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Phase-field modeling and machine learning
of electric-thermal-mechanical breakdown
of polymer-based dielectrics
Zhong-Hui Shen1,5, Jian-Jun Wang2,5, Jian-Yong Jiang1, Sharon X. Huang3, Yuan-Hua Lin1, Ce-Wen Nan1,

Long-Qing Chen2 & Yang Shen1,4

Understanding the breakdown mechanisms of polymer-based dielectrics is critical to

achieving high-density energy storage. Here a comprehensive phase-field model is developed

to investigate the electric, thermal, and mechanical effects in the breakdown process of

polymer-based dielectrics. High-throughput simulations are performed for the P(VDF-HFP)-

based nanocomposites filled with nanoparticles of different properties. Machine learning is

conducted on the database from the high-throughput simulations to produce an analytical

expression for the breakdown strength, which is verified by targeted experimental mea-

surements and can be used to semiquantitatively predict the breakdown strength of the P

(VDF-HFP)-based nanocomposites. The present work provides fundamental insights to the

breakdown mechanisms of polymer nanocomposite dielectrics and establishes a powerful

theoretical framework of materials design for optimizing their breakdown strength and thus

maximizing their energy storage by screening suitable nanofillers. It can potentially be

extended to optimize the performances of other types of materials such as thermoelectrics

and solid electrolytes.
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P
olymer-based dielectrics are the most promising material
candidates for high-density energy storage applications due
to their high breakdown strength, low dielectric loss, high

direct-current resistivity, and flexibility1–6. While increasing the
loading electric field can effectively enhance the amount of energy
stored in a dielectric, the probability of breaking down the
dielectrics catastrophically increases as well. Despite tremendous
efforts have been invested to understand the dielectric breakdown
mechanism7–10, the dielectric breakdown is still among the least
understood physical phenomena due to the complex electrical,
thermal, mechanical, and chemical interactions within a com-
posite dielectric.

A number of possible dielectric breakdown mechanisms
have been proposed, including electrical, thermal, mechanical,
and partial discharge breakdown. The electric breakdown
typically represents the irreversible damage due to the high
electric field-induced avalanche multiplication of free charge
carriers and hence the electric current when carriers acquire
sufficient kinetic energy between collisions with the matrix to
give a high probability of ionization, with generation of more
carriers, and without suffering sufficient recombination11–13.
The thermal breakdown may take place when the heat gener-
ated from Joule heating of the dielectric cannot be effectively
dissipated to the surroundings4,11,14. The mechanical effect on
the breakdown stems from the increase in the elastic energy
density due to the electric field-induced shrinkage of the
insulation thickness, which depends on the Young’s modulus,
dielectric constant, and the applied electric field11,15,16. The
partial discharge results from the high electric field-induced
gas ionization in the voids embedded in a polymer dielectric as
the local electric field is intensified at the void/polymer inter-
faces because the voids filled with gas have a lower dielectric
constant than the polymer matrix13,17,18. The coexistence and
coupling of these mechanisms make the breakdown process
extremely complicated and unpredictable, particularly in
material systems with complex microstructures such as poly-
mer/ceramic nanocomposites2,6,7,10,19.

In this work, we develop a comprehensive phase-field model of
dielectric breakdown by incorporating the electrical, thermal, and
mechanical effects. It is based on a preliminary phase-field model
for studying the electrostatic and electrothermal breakdown
processes in polymer-based nanocomposites20,21. Using the poly
(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) as an
example, the electrical, thermal, and mechanical effects on its
breakdown strength are analyzed to unveil the underlying phy-
sical mechanisms at different temperatures and applied electric
fields. Furthermore, by parameterizing the dielectric constant,
electrical conductivity, and Young’s modulus of the nanofillers to
represent different filler materials, high-throughput phase-field
simulations are performed to obtain the corresponding break-
down strengths of the P(VDF-HFP)-based nanocomposites.
Then, machine learning is performed on the high-throughput
simulation results to produce an analytical expression for the
breakdown strength as a function of the dielectric constant,
electrical conductivity, and Young’s modulus of the nanofillers.
Additional phase-field simulations and targeted experiments are
performed to validate the analytical function, which can then be
used to make extremely quick prediction of the breakdown
strength of P(VDF-HFP)-based nanocomposites with potential
nanofillers.

