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SUMMARY

Crack propagation in brittle materials with anisotropic surface energy is important in applications involving
single crystals, extruded polymers, or geological and organic materials. Furthermore, when this anisotropy
is strong, the phenomenology of crack propagation becomes very rich, with forbidden crack propagation
directions or complex sawtooth crack patterns. This problem interrogates fundamental issues in fracture
mechanics, including the principles behind the selection of crack direction. Here, we propose a variational
phase-field model for strongly anisotropic fracture, which resorts to the extended Cahn-Hilliard framework
proposed in the context of crystal growth. Previous phase-field models for anisotropic fracture were for-
mulated in a framework only allowing for weak anisotropy. We implement numerically our higher-order
phase-field model with smooth local maximum entropy approximants in a direct Galerkin method. The
numerical results exhibit all the features of strongly anisotropic fracture and reproduce strikingly well recent
experimental observations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most materials are anisotropic, also with regard to their fracture behavior. While most theoretical

and computational studies have focused on elastic anisotropy [1–3], the anisotropy of the fracture

toughness influences more strongly the crack propagation of a wide variety of materials includ-

ing single crystals [4–6], extruded polymers [7], geological materials [8, 9], including sedimentary

[10] and granitic rocks [11], or apple flesh [12]. The issue of brittle crack propagation in materials

with anisotropic surface energy deeply interrogates our understanding of fracture and is receiving

increasing attention from a variety of points of view, such as molecular dynamics [13], continuum

mechanics [14, 15], phase-field modeling [16, 17], and experiments [7, 18]. Here, by exploiting the

analogy with crystal growth, we develop and implement numerically a phase-field model for brittle

fracture of materials with strongly anisotropic surface energy and interpret our numerical results in

the light of recent theories and experiments.

The current theoretical framework for brittle fracture was initiated nearly a century ago by Griffith

[19]. In this theory, crack propagation arises as a balance between the surface energy and the release

of elastic energy; a crack will propagate in a direction given by the angle � when the relation

G.�/ D Gc (1)
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holds, where G.�/ is the elastic energy release rate for a crack along � and Gc is the surface energy

of the newly created crack faces. While this theory has proved to be very useful to describe the vari-

ous features of cracks [20], it does not address the important question of how to determine the crack

path, that is, the angle � . Under quasi-static loading, several popular criteria have been appended to

Griffith’s theory to determine the crack path, including (1) the principle of local symmetry [21, 22];

(2) the maximum energy release rate (MERR) [14, 21, 23]; (3) the minimum strain energy density

[24]; and (4) the maximum hoop stress [25]. While these criteria provide similar predictions for

homogeneous isotropic materials (in fact, (1) and (2) coincide under certain conditions [15, 26]),

they greatly differ when generalized to materials with anisotropic surface energy, in which the

fracture toughness Gc.�/ is orientation dependent. When generalizing MERR, Griffith’s propa-

gation Equation (1) is first met along a direction � such that G.�/=Gc.�/ is maximized [7, 15],

which provides a criterion to select the crack direction. If these functions are smooth and recalling

Equation (1), the optimality condition results in dG=d� D dGc=d� , which can be identified as a

configurational torque balance [16, 17].

Recent experiments on thin anisotropic films have interrogated the MERR criterion in materials

with anisotropic fracture toughness, finding results inconsistent with the global maximization of

G.�/=Gc.�/ [7]. By examining strongly anisotropic materials, these experiments established a close

analogy with crystal growth and the Wulff construction for the equilibrium shape of a crystal in

materials with strongly anisotropic surface energy, which exhibit forbidden orientations and faceted

surfaces. This analogy had been previously pointed out theoretically in [14]. Furthermore, these

experiments report crack propagation along metastable directions, suggesting a principle based on

local maximization rather than global maximization of G.�/=Gc.�/.

