
physics of atomic-scale elastoplasticity with the diffusive dy-
namics of phase transformations and microstructure forma-
tion. Nevertheless, analogously to traditional phase-field
modeling of solidification, further work is required to fully
exploit the methodology. More specifically it is important to
be able to generalize the method to more complex situations
�binary alloys, faster dynamics, different crystal structures,
etc.�, to develop more efficient numerical techniques and to
make a direct connection of the parameters of the model to
experimental systems. Several innovations toward this goal
have already been developed. Goldenfeld et al.37,38 have re-
cently derived amplitude equations for the PFC model which
are amenable to adaptive mesh refinement schemes. This
work has the potential to enable simulations of mesoscopic
phenomena ��m→mm� that are resolved down to the
atomic scale and incorporate all the physics discussed above.
Another recent advance is the inclusion of higher order time
derivatives in the dynamics to simulate “instantaneous” elas-
tic relaxation.39 This extension is important for modeling
complex stress propagation and externally imposed strains.
Very recently, Wu et al.40,41 fitted the PFC parameters to
experimental data in iron and were able to show that the PFC
model gives an accurate description of the anisotropy of the
surface tension. In addition to this work Wu and Karma have
also developed a simple and elegant scheme to extend the
method to other crystal symmetries �i.e., FCC in three di-
mensions�.

The purpose of this paper is to link the formalism of clas-
sical density functional theory �DFT� of freezing, as formu-
lated by Ramakrishnan and Yussouff42 �and also reviewed by
many other authors, such as Singh43� with the PFC method
and to exploit this connection to develop a PFC model for
binary alloys. The organization of the paper and a summary
of the remaining sections is as follows.

In Sec. II A the classical density functional theory of
freezing of pure and binary systems is briefly outlined. In
this approach the free energy functional is written in terms of
the time averaged atomic density field � ��A and �B in binary
systems� and expanded around a liquid reference state exist-
ing along the liquid-solid coexistence line. Formally the ex-
pansion contains the n-point correlation functions of the liq-
uid state. In this work the series expansion of the free energy
is truncated at the two-point correlation function, C�r�1 ,r�2�.

Within this framework it is shown in Sec. III A that the
PFC model for a pure material can be recovered from DFT if
C�r�1 ,r�2� is parametrized by three constants related to the
liquid and solid state compressibilities and the lattice con-
stant. The parameters of the PFC model can thus be directly
related to the physical constants that enter the DFT of freez-
ing and the PFC model can be viewed as a simplified form of
DFT. In Sec. III B a binary system is considered. Similar to
the case of pure materials the free energy expansion of a
binary alloy will be truncated at the two-point correlation
functions which are then characterized by three parameters.

At this level of simplification it is shown that the “regular”
solution model used in materials physics for alloys can be
obtained directly from DFT. It is shown that the phenomeno-
logical nearest-neighbor bond energies that enter the “regu-
lar” solution model are equal to the compressibilities that
enter DFT. This section also provides insight into the con-
centration dependence of various properties of the crystalline
phase of a binary alloy such as the lattice constant, effective
mobilities and elastic constants.

In Sec. III C a simplified version of the binary alloy free
energy is derived. This is done in order to provide a math-
ematically simpler model that can more transparently illus-
trate the use of the PFC formalism in simultaneously model-
ing diverse processes such as solidification, grain growth,
defect nucleation, phase segregation and elastic and plastic
deformation. This section also shows that the free energy of
the simplified alloy PFC model reproduces two common
phase diagrams associated with typical binary alloys in ma-
terials science. Some of the more tedious calculations in the
derivation of the simplified model are shown in the Appen-
dix.

In Sec. IV dynamical equations of motion that govern the
evolution of the solute concentration and density field of a
binary alloy are derived. Finally in Sec. V the simplified
binary alloy model is used to simulate several important ap-
plications involving the interplay of phase transformation ki-
netics and elastic and plastic effects. This includes solidifi-
cation, epitaxial growth, and spinodal decomposition.

II. CLASSICAL DENSITY FUNCTIONAL THEORY OF
FREEZING

In this section free energy functionals of pure and binary
systems as derived from the classical density functional
theory of freezing are presented. For a rigorous treatment of
their derivation the reader is referred to the work of Ra-
makrishnan and Yussouff42 and numerous other very closely
related review articles by Singh,43 Evans,44 and references
therein.

In DFT the emergence of an ordered phase during solidi-
fication can be viewed as a transition to a phase in which the
atomic number density, ��r��, is highly nonhomogenous and
possesses the spatial symmetries of the crystal.43 This ap-
proach implicitly integrates out phonon modes in favor of a
statistical view of the ordered phase that changes on diffu-
sive time scales. The free energy functional of a system is
expressed in terms of � and constitutes the starting point of
the PFC model.

In this work the free energy functional, denoted F���, is
expanded functionally about a density, �=�l, corresponding
to a liquid state lying on the liquidus line of the solid-liquid
coexistence phase diagram of a pure material as shown in
Fig. 1�a�. The expansion is performed in powers of ����
−�l.

As shown by others42–44 the free energy density can be
written as

ELDER et al. PHYSICAL REVIEW B 75, 064107 �2007�

064107-2



Fc/kBT =� dx����r��ln���r��/�l� − ���r���

− 	
n=2

�
1

n!
� 


i=1

n

dr�i���r�i�Cn�r�1,r�2,r�3, . . . ,r�n� , �1�

where Fc is the free energy corresponding to the density ��r��
minus that at the constant density �l, and the Cn functions are
n-point direct correlation functions of an isotropic fluid. For-
mally the correlation functions are defined by

Cn�r�1,r�2,r�3, . . . � �
�n�



i=1

i=n

���r�i�

, �2�

where ���� represents the total potential energy of interac-
tions between the particles in the material. A particularly
simple proof that � is a functional of � is given in Evans.44

For an alloy involving one or more components the free
energy functional of a pure material in Eq. �1� is extended to
the form

Fc

kBT
= 	

i
� dr���i�r��ln��i�r��/��

i � − ��i�r���

−
1

2	
i,j
� dr�1dr�2��i�r�1�Cij�� j�r�2� + ¯ , �3�

where the sums are over the elements in the alloy, ��i��i
−��

i and ��
i is the value of the number density of component

i on the liquid-side of the liquid-solid coexistence line. The
function Cij is the two-point direct correlation function of

between components i and j in an isotropic fluid. As in the
case of pure materials it will be assumed that Cij �Cij��r�1

−r�2��. The next term in the expansion of Eq. �3� contains the
three-point correlation, the next after that, the four point, etc.
In this paper only two-point correlations will be considered,
but it must be stressed that these higher order correlations
may be crucial for some systems, such as Si. Before consid-
ering the properties of the binary alloy free energy in detail it
is instructive to first study the properties of a pure system
and show the connection between this formalism and the
original PFC model.