Results
Phase-field simulations of the breakdown process. Here, we take
the pure P(VDF-HFP) polymer as an example to perform a two-
dimensional phase-field simulation of the breakdown process

under different applied electric fields along y direction (Eyapp) and
temperatures. Three intermediate states of the breakdown process
at 295, 323, and 363 K are exhibited in Fig. 1a–i, respectively,
assuming that the initial breakdown phase is nucleated from the
two needle electrodes. At 295 K, the breakdown phase begins to
grow under an applied electric field of ~680 kVmm−1 shown in
Fig. 1a. The polymer is on the verge of breakdown around
~700 kVmm−1. When the temperature is increased to 323 K, the
electric field threshold of breakdown drops to ~565 kVmm−1, and
the polymer is almost entirely broken down at ~580 kVmm−1. If
the temperature is further increased to 363 K, the electric field
threshold further decreases to ~405 kVmm−1 with the near
breakdown field decreasing to ~415 kVmm−1. Therefore, a
moderate temperature increase of 68 K from 295 to 363 K leads to
a breakdown strength reduction by 285 kVmm−1 from 700 to
415 kVmm−1.

Figure 1j–r show the distributions of the local electric energy
density felec, Joule heat energy density fJoule, and strain energy
density fstrain corresponding to the final breakdown states in
Fig. 1c, f, i, respectively. More energy density distributions are
shown in Supplementary Discussion. All energy densities at the
front and inside of the breakdown path are much higher than at
other regions, resulting in the forward continual growth of the
breakdown path. For the electric energy density shown in Fig. 1j,
m, p, it is less dependent on the temperature because the
dielectric constant changes only slightly from 295 K to 363 K. The
differences in the electric energy density mainly arise from the
different magnitudes of the applied electric field according to
felec ¼

1 =2 ε0εrE
2.

However, at these three temperatures, the thermal energy
densities from Joule heating fJoule are completely different, as
shown in Fig. 1k, n, q. Due to the high dependence on
temperature, the electrical conductivity of P(VDF-HFP) varies
by several orders of magnitude from ~10−10 S m−1 at 295 K to
~10−8 S m−1 at 363 K. Therefore, fJoule is the highest at 363 K
among the three temperatures, although the breakdown strength
415 kVmm−1 at 363 K is only 59% of the value 700 kVmm−1 at
295 K. Figure 1l, o, r show the strain energy density distributions,
corresponding to the final breakdown states in Fig. 1c, f, i,
respectively. The strain energy density increases with the electric
field, but decreases with the Young’s modulus. At 363 K, the
breakdown electric field and Young’s modulus are 415 kVmm−1

and 214MPa, respectively, giving rise to a strain energy density
∼3.14×105 J m−3, which has a similar order of magnitude to
∼4.37×105 J m−3 at 295 K calculated with a breakdown strength
of 700 kVmm−1 and a Young’s modulus of 982MPa (see
Supplementary Table 1). Therefore, the strain energy densities
displayed in Fig. 1l, o, r show no clear difference, although the
breakdown strength and Young’s modulus at these temperatures
are different.