While phase-field models have been central in these investigations [16, 17], they have been devel-

oped within a framework that only allows for weakly twofold anisotropic surface energies (elliptic

polar energy graphs). However, many of the interesting features of fracture in anisotropic materials,

such as sawtooth crack patterns or forbidden crack directions, are directly related to the non-

convexity of strongly anisotropic surface energies [7]. Here, we start from a regularized variational

theory of brittle fracture [27] and modify it by formulating a strongly anisotropic surface energy

inspired by phase-field models of crystal growth. This results in a fourth-order system of partial dif-

ferential equations (PDEs) for the displacement and for the phase-field representing the cracks. The

variational nature of this model suggests that the underlying crack-path selection principle is related

to the MERR criterion, and in fact, it has been shown through asymptotic analysis that cracks propa-

gate obeying the configurational equilibrium dG=d� D dGc=d� in a weakly anisotropic phase-field

model [17]. We implement numerically the proposed model with local maximum entropy (LME)

meshfree approximants [28], which allow us to directly deal with the high-order nature of the PDE

[29, 30], and explore the fracture behavior of the model in the light of the experiments by [7].

In Section 2, we summarize previous variational phase-field models for fracture, introduce the

notion of the extended Cahn-Hilliard (ECH) model to define anisotropic surface energies, and show

how to integrate it in a model for fracture. Section 3 succinctly describes the numerical implemen-

tation of the model, and Section 4 presents representative simulations, showing the fundamental

features of fracture in materials with strongly anisotropic surface energy. Section 5 collects our final

remarks and conclusions.

2. PHASE-FIELD MODEL FOR MATERIALS WITH ANISOTROPIC SURFACE ENERGY

2.1. Background

A variational free-discontinuity generalization of Griffith’s theory of brittle fracture was proposed

by Francfort and Marigo [31], addressing issues such as crack nucleation, path selection, and discon-

tinuous crack propagation. In this theory, the total energy, including bulk elastic and crack surface

contributions, is simultaneously minimized with respect to any admissible crack set and displace-

ment field. This theory was subsequently regularized into a phase-field model, suitable for numerical

calculations [27], and which converges to the sharp variational theory of brittle fracture [32]. These

works have prompted a large body of literature in mathematics, mechanics, and computational



mechanics that we do not attempt to review here. In the regularized model, cracks are represented

by a phase-field variable (scalar order parameter) �, which is 0 inside a cracked zone, 1 away from

the crack, and changes from 0 to 1 smoothly. The total free energy of a possibly cracked elastic body

� is modeled by

EŒu; �� D

Z

�

.�2 C �k/W."/ d� C

Z

�

Gc

�

.� � 1/2

4�
C �jr�j2

�

d�; (2)

where u is the displacement field, W is the elastic strain energy depending on the strain tensor

" D 1=2.ru C ru
T /, and Gc is the energy release rate (fracture surface energy). This family of

functionals is parametrized by � > 0, a regularization parameter with units of length dictating the

width of the smeared crack. When it goes to zero, the regularized model converges to the Griffith-

like model studied in [31], but numerical simulations require a finite value of �, which needs to be

resolved by the grid. The parameter �k is such that 0 < �k << 1 and can be seen as a vanishing

residual stiffness of the cracks. Although it is not technically necessary from a mathematical stand-

point [33], it is used to prevent ill-conditioning of stiffness matrix in the numerical implementation.

For simplicity, we do not consider here body forces or surface tractions. The first integral of the func-

tional is the elastic energy of a possibly damaged material, while the second integral approximates

the surface energy. The minimization of the functional in Equation (2), with respect to both u and

�, subject to Dirichlet data and to irreversibility of cracks, provides a computable approximation of

the generalized Griffith’s fracture theory.

Because the Euler-Lagrange equations resulting from Equation (2) is a system of second-order

PDE, it has been referred to as a second-order phase-field theory of fracture [34]. The profile of the

phase-field perpendicular to the crack can be analyzed by neglecting the elastic energy and looking

for a one-dimensional stationary solution. As shown in Figure 1(a), the second-order phase-field

model leads to a C 0 solution, exhibiting a discontinuous derivative at the crack. Because greater reg-

ularity of the exact solution provides better accuracy and convergence rates for numerical solutions,

a higher-order phase-field model was introduced [34], where total free energy is given by

EŒu; �� D

Z

�

.�2 C �k/W.u/ d� C

Z

�

Gc

�

.� � 1/2

4�
C

1

2
�jr�j2 C

1

4
�3.��/2

�

d�: (3)

This fourth-order phase-field theory leads to C 1 continuous solutions, as shown in Figure 1(b).