III. ANALYSIS OF FREE ENERGY FUNCTIONALS

A. Pure materials

In this section the free energy functional of a single com-
ponent alloy is considered in the limit that the series given in
Eq. �1� can be truncated at C2, i.e.,

F/kBT =� dr��� ln��/��� − ��� − �1/2� � dr�dr���C�r�,r�����

�4�

where, for convenience, the subscript 2 has been dropped
from the two-point correlation function as has the subscript c
from Fc. To understand the basic features of this free energy
functional it is useful to expand F in the dimensionless de-
viation of the density � from its average, �̄, using the res-
caled density

n � �� − �̄�/�̄ . �5�

Expanding F in powers of n gives

�F
�̄kBT

=� dr��n
1 − �̄C

2
n −

n3

6
+

n4

12
− ¯  , �6�

where �F�F−F0 and F0 is the the free energy functional
at constant density �i.e., �= �̄�. For simplicity C is an opera-
tor defined such that nCn��dr��n�r��C��r�−r����n�r���. Terms
that are linearly proportional to n in the above integral are
identically zero by definition.

To gain insight into the properties of the free energy func-
tional in Eq. �6� it is useful to expand the two-point correla-
tion function in a Taylor series around k=0, i.e.,

Ĉ = Ĉ0 + Ĉ2k2 + Ĉ4k4 + ¯ . �7�

�in real space this corresponds to C= �Ĉ0− Ĉ2�
2+ Ĉ4�

4

− ¯ ���r�−r���, where the gradients are with respect to r���.
The function Ĉ is sketched for a typical liquid in Fig. 1�b�. In
what follows only terms up to k4 will be retained. In this
manner the properties of the material are parametrized by the

three variables, Ĉ0, Ĉ2, and Ĉ4. To fit the first peak in Ĉ, Ĉ0,

Ĉ2, and Ĉ4 must be negative, positive, and negative, respec-
tively. These variables are related to three basic properties of
the material, the liquid phase isothermal compressibility

FIG. 1. �a� Sample phase diagram. In this figure the shaded area
corresponds to a coexistence region. In the calculations presented in
this paper the correlation functions are taken from points along the
liquidus line at density ��. �b� In this figure a typical liquid state
two-point direct correlation function is sketched. The dashed line
represents the approximation used in most of the paper.
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���1− �̄Ĉ0��, the bulk modulus of the crystal ���̄Ĉ2
2 / �Ĉ4��

and lattice constant ���Ĉ2 / �Ĉ4��1/2�. In other words the k
=0 term is related to the liquid phase isothermal compress-

ibility, the height of the first peak �Ĉm in Fig. 1�b�� is related
to the bulk modulus of the crystalline phase and the position
of the first peak determines the lattice constant.

It is important to note that at this level of simplification
the material is only defined by three quantities which may
not be enough to fully parametrize any given material. For
example, this simple three parameter model always predicts
triangular symmetry in two dimensions and BCC symmetry
in three dimensions. Other crystal symmetries can be ob-
tained by using more complicated two-point correlation
functions40,41 or by including higher order correlation func-
tions. In addition it is possible that fitting to the width,

height, and position of the first peak in Ĉ may lead to a more
accurate fitting to experimental data.

In two dimensions F is minimized by a triangular lattice
that can be represented to lowest order by a one-mode ap-
proximation as

n = A�1

2
cos�2qy

�3
 − cos�qx�cos� qy

��3�� . �8�

Substituting Eq. �8� into Eq. �6� and minimizing with respect
to q gives equilibrium wave vector of

qeq = �3Ĉ2/�8�Ĉ4�� �9�

or in terms of the equilibrium lattice constant aeq=2� /qeq.
When q=qeq, �F becomes

�F = 3
16�BA2 − 1

32A3 + 15
512A4 + ¯ , �10�

where �F��F / ��̄kBTS�, S is the area of a unit cell, �B

�B�−Bs, B��1− �̄Ĉ0, and Bs� �̄�Ĉ2�2 / �4�Ĉ4��. The param-
eter B� is the dimensionless bulk modulus of the liquid state
�i.e., B�=� / ��̄kBT�, where � is the bulk modulus of a liquid�.
The parameter Bs is proportional to the bulk modulus in the
crystalline phase.

Equation �10� indicates that the liquid state is linearly
unstable to the formation of the crystalline phase when �B
	0. This instability arises from a competition between the
elastic energy stored in the liquid and crystalline phases. It is
interesting to note that �B can also be written

�B = ��̄s − �̄�/�̄s, �11�

where �̄s=1/ Ĉm and Ĉm is the height of the first peak of Ĉ as
shown in Fig. 1. Written in this form �̄s can be thought of as
defining the effective spinodal density, i.e., the average den-
sity at which the liquid becomes linearly unstable to crystal-
lization.

Unfortunately it is difficult to obtain the equilibrium state
�i.e., by solving d�F /dA=0� without truncating the infinite
series in Eq. �10�. If only terms to order A4 are retained an
analytic approximation can be obtained for the amplitude
�Amin� that minimizes F. In this approximation the solution is

Amin=2�1+�20�̄ / �̄s−19� /5. Thus solutions for a crystalline
state exist when �̄
19/20�̄s.

It is also straightforward to calculate the change in energy
of the crystalline state upon deformation �i.e., bulk, shear or
deviatoric�. Details of similar calculations are given in the
literature.33,34 The result of these two-dimensional calcula-
tions gives the dimensionless bulk modulus, Bc, of the crys-
talline phase, i.e.,

Bc =
3

32
�̄

�Ĉ2�2

�Ĉ4�
Amin

2 =
3

8
BsAmin

2 . �12�

In other words the parameter Bs controls the bulk modulus of
the crystalline phase.