Figure 2a shows the breakdown strength as a function of
temperature obtained from experimental measurements and
predictions from the Stark–Garton model16,22 and the phase-
field model incorporating different breakdown mechanisms. The
Stark–Garton model describes the pure electromechanical break-
down for polymers, and it predicts a much higher breakdown
strength than the experimental measurement. This means there
must exist other mechanisms in the breakdown process of P
(VDF-HFP) polymer. The phase-field model predicts different
breakdown strength versus temperature features, depending on
the mechanisms that are incorporated into the model. When only
incorporating electric energy in the phase-field model, the
predicted breakdown strength Ebelec is larger than experimental
measurements at temperatures higher than 295 K. Incorporating
both electric and Joule heat energies in the phase-field model,
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the predicted breakdown strengths (Ebelec+Joule) agree with
experimental measurements when the temperature is lower than
340 K. When incorporating electric, Joule heat, and strain
energies, the phase-field model can predict breakdown strengths
(Ebelec+Joule+strain) that are very consistent with experimental
measurements in the specified temperature range (295–363 K).
Therefore, at 295 K, the electric effect is sufficient to describe the
breakdown process. With temperature increasing, the
electrical–thermal coupling has to be taken into account to
describe the breakdown versus temperature features. When the
temperature is above 343 K, the electrical–thermal–mechanical
coupling is necessary to describe the breakdown behavior as a
function of temperature.

Figure 2b shows separately the average electric, Joule heat, and
strain energy densities as functions of the applied electric field
based on simulation results at 295, 323, and 363 K using the phase-
field model. All energy densities increase with temperature. When
a breakdown occurs, all energy densities show a jump. At 295 and
323 K, the electric energy density is higher than the Joule heat and
strain energy densities, verifying that the electric effect dominates
the breakdown process at these two temperatures. However, at 363
K, the average Joule heat energy density becomes the highest and
dominates the breakdown process. In combination with electric
and strain energies, an electrical–thermal–mechanical coupling is
established as the breakdown mechanism at high temperatures.

Breakdown mechanisms in various polymer dielectrics. To
identify the breakdown mechanism for an arbitrary polymer-
based dielectric, the dependences of electric, Joule heat, and strain
energy densities on the applied electric field and material para-
meters, including the dielectric constant, electrical conductivity,
and the Young’s modulus, are mapped using phase-field
simulations. Figure 3a shows the mapped electric energy den-
sity as a function of the applied electric field (0–103 kVmm−1)

and the dielectric constant (1–104), which suggests that higher
dielectric constant and higher electric field result in higher electric
energy, as expected. At an electric field of 103 kVmm−1 and a
dielectric constant of 104, the electric energy density can reach
~4.43 × 1010 J m−3, as shown at the top right corner of Fig. 3a.
Similarly, Fig. 3b suggests that higher electrical conductivity and
higher electric field also result in higher Joule heat energy density.
At an electric field of 103 kVmm−1 and an electrical conductivity
of 10−4 S m−1, the Joule heat energy density can be as high as
~1012 J m−3.

While the strain energy density is affected by both the dielectric
constant and the Young’s modulus, their effects, in combination
with the applied electric field, on the strain energy density are
separately calculated. Figure 3c shows the mapped strain energy
density as a function of the applied electric field and the dielectric
constant at a fixed Young’s modulus of 1 GPa. Higher electric field
and higher dielectric constant give rise to a higher strain energy
density. At an electric field of 103 kVmm−1 and a dielectric
constant of 104, the strain energy density is ∼1011 J m−3. Figure 3d
shows the dependence of the strain energy density on the applied
electric field and the Young’s modulus at a fixed dielectric
constant of 100. In contrast to the dielectric constant, higher
Young’s modulus leads to lower strain energy density. At an
electric field of 103 kVmm−1 and a Young’s modulus of 106 Pa,
the strain energy density is ∼1010 J m−3.

By summarizing the calculations shown in Fig. 3a–d, we can
draw schematic diagrams to understand the breakdown behavior
and identify the possible breakdown mechanism for different
polymer-based dielectrics. Figure 4a phenomenologically shows
the variation of the energy profile for polymers under physical
stimuli. Curve 1 describes a double-well energy density as
function of the order parameter η, and the energy barrier height
between η= 0 (unbroken phase) and η= 1 (broken phase)
represents how difficult a local point can be broken down. With
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the increase of external physical stimuli such as the electric field E
or temperature T or both, the energy barrier drops and energy
profile tilts, leading to a lower energy state at η= 1 than that at
η= 0, as illustrated by the variation from curve 1 to curve
3 shown in Fig. 4a. Once the physical stimuli is sufficiently large,
the energy barrier vanishes and the breakdown occurs. The height
of this energy barrier is also related to the material parameters,
including the dielectric constant ε, the electrical conductivity σ
and the Young’s Modulus Y. For a material with higher dielectric
constant ε, higher electrical conductivity σ and lower Young’s
Modulus Y, the energy barrier is lower. Thus, the breakdown
strength will be lower.

Figure 4b shows the respective breakdown mechanisms and
corresponding representative examples. For general ferroelectric
polymers at room temperature, for example, PVDF23, the electric
breakdown is the dominant mechanism. While for conducting
polymers such as polyaniline24 at room temperature, the
breakdown process may be dominated by electrothermal
mechanism due to the high electrical conductivity. For soft
polymers with high dielectric constant and ultralow Young’s
modulus (usually ≤500MPa) such as P(VDF-TrFE-CTFE) (poly
(vinylidenefluoride‐trifluoroethylene‐chlorotrifluoroethylene))25

at room temperature, the electromechanical effect is likely an
important factor for the breakdown process. However, as the
temperature increases to near the glass transition temperature Tg
or the melting temperature Tm of the polymer, the electrical
conductivity increases, and the Young’s modulus decreases
dramatically, which will eventually lead to an electrical–
thermal–mechanical breakdown. This mechanism is likely to
occur in most polymer-based dielectrics, for example, C-BCB/
BNNS (cross-linked divinyltetramethyldisiloxanebis(benzocyclo-
butene) BNNS composite)26 at 150 °C and BTNFS/PI27 at 150 °C,
which are targeted for high temperature applications, as shown in
Fig. 4b. Therefore, the possible breakdown mechanism of

dielectrics can be qualitatively identified from the material
parameters of the dielectrics, which is useful to the design of
polymer-based nanocomposites for enhancing their breakdown
strength. For example, if the electrothermal breakdown mechan-
ism is identified for a polymer, nanofillers with low electrical
conductivity and high thermal conductivity can be filled in the
polymer to mitigate the Joule heat energy. This guideline
coincides with the design principle of polymer nanocomposites
with high breakdown strength proposed in previous
experiments26.

High-throughput phase-field simulations and machine learn-
ing. There have been intensive experimental activities to syn-
thesize polymer dielectrics with enhanced breakdown
strength3,7,28–31, most of which largely employed the trial-and-
error and intuition-driven approaches to optimizing the micro-
structures of polymer-based dielectrics. A simple but predictive
model, for example, an analytical expression for the breakdown
strength as a function of material parameters, can be a guide to
the experimental design and synthesis of polymer
nanocomposites32,33, thus shortening the time and reducing the
cost for the development of new materials as mandated by the
Materials Genome Initiative. Here, by performing high-
throughput phase-field simulations and machine learning, we
produce an analytical expression for the breakdown strength of P
(VDF-HFP)-based nanocomposites.

We assume that the fillers have random distribution and
sphere shapes, fixed at 5 vol.%. Figure 5 shows the strategy we
propose to employ machine learning to construct the analytical
expression. High-throughput simulations are first performed to
provide a breakdown strength database for the machine learning.
Three properties of the nanofillers, including the dielectric
constant ε, electrical conductivity σ, and Young’s modulus Y,
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are chosen as variables for the high-throughput simulations and
fingerprints for the machine learning. As shown in Fig. 5, 12
prototypical functions and four interactions are considered to
generate descriptors to perform the regression analysis by least-
squares regression (LSR)34–36. The coefficient of determination
(R2) of the LSR is used as the criterion for screening of the
descriptors. As described in Supplementary Fig. 1, three rounds of
LSR and screening are performed, which eventually led to a
predictive expression for the breakdown strength as a function of
the three primary properties.