These calculations can be easily extended to three dimen-
sions. As discussed previously this particular approximation

for Ĉ leads to a BCC crystal in three dimensions which can
be represented in a one mode approximation as, n
=A�cos�qx�cos�qy�+cos�qx�cos�qz�+cos�qy�cos�qz��. Sub-
stituting this functional form into the free energy and mini-

mizing with respect to q gives, qeq
3d=�Ĉ2 / �Ĉ4�, and the free

energy functional at this q is

�F3d = 3
8�BA2 − 1

8A3 + 45
256A4 + ¯ . �13�

Thus in this instance the spinodal occurs at the same den-
sity as in the two-dimensional case. If the series is truncated
at A4 the amplitude that minimizes the free energy is then
Amin

3d =4�1+�15�̄ / �̄s−14� /15. Thus in this approximations
crystalline �BCC� solutions only exist if �̄
14�̄s /15. In ad-
dition the elastic constants can also be calculated in three-
dimensions �3D� in the usual manner. For example, the di-
mensionless bulk modulus of the crystalline state is given by
Bc

3d=3Bs�Amin
3d �2. This calculation gives the basic functional

dependence of the �dimensionless� bulk modulus on Bs and
the amplitude. For a more accurate calculation higher order
Fourier components and more terms in the powers series in n
should be retained.

Finally it is useful to consider fixing the density and vary-
ing the temperature. If the liquidus and solidus lines are
roughly linear then, �̄s can be approximated by a linear func-
tion of temperature. In the sample phase diagram shown in
Fig. 1�a� the liquidus and solidus lines are roughly parallel
and it is likely that the spinodal is also roughly parallel to
these lines. In this case �B can be written

�B = ��T , �14�

where �T��T−Ts� /Ts, Ts is the spinodal temperature and
���Ts / �̄s����̄s /�Ts�, evaluated at �= �̄.

B. Binary alloys

For a binary alloy made up of A and B atoms the free
energy functional can be written to lowest order in terms of
the direct correlation functions as
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F
kBT

=� dr���A ln��A

��
A − ��A + �B ln��B

��
B − ��B�

−
1

2
� dr�1dr�2���A�r�1�CAA�r�1,r�2���A�r�2�

+ ��B�r�1�CBB�r�1,r�2���B�r�2�

+ 2��A�r�1�CAB�r�1,r�2���B�r�2�� , �15�

where ��A��A−�l
A and ��B��B−�l

B. It is assumed here that
all two-point correlation functions are isotropic, i.e.,
Cij�r�1 ,r�2�=Cij��r�1−r�2��.

In order to make a connection between the alloy free en-
ergy and standard phase-field models it is useful to define the
total number density, ���A+�B and a local concentration
field c��A /�. In terms of these fields the atomic densities
can be written, �A=c� and �B=��1−c�. Furthermore it is
useful to define �=�l+�� where �l��l

A+�l
B and �c=1/2

−c. Substituting these definitions into Eq. �15� gives

F
kBT

=� dr��� ln��/��� − �� + ��c + F0 −
1

2
���cCAA + �1

− c�CBB��� + ��c ln�c� + �1 − c�ln�1 − c�� + �c��CAA

+ CBB�/2 − CAB��1 − c��� , �16�

where ���l�CAA−CBB���+�l� /2+� ln���
B /��

A� and F0

� �̄ ln��� / ���
A��

B�1/2�−CAA /2����
A�2+�l /2��l+ �̄��

−CBB /2����
B�2+�l /2��l+ �̄��.

To illustrate the properties of the model in Eq. �16� it
useful to consider two limiting cases, a liquid phase at con-
stant density and a crystalline phase at constant concentra-
tion. These calculations are presented in the following two
sections.

1. Liquid phase properties

In the liquid phase � is constant on average and in the
mean field limit can be replaced by �= �̄. To simplify calcu-
lations, the case �= �̄��� �or ���0� will now be consid-
ered. As in the preceding section it is useful to expand the
direct correlation functions in Fourier space, i.e.,

Ĉij = Ĉ0
ij + Ĉ2

ijk2 + Ĉ4
ijk4 + ¯ . �17�

where the subscript i and j refer to a particular element.
Substituting the real-space counterpart of the Fourier expan-

sion for Ĉij �to order k2� into Eq. �16� gives

FC

�̄kBT
=� dr��c ln�c� + �1 − c�ln�1 − c� +

�̄�Ĉ0

2
c�1 − c�

+ ��c +
�̄�Ĉ2

2
��c�2 , �18�

where FC is the total free energy minus a constant that de-
pends only on �̄, �A

l , and �B
l ,

� � �B�
BB − B�

AA� + �̄ ln���
B/��

A� , �19�

�Ĉn � Ĉn
AA + Ĉn

BB − 2Ĉn
AB, �20�

and B�
ij =1− �̄Ĉ0

ij is the dimensionless bulk compressibility.
Equation �18� is the regular solution model of a binary alloy
in the limit �=0. It is also noteworthy that Eq. �18� implies
a temperature dependence of the gradient energy coefficient
which is consistent with other theoretical65 and
experimental66 studies.

The coefficient of c�1−c� in Eq. �18� is given by

�̄�Ĉ0 = 2B�
AB − B�

AA − B�
BB. �21�

This result shows that in the liquid state the interaction en-
ergies that enter regular solution free energies are simply the
compressibilities �or the elastic energy� associated with the
atomic species. The � term is also quite interesting as it is
responsible for asymmetries in the phase diagram. Thus Eq.
�19� implies that asymmetries can arise from either different
compressibilities or different densities.

Expanding Eq. �18� around c=1/2 gives

�FC

�̄kBT
=� dr�� r�

2
�c2 +

u

4
�c4 + ��c +

K

2
��c�2 , �22�

where �FC�FC− �̄kBT�dr���̄�Ĉ0 /8−ln�2��, u�16/3, r�

��4− �̄�Ĉ0�, and K= �̄�Ĉ2. The parameter r� is related only
to the k=0 part of the two-point correlation function and can
be written

r� = 4 + �B�
AA + B�

BB − 2B�
AB� . �23�

This result implies that the instability to phase segregation in
the fluid is a competition between entropy �4� and the elastic
energy of a mixed fluid �2B�

AB� with the elastic energy asso-
ciated with a phase separated fluid �B�

AA+B�
BB�. Replacing the

dimensionless bulk moduli with the dimensional version
�i.e., B=� /kBT�, gives the critical point �i.e., rl=0� as

TC
� = �2�AB − �BB − �AA�/�4kB� , �24�

where � is the dimensional bulk modulus.
The properties of the crystalline phase are more compli-

cated but at the simplest level the only real difference is that
the elastic energy associated with the crystalline state must
be incorporated. This is discussed in the next section.