Figure 6a displays breakdown strengths calculated from the
high-throughput phase-field simulations for the P(VDF-HFP)
nanocomposites filled by 5 vol.% nanofillers with different
dielectric constant, electrical conductivity, and Young’s mod-
ulus, which are also used as the training dataset for the
machine learning. The breakdown strength has a stronger
dependence on the electrical conductivity than the dielectric
constant and the Young’s modulus. More specifically, with the
electrical conductivity, the most sensitive material parameter,
increasing from 2.12 × 10−13 to 2.12 × 10−7 S m−1 while
maintaining the dielectric constant at 13.5 and the Young’s
modulus at 0.982 GPa, the normalized breakdown strength
decreases from about 1.34 to 0.32. However, with the Young’s
modulus, the least sensitive material parameter, increasing
from 0.982 MPa to 982 GPa while maintaining the dielectric
constant at 13.5 and the electrical conductivity at 2.12 × 10−10

S cm−1, the normalized breakdown strength just increases from
0.42 to 1.04.

Then, we perform machine learning on Fig. 6a. After the
first and second rounds of screening of LSR results, an expression
without considering the interactions among the fingerprints

is obtained,

y ¼ 0:9058� 0:01175 ln x1 � 0:06104 ln x2 � 0:0164x
�1=2
3 ; ð1Þ

which has a coefficient of determination R2= 0.8899 (see
Supplementary Tables 2, 3, 4). Here, y, x1, x2, and x3 represent

E
composite
b =Ematrix

b , εfiller/εmatrix, σfiller/σmatrix, and Yfiller/Ymatrix,
respectively. When considering interactions among the finger-
prints, an updated expression is obtained after the third round of
screening, which gives a higher coefficient of determination R2=
0.9099 (Supplementary Table 5).

However, taking into account the need for a simple and
practical analytical expression, we choose a simpler expression
considering only the interaction between σ and Y, that is,

E
composite

b

Ematrix
b

¼ 0:9058� 0:01175 ln εfiller
εmatrix

� 0:06767 ln σ filler
σmatrix

� 0:01640 Yfiller

Ymatrix

� ��1=2
þ0:001 Yfiller

Ymatrix

� ��1=2
ln

σfiller
σmatrix

:

ð2Þ

This expression gives a coefficient of determination value
R2= 0.9093 as the predictive function. More details of the
regression analysis can be found in Supplementary Methods.
Eq. (2) suggests that Ebcomposite decreases with εfiller and σfiller,
but increases with Yfiller. It implies that the breakdown strength
of the polymer nanocomposite can be enhanced by nanofillers
with higher Young’s modulus but lower dielectric constant and
electrical conductivity. In general, the Young’s modulus of the
ceramic nanofillers is much larger than that of the polymer
matrix; therefore, seeking for nanofillers with lower dielectric
constant and lower electrical conductivity will be more critical
to improve the breakdown strength of nanocomposites.
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Fig. 5 Machine learning strategy. Schematic workflow of the machine learning strategy for producing an analytical expression for the breakdown strength

of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP))-based nanocomposites from the breakdown strength database generated by the high-

throughput phase-field simulations. In the machine learning process, 3 fingerprints, 4 interactions, and 12 prototypical functions are employed to perform

least-squares regressions and screenings
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Moreover, the absolute value of the factor before the term
ln σfiller=σmatrixð Þ in the expression is larger than other factors
before the other two terms, indicating that the breakdown
strength of the P(VDF-HFP)-based nanocomposites is more
sensitive to electrical conductivity than to dielectric constant
and Young’s modulus, which is consistent with the calculations
shown in Fig. 6a. Note that Eq.(2) can automatically
incorporate the temperature effect on the breakdown strength
as long as the temperature dependencies of dielectric constant,
electrical conductivity, and Young’s modulus are available and
incorporated. Aside from the LSR, we also tried another
machine learning method, the back-propagation neural net-
work (BPNN) with details described in Supplementary Discus-
sion. In comparison to LSR, the BPNN exhibits better
prediction ability of the breakdown strength. However, the
BPNN cannot give an expression of breakdown strength as
functions of the dielectric constant, electrical conductivity, and
Young’s modulus, thereby it is less convenient for experimental
researchers to make a quick estimation of the breakdown
strength for a new material system.

The reliability of the produced analytical expression for
breakdown strength from the machine learning is tested by
comparing the predictions with additional phase-field simulations
and available experimental measurements. As shown in Fig. 6b,
there are seven data points marked with colored solid symbols
which are not included in the training dataset of Fig. 6a. They
represent filler materials of Al2O3, TiO2, SiO2, BaTiO3, SrTiO3,
MgO, and BayCa1− y(ZrxTi1− x)O3 (BCZT), respectively, whose
material parameters used in the phase-field simulation and
machine learning prediction are listed in Supplementary Table 5.
These seven symbols are dispersed around the solid line which

represents E
phase�field
b ¼ E

regression�analysis
b , indicating that the

breakdown strengths for these seven nanocomposites calculated

from phase-field simulations agree with the predictions from the
machine learning, thereby validating the expression in Eq. (2).

The predicted breakdown strengths using Eq. (2) for BTO/P
(VDF-HFP), BCZT/P(VDF-HFP), and MgO/P(VDF-HFP) nano-
composites are also compared with existing congeneric experi-
mental measurements37–39 (colored open symbols on Fig. 6b).
These three open symbols are close to the solid line which also

represents Emeasurement
b ¼ E

regression�analysis
b , indicating that the

predicted breakdown strengths for these three polymer nano-
composites agree with the experimental measurements. To
further test the reliability of the breakdown strength function in
Eq. (2), a Al2O3/P(VDF-HFP) nanocomposite filled with 5 vol.%
Al2O3 nanoparticles is fabricated and characterized in this work

(Supplementary Fig. 8). The E
composite
b =Ematrix

b from the experi-
mental measurement is about 1.15, which agrees fairly well with
1.34 predicted from Eq. (2), further validating the breakdown
strength function produced from the machine learning. Many
factors such as voids, space charge effects40–42 and incomplete
crystallization11,13,43,44 of the polymer that are not incorporated
into the phase-field model may cause this difference between the
phase-field-based machine learning and the experimental results.
For example, the existence of voids may cause partial discharge at
the void/polymer interfaces where the local electric field is
intensified. A high concentration of space charges can cause the
increases in the electrical conductivity. The crystallinity of
polymers may also affect the breakdown strength, arising from
the different transport behaviors of charge carriers in the
amorphous phase and crystalline phase. Unfortunately, the
introduction of a large number of nanofillers can easily introduce
these effects due to the incompatibility of ceramics nanofillers and
polymers. Therefore, the preparation of high-quality polymer
nanocomposites is extremely important to achieve a high
breakdown strength.
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Discussion
The presented phase-field model can be used to investigate the
electrical, thermal, and mechanical effects on the breakdown
process of polymer-based dielectrics. It reveals that the electric
effect is much more dominant than the thermal and mechanical
effects on the breakdown process in the pure P(VDF-HFP)
polymer at room temperature, resulting in an electric breakdown
at ~700 kVmm−1. With temperature rising, the electrical con-
ductivity increases and the Young’s modulus decreases, eventually
leading to an electrical–thermal–mechanical breakdown at a
much lower breakdown field.

By filling nanoparticles into the polymer, the breakdown strength
can be altered, depending on the material parameters of the filler
nanoparticles. Employing the high-throughput phase-field simula-
tions and machine learning, the filler effects on the breakdown
strength of the polymer nanocomposite can be readily predicted.
For example, by filling 5 vol.% BaTiO3 and Al2O3 into P(VDF-
HFP), the predicted breakdown strength at room temperature will
be decreased by ∼36% to 448 kVmm−1 and increased by ∼43% to
1000 kVmm−1, respectively. The underlying mechanisms causing
this difference can be understood from Fig. 7a to j. The electrical
conductivity and dielectric constant of BaTiO3 are much larger than
P(VDF-HFP), while those of Al2O3 are smaller than the matrix.
This leads to the concentration of the local electric field at het-
erointerfaces in BaTiO3/P(VDF-HFP) (Fig. 7b), while inside the
Al2O3 nanofillers in Al2O3/P(VDF-HFP) (Fig. 7g). Due to better
insulation, Al2O3 has better endurance capability of electric field
than the polymer matrix. Consequently, Al2O3 nanofillers can
partake and assimilate the major portion of the voltage in Al2O3/P
(VDF-HFP), leading to an enhanced breakdown strength of the
nanocomposite. On the other hand, the electric, Joule heat and
strain energy density distributions of Al2O3/P(VDF-HFP) shown in
Fig. 7h–j are more homogeneous than those of BaTiO3/P(VDF-
HFP) shown in Fig. 7c–e. Note that a homogeneous energy dis-
tribution is more favorable for avoiding hot spots, and delaying or
inhibiting the growth of a breakdown path, thereby benefiting the
breakdown strength. It is worth mentioning that the idea to
improve the breakdown strength by introducing nanofillers with
lower electrical conductivity and dielectric constants into a polymer
is consistent with the design principle of polymer nanocomposites
filled with hexagonal boron nitride (h-BN) proposed by