2. Crystalline phase properties

To illustrate the properties of the crystalline state, the case
in which the concentration field is a constant is considered.
In this limit the free energy functional given in Eq. �16� can
be written in the form

F
kBT

�� dr��� ln� �

��
 − �� −

1

2
��C� �� + G� , �25�

where G is a function of the concentration c and �l and

couples only linearly to ��. The operator C� can be written as

C� � c2CAA + �1 − c�2CBB + 2c�1 − c�CAB. �26�

Thus in the limit that the concentration is constant this free
energy functional is that of a pure material with an effective
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two-point correlation function that is an average over the AA,
BB, and AB interactions. In this limit the calculations pre-
sented in Sec. III A can be repeated using the same approxi-

mations �i.e., expanding � around ��, expanding C� to �4 and
using a one mode approximation for ��� to obtain predic-
tions for the concentration dependence of various quantities.
For example, the concentration dependence of the equilib-
rium wave vector �or lattice constant, Eq. �9�� and bulk

modulus Eq. �12� can be obtained by redefining Ĉn=c2Ĉn
AA

+ �1−c�2Ĉn
BB+2c�1−c�Ĉn

AB.
As a more specific example the equilibrium lattice con-

stant can be expanded around c=1/2 to obtain in two or
three dimensions,

aeq��c� = aeq�0��1 + ��c + ¯ � , �27�

where �c=c−1/2 and � is the solute expansion coefficient
given by

� = ��Ĉ4 − �Ĉ2�/2, �28�

where

�Ĉn � �Ĉn
AA − Ĉn

BB�/C̄ˆ n �29�

and C̄
ˆ

n� Ĉn��c=0�= �Ĉn
AA+ Ĉn

BB+2Ĉn
AB� /4.

This line of reasoning can also be used to understand the
influence of alloy concentration on crystallization. Specifi-
cally, for the case of an alloy, the terms in Eq. �10� �with A
replaced with Amin� become functions of concentration, since
�B and Amin are concentration dependent. Here, �B can be
expanded around c=1/2, i.e.,

�B��c� = �B0 + �B1�c + �B2�c2 + ¯ , �30�

where �B0=B0
l −B0

s , �B1=B1
l −B1

s , and �B2=B2
l −B2

s are de-
termined in the Appendix. This would imply that in the crys-
talline phase the free energy has a term of the form, rc��c�2,
where

rc = r� + 3�B2Amin
2 /8 �31�

in two dimensions �in three dimensions the 3/8 factor is
replaced with 3/4�. This result indicates that crystallization
�i.e., a nonzero Amin� favors phase segregation, assuming
�AA+�BB	2�AB. For example, when B2

s =0, the critical tem-
perature increases and can be written

TC
c = TC

� �1 + 3Amin
2 /8� , �32�

or TC
c =TC

� �1+3Amin
2 /4� in three dimensions.

C. Simple binary alloy model

In this section a simple binary alloy model is proposed
based on a simplification of the free energy in Eq. �16�. The
goal of this section is to develop a mathematically simple
model that can be used to simultaneously model grain
growth, solidification, phase segregation in the presence of
elastic and plastic deformation. To simplify calculations it is
convenient to first introduce the following dimensionless
fields:

nA � ��A − �̄A�/�̄ ,

nB � ��B − �̄B�/�̄ . �33�

Also, it is convenient to expand in the following two fields:

n = nA + nB,

�N = �nB − nA� +
�̄B − �̄A

�̄
. �34�

The following calculations will use the field �N instead of
�c. Expanding Eq. �16� around �N=0 and n=0 gives a free
energy of the form

F
�̄kBT

=� dr��n

2
�B� + Bs�2R2�2 + R4�4��n +

t

3
n3 −

v
4

n4

+ �N +
w

2
�N2 +

u

4
�N4 +

L2

2
��� �N�2 + ¯  . �35�

Details of this free energy and explicit expressions for B�, Bs,
R, , w, and L are given in the Appendix. The variables t, v,
and u are constants. For simplicity the calculations presented
in this section are for a two-dimensional system.

The transition from liquid to solid is intimately related to
�B=B�−Bs as was the case for the pure material and can be
written in terms of a temperature difference, i.e., Eq. �14�. In
addition some of the polynomial terms in n and �N have
been multiplied by variable coefficients �t, v, and u� even
though they can be derived exactly as shown in the Appen-
dix. For example, the parameter v=1/3 recovers the exact
form of the n4 term. This flexibility in the choice of coeffi-
cients was done to be able to match the parameters of the
free energy with experimental material parameters. As an
example40,41 showed that adjusting the parameter v can be
used to match the amplitude of fluctuations obtained in mo-
lecular dynamics simulations. With this fit they are able to
accurately predict the anisotropy of the surface energy of a
liquid-crystal interface in iron.

To facilitate the calculation of the lowest order phase dia-
gram corresponding to Eq. �35� it is convenient to assume
the concentration field �N varies significantly over length
scales much larger than the atomic number density field n.
As a result, the density field can be integrated out of the free
energy functional. Also, in the spirit of keeping calculations
as simple as possible without losing the basic physics con-
tained in the model, =0 in the free energy. In this instance
the one-mode approximation for the total density, i.e., n
=A�cos�2qy /�3� /2−cos�qx�cos�qy�3�� will be used. Substi-
tuting this expression into Eq. �35� and minimizing with re-
spect to q and A �recalling that �N is assumed constant over
the scale that n varies� gives qeq=�3/ �2R� and Amin=4�t
+�t2−15v�B� /15v. The free energy that is minimized with
respect to amplitude and lattice constant is then,

Fsol =
w

2
�N2 +

u

4
�N4 +

3

16
�BAmin

2 −
t

16
Amin

3 +
45v
512

Amin
4 .

�36�
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For mathematical simplicity all further calculations will
be limited to the approximations B�=B0

�+B2
���N�2 and Bs

=B0
s . In this limit analytic expressions can be obtained for a

number of quantities and the free energy functional is still
general enough to produce for example a eutectic phase dia-
gram.

It is relatively simple to calculate the solid-solid coexist-
ance curves by expanding Fsol to order ��N�4, which then
yields the solid-solid coexistence concentrations at low tem-
peratures according to

�Ncoex = ± ��a�/b , �37�

where a�w+3B2
��Amin

0 �2 /8, b�u−6�B2
��2Amin

0 / �15vAmin
0

−4t� and Amin
0 �Amin��N=0� �which is thus a function of

�B0�. The critical temperature, �B0
C is determined by setting

�Ncoex=0 and solving for �B0, which gives

�B0
c = �15wv − 2t�− 6B2

�w�/�6B2
�� . �38�

To obtain the liquid-solid coexistence lines the free en-
ergy of the liquid state must be compared to that of the solid.
The mean field free energy of the liquid state is obtained by
setting n=0 which gives

Fliq =
w

2
�N2 +

u

4
�N4. �39�

To obtain the solid-liquid coexistence lines it is useful to
expand the free energy of the liquid and solid states around
the value of �N at which the liquid and solid states have the
same free energy, i.e., when Fsol=Fliq. This occurs when,
�Nls= ±���B0

ls−�B0� /B2
�, where �B0�B0

l −B0
s and �B0

ls

�8t2 / �135v� is the lowest value of �B0 at which a liquid can
coexist with a solid. To complete the calculations, Fsol and
Fliq are expanded around �Nls to order ��N−�Nls�2 and Max-
well’s equal area construction rule can be used to identify the
liquid-solid coexistence lines. The liquid-solidus lines are

�Nliq/�Nls = 1 + G�1 − �bsol/bliq� ,

�Nsol/�Nls = 1 + G�1 − �bliq/bsol� , �40�

where G�−8t2 / �135v�4�B0−3�B0
ls��, bliq= �w+3u�Nls

2 � /2
and bsol=bliq+2B2

��4�B0−3�B0
ls� / �5v�, for �Nliq
0, �Nsol


0 and similar results for �Nliq	0, �Nsol	0, since F is a
function of �N2 in this example. The calculations in this
section and the preceding section are reasonably accurate
when �B0

ls
�B0
c, however in the opposite limit a eutectic

phase diagram forms and the accuracy of the calculations
decreases. This case will be discussed below.

1. Linear elastic constants

As shown in previous literature,33,34 the elastic constants
can be calculated analytically in a one mode approximation
by considering changes in F as a function of strain. For the
binary model similar calculations can be made in a constant
�N approximation and give

C11/3 = C12 = C44 = 3Bs�Amin�2/16 �41�

�this calculation can be done for arbitrary dependence of Bs

on �N�. As expected the elastic constants are directly propor-
tional to the amplitude of the density fluctuations. This im-
plies that the elastic constants decrease as the liquid-solid
transition is approached from the solid phase. This result
implies both a temperature and concentration dependence
through the dependence of Amin on �B. In addition to this
dependence �which might be considered as a thermodynamic
dependence� the magnitude of the elastic constants can be
altered by the constant Bs.

2. Calculation of alloy phase diagrams

To examine the validity of some of the approximations for
the phase diagrams made in the preceding section, numerical
simulations were conducted to determine the properties of
the solid and liquid equilibrium states. The simulations were
performed over a range of �N values, three values of �B0
�0.07, 0.02, and −0.03� and two values of w �0.088 and
−0.04�. The specific values of the other constants that enter
the model are given in the figure caption of Fig. 2.

In general the numerical results for the free energy, F, the
lattice constant R and bulk modulus agreed quite well with
the analytic one-mode predictions presented in the preceding
section for all parameters. Comparisons of the analytic and
numerical predictions for the phase diagram are shown in
Figs. 2 and 3 for w=0.088 and −0.04, respectively. As seen
in these figures the agreement is quite good except near the
eutectic point shown in Fig. 3. In this case, the analytic cal-

FIG. 2. Phase diagram of �B0 vs �N for the parameters B0
s

=1.00, B1
�=0, B2

�=−1.80, t=0.60, v=1.00, w=0.088, u=4.00, L
=4.00, =0, R0=1.00, and R1=1.20 �see Eq. �A4� for definitions of
R0 and R1�. The solid line is a numerical solution of the one mode
approximation and the dashed lines are from Eq. �37� for the lower
solid-solid coexistence lines and Eq. �40� for the upper liquid-solid
coexistence lines. The solid points are from numerical solutions for
the minimum free energy functional given in Eq. �35�.
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culations �Eqs. �40� and �37�� for the coexistence lines break-
down at the eutectic point and higher order terms in �N are
needed to accurately predict the phase diagram.

IV. DYNAMICS

To simulate microstructure formation in binary alloys, dy-
namical equations of motion for the fields �N and n need to
be developed. The starting point is the full free energy in Eq.
�15�, written in terms of �A and �B, i.e., F��A ,�B�. The dy-
namics of �A and �B is assumed to be dissipative and driven
by free energy minimization, i.e.,

��A

�t
= � · �MA��A,�B� �

�F
��A

 + �A, �42�

��B

�t
= � · �MB��A,�B� �

�F
��B

 + �B, �43�

where MA and MB are the mobilities of each atomic species.
In general these mobilities depend on the density of each
species. The variables �A and �B are conserved Gaussian cor-
related noise fields that represent thermal fluctuation in the
density of species A and B. They satisfy the fluctuation-
dissipation theorm ��i

2�=−2kBTMi�
2��r�−r�����t− t��, where

Mi is the mobility of A or B atoms. For simplicity the noise
terms will be neglected in what follows.

The free energy F��A ,�B� can be equivalently defined in
terms of n and �N. This allows the previous equations to be
rewritten as

�n

�t
= �� · �M1��

�F
�n
� + �� · �M2��

�F
���N�� , �44�

���N�
�t

= �� · �M2��
�F
�n
� + �� · �M1��

�F
���N�� , �45�

where M1��MA+MB� / �̄2 and M2��MB−MA� / �̄2. Equa-
tions �44� and �45� couple the dynamics of the fields �N and
n through a symmetric mobility tensor. The dependence of
the mobilities MA and MB will in general depend on local
crystal density and the local relative concentration of species
A and B.

For the case of substitutional diffusion between species A
and B, MA�MB�M. In this limit the dynamics of n and �N
decouple. Moreover if it is further assumed that the mobility
is a constant, Eqs. �44� and �45� become

�n

�t
= Me�

2
�F
�n

, �46�

���N�
�t

= Me�
2

�F
���N�

, �47�

where the effective mobility Me�2M / �̄2. In the applications
using Eqs. �46� and �47� in the following sections, the dy-
namics of n and �N are simulated with time rescaled by t
→ t̄�2Mt / �̄2.

To illustrate the dynamics described by Eqs. �46�, �47�,
and �35�, a simulation of heterogenous eutectic crystalliza-
tion from a supercooled homogenous liquid was performed.
The results of this simulation are shown in Fig. 4. This figure
shows the density �n�, the density difference ��N� and the

FIG. 3. Phase diagram of �B0 vs �N for the same parameters as
those used to generate Fig. 2, with the exception that w=−0.04. The
dotted lines below the eutectic temperature, �B0

E�0.028, corre-
spond to metastable states.