experimentalists26,31. According to the analytical expression and the
mechanism analysis above, if nanofillers with low dielectric constant
and low electrical conductivity are added into the polymer, the
breakdown strength of nanocomposites can be improved.

In summary, a comprehensive electrical–thermal–mechanical
breakdown phase-field model is developed to study the breakdown
process of polymer-based dielectrics. It reveals a clear breakdown
mechanism change of P(VDF-HFP) polymer with temperature,
from an electrically dominating breakdown to an electrothermal
breakdown, and eventually to an electrical–thermal–mechanical
breakdown as temperature increases. By parameterizing the
dielectric constant, electrical conductivity, and Young’s modulus
and analyzing the electric, Joule heat, and strain energy densities at
different electric fields, a general principle is established to identify
the breakdown mechanism in various polymer dielectrics (Fig. 4).
High-throughput phase-field simulations are performed to generate
a database on the nanofiller effects on the breakdown strength of P
(VDF-HFP)-based nanocomposites, from which machine learning
is employed to obtain an analytical expression for the breakdown
strength as a function of nanofiller material parameters, including
the dielectric constant, electrical conductivity, and Young’s mod-
ulus. This analytical expression can be employed to readily predict
the breakdown strength of polymer nanocomposites filled with
nanoparticles with available material parameters. Specific examples
include nanocomposites of P(VDF-HFP) filled with oxides such as
Al2O3, SiO2, MgO, and TiO2. The machine learning predicts that
those nanocomposites should exhibit higher breakdown strength
than the pure polymer matrix, and this prediction is verified by
both calculations and experiments in this work. The present work
can be extended to study the breakdown strength as functions of
nanofiller material parameters for polymer nanocomposites filled
with other morphologies, such as nanofibers, nanosheets, and
nanofillers with arbitrary geometries. This work establishes a the-
oretical strategy of selecting the best nanofillers to optimize the
breakdown performances of polymer-based dielectrics, which will
provide guidance to theorists and experimentalists in the design of
high-energy-density materials and devices.

Methods
Phase-field model of electrical–thermal–mechanical breakdown. In the phase-
field model, a continuous phase-field variable η(r,t) is used to describe the temporal

felec (2.5×106 J m–3) fJoule (2.5×105 J m–3) fstrain (6.25×104 J m–3)Ey
local (5×10 kV mm–1)P(VDF-HFP)/BaTiO3

felec (2.25×107 J m–3) fJoule (2.25×106 J m–3) fstrain (5×106 J m–3)Ey
local (1.5×102 kV mm–1)P(VDF-HFP)/Al2O3

Eb = 1000 kV mm–1
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Fig. 7 Breakdown morphologies of polymer nanocomposites from phase-field simulations. The final state of the breakdown process of a BaTiO3/P(VDF-

HFP) nanocomposite and (f) Al2O3/P(VDF-HFP) nanocomposite with corresponding electric-field distributions shown in b, g, electric energy density

distributions shown in c, h, Joule heat energy density distributions shown in d, i, and strain energy density distributions shown in e, j
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and spatial evolution of the breakdown phase: η(r,t)= 1 and η(r,t)= 0 denote the
broken and unbroken phase, respectively, and the diffuse transitional region
represents the interface between the two phases. The total free energy includes the
interfacial energy, the electric energy, the Joule heating energy, and the strain
energy, that is,