FIG. 4. The gray scales in the figure correspond to density �n�,
concentration ��N� and the local energy density in frames �a,b,c�,
�d,e,f�, and �g,h,i�, respectively. The area enclosed by white boxes is
area shown in �a,b,c�. The parameters in this simulation are the
same as Fig. 3 except L=1.20 and R1 /R0=1/4 �R0=1�, �N=0 and
�B0=0.02. �a,d,g�, �b,e,h�, and �c,f,i� correspond to times t=6600,
16 200, 49 900, respectively.

ELDER et al. PHYSICAL REVIEW B 75, 064107 �2007�

064107-8



local energy density at three time steps in the solidification
process. These figures show liquid-crystal interfaces, grain
boundaries, phase segregation, dislocations and multiple
crystal orientations all in a single numerical simulation of the
simple binary alloy PFC model. In this simulation a simple
Euler algorithm was used for the time derivative and the
spherical Laplacian approximation was used. The grid size
was �x=1.1 and the time step was �t=0.05. Unless other-
wise specified all simulations to follow use the same algo-
rithm, grid size, and time step.

V. APPLICATIONS

This section applies the simplified PFC model derived in
Sec. III C, coupled to the dynamical equations of motion
derived in Sec. IV, to the study of elastic and plastic effects
in phase transformations. The first application demonstrates
how the PFC alloy model can be used to simulate eutectic
and dendritic microstructures. That is followed by a discus-
sion of the effects of compressive and tensile stresses in ep-
itaxial growth. Finally, simulations demonstrating the effects
of dislocation motion in spinodal decomposition are pre-
sented.

A. Eutectic and dendritic solidification

One of the most important applications of the alloy PFC
model is the study of solidification microstructures. These
play a prominent role in numerous applications such as com-
mercial casting. Traditional phase-field models of solidifica-
tion are typically unable to self-consistently combine bulk
elastic and plastic effects with phase transformation kinetics,
multiple crystal orientations and surface tension anisotropy.
While some of these effects have been included in previous
approaches �e.g., surface tension anisotropy� they are usually
introduced phenomenologically. In the PFC formalism, these
features arise naturally from DFT.

To illustrate solidification microstructure formation using
the PFC formalism, two simulations of Eqs. �46� and �47�
were conducted of the growth of a single crystal from a
supercooled melt in two dimensions. In the first simulation a
small perturbation in the density field was introduced into a
supercooled liquid using the parameters corresponding to the
phase diagram in Fig. 3, except L=1.20 and R1 /R0=1/4. The
reduced temperature �B0=0.0248 and average concentration
�N=0.0. To reduce computational time the size of the lattice
was gradually increased as the seed increased in size. A snap-
shot of the seed is shown at t=480 000 in Fig. 5�a�. A similar
simulation was conducted for the growth of a dendrite from
a supercooled melt for reduced temperature �B0=0.04 and
�N=0.0904, with other parameters corresponding to those in
Fig. 2, except for L=1.20 and R1 /R0=1/4. A sample den-
dritic structure is shown in Fig. 5�b� at t=175 000. It should
be noted that the dendrite in Fig. 5�b� is not sixfold symmet-
ric about its main trunk because the simulation is influenced
by the boundaries of the numerical simulation cell, which are
fourfold symmetric. Dendrites nucleated and grown in the
center of the simulation domain retain their sixfold symme-
try. Finally, it should be stressed that the side-branching is

only qualitatively correct in Fig. 5�b� as it was initiated by
numerical grid noise. For a more quantitative simulation of
nucleation and growth of side-branches, thermal fluctuations
need to included in Eqs. �46� and �47�.

Simulations such as these can play an important role in
establishing various constitutive relations for use in higher-
scale finite element modeling �FEM� of elastoplastic effects
in alloys during deformation. In particular, traditional FEM
approaches often employ empirical or experimental constitu-
tive models to describe stress-strain response in elements
that are intended to represent one �or more� grains. These
constitutive relations are often limited in their usefulness as
they do not self-consistently incorporate realistic information
about microstructural properties that develop during solidifi-
cation.

FIG. 5. The gray scale in the main portion of both figures show
the concentration field �N. In the insets, the gray-scale shows the
density field, n, for the small portion of the main figure that is
indicated by the white boxes. �a� Eutectic crystal grown from a
supercooled liquid at �B0=0.0248 and �N=0.0. The parameters
that enter the model are the same as Fig. 3 except L=1.20 and
R1 /R0=1/4 �R0=1�. �b� Dendrite crystal grown from a supercooled
liquid at �B0=0.04 and �N=0.0904. The parameters that enter the
model are the same as Fig. 2 except L=1.20 and R1 /R0=1/4. In �b�
mirror boundary conditions were used.
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B. Epitaxial growth

Another potential application of the PFC model is in the
technologically important process of thin film growth. The
case of heteroepitaxy, the growth of a crystalline film exhib-
iting atomic coherency with a crystalline substrate of differ-
ing lattice constant, has been examined in previous PFC
studies of pure systems.33,34 These initial works focused on
two of the primary phenomena influencing film quality: �i�
morphological instability to buckling or roughening and �ii�
dislocation nucleation at the film surface. A third important
effect in alloy films, �iii� compositional instability �phase
separation in the growing film�, requires consideration of
multiple atomic species and their interaction. The purpose of
this section is to illustrate how the binary PFC model ad-
dresses such compositional effects in alloy heteroepitaxy, fo-
cusing on the spatial dynamics of phase separation over dif-
fusive time scales.

To date, a number of models of single component film
growth incorporating surface roughening, dislocation nucle-
ation, or both have been proposed,25,45–53 and models of bi-
nary film growth incorporating surface roughening and phase
separation have been proposed as well.54–57 However, no ex-
isting models of binary film growth known to the authors
have captured all of the above important phenomena, and it
would be reasonable to expect that new insights into the
nature of film growth could be gained through the simulta-
neous investigation of all of these growth characteristics. A
unified treatment of this sort is required for the following
reasons. There is clearly a strong link between surface rough-
ening and dislocation nucleation, originating from the fact
that dislocations nucleate at surface cusps when the film be-
comes sufficiently rough. It is also known that phase separa-
tion in the film is significantly influenced by local stresses,
which are inherently coupled to surface morphology and dis-
location nucleation. The dynamics of the growth process
must then be influenced by the cooperative evolution of all
three of these phenomena. In the next paragraph numerical
simulations will be presented to show that the binary PFC
model produces all of the growth characteristics described
above, and that each is influenced by misfit strain and atomic
size and mobility differences between species.

Numerical simulations. The physical problem recreated in
these simulations is that of growth of a symmetric �i.e.,
50/50 mixture, or average density difference �N0=0� binary
alloy film from a liquid phase or from a saturated vapor
phase above the bulk coherent spinodal temperature ��Tc�.
Growth at temperatures above the miscibility gap is typical
of experimental conditions and should ensure that phase
separation is driven by local stresses and is not due to spin-
odal decomposition. Initial conditions consisted of a binary,
unstrained crystalline substrate, eight atoms in thickness,
placed below a symmetric supercooled liquid of components
A and B. In all the simulations presented, parameters are the
same as in Fig. 2 except for L=1.882 and �B0=0.008 86
unless specified in the figure caption. In what follows the
misfit strain, �, is defined as �afilm−asub� /asub, where afilm

�aA�1+��N0� if in the constant concentration approxima-
tion. For a symmetric mixture of A and B atoms �i.e., �N0
=0� afilm= �aA+aB� /2.

Periodic boundary conditions were used in the lateral di-
rections, while a mirror boundary condition was applied at
the bottom of the substrate. A constant flux boundary condi-
tion was maintained along the top boundary, 120�x above
the film surface, to simulate a finite deposition rate. Misfit
strain was applied to the system by setting R=1 in the sub-
strate and R=1+�+��N in the film. This approach yields a
film and substrate that are essentially identical in nature ex-
cept for this shift in lattice parameter in the film. Complexi-
ties resulting from differing material properties between the
film and substrate are therefore eliminated, isolating the ef-
fects of misfit strain, solute strain, and mobility differences
on the film growth morphology. The substrate was permitted
to strain elastically, but was prevented from decomposing
compositionally except near the film-substrate interface.

A sample simulation is shown in Fig. 6 demonstrating that
the well-documented buckling or Asaro-Tiller-Grinfeld46,47

instability is naturally reproduced by the PFC model. This
instability is ultimately suppressed as a cusplike surface mor-
phology is approached, with increasingly greater stress de-
veloping in surface valleys. The buckling behavior ceases
when the local stress in a given valley imparts on the film a
greater energy than that possessed by an equivalent film with
a dislocation. At this stage a dislocation is nucleated in the
surface valley and the film surface begins to approach a pla-
nar morphology.

The nature of phase separation within the bulk film and at
the film surface was found to vary with model parameters,
but a number of generalizations applicable to all systems
studied have been identified. For the case of equal species
mobilities �MA=MB� we find that in the presence of misfit
and solute strain, the component with greater misfit relative
to the substrate preferentially segregates below surface peaks
�see regions marked 1 and 2 in Fig. 7 and Fig. 8�. Larger
�smaller� atoms will be driven toward regions of tensile
�compressive� stress which corresponds to peaks �valleys� in
a compressively strained film and to valleys �peaks� in a film
under tensile strain. This coupling creates a lateral phase

FIG. 6. Plots of the smoothed local free energy showing the
progression of the buckling instability, dislocation nucleation and
climb towards the film-substrate interface. From �a� to �d� times
shown are t=600, 1050, 1200, and 2550. In this figure �=0.04, �
=−1/4, and MA=MB=1.
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separation on the length scale of the surface instability and
has been predicted and verified for binary films54–62 and
analogous behavior has been predicted and verified in quan-
tum dot structures.63,64,67

Second, again for the case of equal mobilities, the com-
ponent with greater misfit relative to the substrate is driven
toward the film surface �see Fig. 8�. This behavior can also
be explained in terms of stress relaxation and is somewhat
analogous to impurity rejection in directional solidification.
The greater misfit component can be viewed as an impurity
that the growing film wishes to drive out toward the inter-
face. Experimental evidence from SiGe on Si �Ref. 58� and
InGaAs on InP �Refs. 59 and 60� verifies this behavior as an
enrichment of the greater misfit component was detected at
the film surface in both systems. Other models54–57 have not
led to this type of vertical phase separation possibly due to
neglecting diffusion in the bulk films.

The third generalization that can be made is that, in the
case of sufficiently unequal mobilities, the component with
greater mobility accumulates at the film surface �see region
marked 3 in �Fig. 7�. It was found that when the two com-
ponents have a significant mobility difference, typically
greater than a 2:1 ratio, the effect of mobility is more impor-
tant than the combined effects of misfit and solute strains in
determining which component accumulates at the surface.
Since Ge is believed to be the more mobile component in the
SiGe system, we see that the findings of Walther et al.58 for
SiGe on Si provide experimental support for this claim. They
find a significant enrichment of Ge at the film surface, a
result that was likely due to a combination of this mobility
driven effect as well as the misfit driven effect described in
the second generalization. Experimental evidence also indi-
cates that segregation of substrate constituents into the film
may occur during film growth.68,69 We have similarly found
that a vertical phase separation is produced near the film-

substrate interface and is complimented by a phase separa-
tion mirrored in direction near defects. The extent of this
phase separation is controlled largely by the bulk mobilities
of the two constituents, and to a lesser degree by �. The
complimenting phase separation near climbing defects is a
transient effect, any traces of which are dulled once the de-
fect reaches the film-substrate interface.

C. Dislocation motion in spinodal decomposition

Spinodal decomposition is a nonequilibrium process in
which a linearly unstable homogenous phase spontaneously
decomposes into two daughter phases. An example of this
process in the solid state occurs during a quench below the
spinodal in Fig. 2 when �N=0. During this process domains
of alternating concentration grow and coarsen to a scale of
tens of nanometers. Spinodal decomposition is of interest as
it is a common mechanism for strengthening alloys, due to
the large number of interfaces that act to impede dislocation
motion.