F ¼

Z

V

fsep η rð Þð Þ þ fgrad η rð Þð Þ þ felec rð Þ þ fJoule rð Þ þ fstrain rð Þ
h i

dV : ð3Þ

A modified Allen–Cahn equation is employed to describe the breakdown phase
evolution,

∂η r; tð Þ

∂t
¼ �L0H felec þ fJouleþfstrain � fcritical

� � δF

δη r; tð Þ
; ð4Þ

where L0 is the kinetic coefficient related to the interface mobility, H(felec+ fJoule+
fstrain− fcritical) is the Heaviside unit step function, and fcritical is a position-
dependent material constant representing the critical energy density of each
component in the composite. The purpose of introducing the Heaviside function
is to assure that the breakdown phase can grow only if the total energy density
(felec+ fJoule+ fstrain) at a local point is greater than its critical energy endurance. In
order to obtain the electric-field distribution during microstructure evolution, the
spectral iterative perturbation method is employed45,46. The detailed procedure for
solving Eq. (4) and input parameters can be found in Supplementary Methods.

Machine learning approach. Three properties of the filler materials, including the
electrical conductivity, dielectric constant, and Young’s modulus, are selected as the
fingerprints to identify a cause–effect relationship with the breakdown strength. As
shown in Fig. 5, candidate expressions and descriptors are generated by cross-
multiplying the primary features (i.e., fingerprints) and combining them with the
interactions among fingerprints and 12 prototypical function types. Then, the
different expression candidates are ranked and screened by their coefficients of
determination from Least Squares Regression (LSR), in order to discover the
expression giving rise to the highest coefficient of determination.

Here, 343 sets of phase-field simulations using the electrical–thermal–mechanical
breakdown model are performed to prepare the training data. After discovering
Eq. (2) from the machine learning, seven additional sets of phase-field simulations
are performed to validate the produced breakdown strength function, using materials
parameters for Al2O3, TiO2, SiO2, BaTiO3, SrTiO3, MgO, and BCZT. For further
validating the machine learning results, the breakdown strengths predicted using
Eq. (2) for BTO/P(VDF-HFP), BCZT/P(VDF-HFP), and MgO/P(VDF-HFP)
nanocomposites are also compared with existing congeneric experimental
measurements (colored open symbols in Fig. 6b) as well as experimental result on
Al2O3/P(VDF-HFP) from this work. More details of the machine learning are shown
in Supplementary Discussion.

Experimental section. Chemicals were obtained from the following commercial
sources and used without further purification: Al2O3 (China National Chemicals
Corporation Ltd.), P(VDF-HFP (Arkema, France, Kynar Flex 2801 with 10 wt.%
HFP). P(VDF-HFP) powder was thoroughly dissolved in a mixed solvent of N,N-
dimethylformamide and acetone. With the aid of ultrasonic treatment, Al2O3

nanoparticles were then dispersed into the P(VDF-HFP) solution with a volume
fraction 5%. Then, electrospinning and hot pressing process were performed.
Finally, a ~15-μm-thick Al2O3/P(VDF-HFP) nanocomposite was obtained. Thus,
the whole fabrication process includes dissolution, ultrasonic treatment, electro-
spinning, and hot pressing19,37. The measured breakdown strengths of the pre-
pared pure P(VDF-HFP) polymer and Al2O3/P(VDF-HFP) nanocomposites were
plotted in a Weibull distribution diagram, which indicates breakdown strengths of
561.2 Vmm−1 and 647.6 kVmm−1 for the pure P(VDF-HFP) polymer and Al2O3/
P(VDF-HFP) nanocomposites, respectively (Supplementary Fig. 8).

Data availability
The data that support the findings of this study are available from the authors on

reasonable request.

Code availability
The code that supports the findings of this study is available from the authors on

reasonable request.
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