Solid state strengthening mechanisms, such as spinodal
decomposition, rely critically on the interactions that exist
between dislocations and phase boundaries. Cahn was first to
calculate that the driving force for nucleation of an incoher-
ent second phase precipitate is higher on a dislocation than in
the bulk solid.70 A similar result was obtained by Dolins for
a coherent precipitate with isotropic elastic properties in the
solid solution.71 Hu et al. confirmed the results of Cahn and
Dolins using a model that included elastic fields from com-
positional inhomogeneities and structural defects.72

Recent studies of spinodal decomposition have used
phase-field models to examine the role of dislocations on
alloy hardening.73,74 These phase-field models couple the ef-
fects of static dislocations to the kinetics of phase separation.
Léonard and Desai were the first to simulate the effect of
static dislocations on phase boundaries, showing that the
presence of dislocations strongly favors the phase separation
of alloy components.75

Haataja et al. recently introduced mobile dislocations into
a phase-field model that couples two burgers vectors fields to
solute diffusion and elastic strain relaxation. It was shown
that mobile dislocations altered the early and intermediate
time coarsening regime in spinodal decomposition.76,77 Spe-
cifically, it was found that coherent strains at phase bound-
aries decrease the initial coarsening rate, as they increase the
stored elastic energy in the system. As dislocations migrate
toward moving interfaces, they relax this excess strain en-
ergy, thus increasing the coarsening rate.76 The growth re-
gimes predicted by the model in Ref. 76 are in general agree-
ment with several experimental studies of deformation on
spinodal age hardening.78–81

Numerical simulations. Spinodal decomposition was
simulated using Eqs. �46� and �47�, for an alloy correspond-
ing to the phase diagram in Fig. 2. Simulations began with a
liquid phase of average dimensionless density difference
�N0=0, which first solidified into a polycrystalline solid �al-
pha� phase, which subsequently phase separated as the re-
duced temperature ��B0� was lowered below the spinodal.
Figure 9 shows the concentration and density fields for four

FIG. 7. Plot of the smoothed local concentration field showing
lateral phase separation between the surface peaks and valleys.
White, component A �large, fast�; black, component B �small,
slow�. In this figure �=−0.02, �=0.4, MA=1, MB=1/4, and t
=3500. See text for discussion of the numbered arrows.

FIG. 8. Plot of the smoothed local concentration field showing
the nature of the phase separation under opposite signs of �. In �a�
and �b� �=0.04 and −0.025, respectively, and in both figures MA

=MB=1 and �=0.25.
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time sequences during the spinodal decomposition process.
The dots in the figures denote the locations of dislocation
cores. Parameters for this simulation are given in the caption
of Fig. 9. The spinodal coarsening rate corresponding to the
data of Fig. 9 was found to exhibit an early and intermediate
time regime that is slower that its traditional t1/3 behavior,

while at late times it asymptotically approaches t1/3.
The simulations in Fig. 9 contain compositional domain

boundaries and grain boundaries between grains of different
orientations. As a result, the observed dislocation motion is
affected by elastic strain energy due to phase separation and
curvature driven grain boundary motion. To isolate the effect
of phase separation on dislocations, Fig. 10 demonstrates
dislocation motion near a coherent interface in the alloy. As
in Ref. 76, coherent strain energy built up due to composi-
tional differences in the two phases drives the dislocation
toward the compositional boundary.

It is noteworthy that the alloy PFC introduced in this work
does not incorporate “instantaneous” elastic relaxation. A
proper treatment of rapid relaxation of strain fields requires
the model to be extended in a manner analogous to Ref. 39.
However, because of the asymptotically slow kinetics of
spinodal decomposition and the small length scales between
domain boundaries, it is expected that this will only influ-
ence the time scales over which dislocations interact with
domain boundaries. As a result, the general trends depicted
in �9� are expected to be correct.

VI. DISCUSSION AND CONCLUSIONS

In this paper a connection between the density functional
theory of freezing and phase-field modeling was examined.
More specifically it was shown that the phase-field crystal
model introduced in earlier literature33–35 and the regular so-
lution commonly used in material science can be obtained
from DFT in certain limits. These calculations relied on pa-
rametrizing the direct two-point correlation function that en-
ters DFT by three quantities related to the elastic energy
stored in the liquid and crystalline phases, as well as the
lattice constant.

In addition, a simplified binary alloy model was devel-
oped that self-consistently incorporates many physical fea-
tures inaccessible in other phase-field approaches. The sim-
plified alloy PFC model was shown to be able to
simultaneously model solidification, phase segregation, grain
growth, elastic and plastic deformations in anisotropic sys-
tems with multiple crystal orientations on diffusive time
scales.

It is expected that the alloy PFC formalism and its exten-
sions can play an important role in linking material proper-
ties to microstructure development in a manner that funda-
mentally links the mesoscale to the atomic scale. As such this
formalism, particularly when combined with adaptive mesh
techniques in phase amplitude or reciprocal space, can lead
the way to a truly multiscale methodology for predictive
modeling of materials performance.
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APPENDIX: SIMPLE BINARY ALLOY MODEL

This appendix goes through the expansion required to ar-
rive at the simplified alloy model presented in Sec. III B. For
this calculation the free energy functional in Eq. �16� is ex-
panded in the variables n and �N, as defined in Eq. �34�, up
to order four �noting that terms of order n or �N can be
dropped since they integrate to zero in the free energy func-
tional as they are all defined around their average values�. In
addition it will be assumed that �N varies on length scales
much larger than n. This is reasonable on long-time �diffu-
sion� times scales, where solute and host atoms intermix on
length scales many times larger than the atomic radius. This
assumption allows terms of order n�N to be eliminated from
the free energy. The result of these expansions and approxi-
mations is that the free energy functional can be written as

F
�̄kBT

=� dr�� f0 + B�n2

2
−

n3

6
+

n4

12
+ nF�2n

+
�N

2
�1 −

CAA + CBB − 2CAB

4
�N +

�N4

12

+
�

2�̄
�1 − n3��N + nG�4n +

dC

4�̄
���̄ − ���2

− ��
2n3��N� , �A1�

where

f0 = ln� �̄

2��
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1

8
��̄ + 2��

2/�̄ − 4���

��Ĉ0
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BB� ,

B� = 1 − �̄C̄
ˆ

0 + �̄−1�� + ��
2dĈ0/2��N + �N2,
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ˆ
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G = − �̄C̄
ˆ
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while C̄
ˆ

n��Ĉn
AA+ Ĉn
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AB� /4 and dĈn� Ĉn

AA− Ĉn
BB.

The preceding equation can finally be cast into a form
similar to that presented in Sec. III C of the text,

F
�̄kBT

=� dr�� f0 +
n

2
�B� + Bs�2R2�2 + R4�4��n −
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where Bs=F2 / �2G�, R=�2G /F, w= �1−�Ĉ0 /2�, L2=�Ĉ2 /2,

H2=−�Ĉ4 /2, and 2�̄=��1−n3�+dC���̄−���2−��
2n3� /2

��Ĉn as in Eq. �20��.
The dependence of the coefficients in Bl, B�, and R on the

density difference can be explicitly obtained by expanding
them in �N as well. This gives,
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