When turning to materials with anisotropic surface energy, the parameter Gc in the model can no

longer be a scalar because it needs to be orientation-dependent. Anisotropic surface energy is also

very important in crystal growth or solidification, extensively studied in the materials science liter-

ature. Anisotropic surface energy has been specifically studied in the context of phase-field models

for crystal growth/solidification. In a classical model [35], the coefficient pre-multiplying jr�j2 in

Figure 1. One-dimensional phase-field approximation of crack at x D 0: (a) second-order phase-field theory
and (b) fourth-order phase-field theory.



the surface energy is made dependent on the phase-field approximation of the outer normal vector

n D r�
jr�j

to the interface. In this way, such models introduce explicitly an orientation-dependent

surface energy, Gc.n/ in our context. This approach is very appealing because it allows one to

freely choose the functional form of this dependence. For strongly anisotropic surface energy, that

is, when the polar plot of the reciprocal surface energy, 1=Gc.n/, is non-convex, it has been shown

that the corresponding phase-field equations become ill-posed [36]. An expedite and homogenized

approach to deal with strongly anisotropic surface energies is to convexify the surface energy [37],

at the expense of missing interesting details of the geometric structure of the free-surface. Because

strongly anisotropic surface energies are important in applications and the details about the free-

surface matter, researchers have developed other remedies to this difficulty, for instance, regularizing

the phase-field functional by adding the square of the Laplacian or a phase-field approximation to

the Willmore curvature energy; see [38] and references therein. This method works well for mod-

els with phase-field variations across the interface approximating smoothly step functions, such as

hyperbolic tangent profiles, but unfortunately cannot be used for phase-field model of fracture. The

higher-order terms required to regularize the model result in a C 1 continuous phase-field for the

crack as in Figure 1(b). At the center of the crack, r� D 0, which renders the formula n D r�
jr�j

inapplicable. One can try to remedy this problem by defining the outer normal vector n using

eigenvectors of the Hessian matrix r2�, but this definition becomes problematic at other regions,

particularly at the crack tip.

A different and natural way to take anisotropy into account is to follow the approach presented

in the original work by Cahn and Hilliard [39] and write the Taylor series expansion of the free

energy including higher-order terms. In the context of crystal growth, this idea has been shown to

provide a satisfactory way of describing systems with anisotropic surface energy and is intrinsically

regularized [40, 41]. However, as shown later, this method imposes constraints on the kinds of

orientation dependence of Gc.n/. In this paper, we adapt this approach to fracture.

2.2. Extended Cahn-Hilliard interface model

The classical phase-field model for isotropic systems was developed in [39]. In this diffuse interface

description, the behavior of a non-uniform system is characterized by the interfacial free energy F

and expressed as an integral of the local free energy density f that is a function of the phase-field

�. It can be expanded in a Taylor series about a given phase-field, provided that f is a continuously

differentiable function of its variables:

f .�; r�; r2�; : : :/ D f0.�/ C
X

i

Li
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(4)

where r and r2 are the gradient and the Hessian operators and
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; (5)
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: (7)



The subscript 0 indicates evaluation at a given phase-field. By applying the divergence theorem, the

two second-rank tensor �
.1/
ij and �

.2/
ij can be reduce to only one [39]. Therefore, the interfacial free

energy is given by

F Œ�� D

Z

�

0

@f0.�/ C
X

i

Li
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C
X

ij

�ij
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@xi
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@xj

1

A d�; (8)

where �ij D �
d�

.1/

ij

d�
C 1

2
�

.2/
ij . This model for the interfacial energy involves a second-rank tensor,

�ij . Therefore, it can describe up to orthorhombic weak anisotropy, as exploited in previous phase-

field models of anisotropic fracture [17]. But this anisotropy is too restrictive; for instance, it cannot

describe the common cubic symmetry and cannot model strongly anisotropic effects [36]. Because

higher-rank tensors can produce more general anisotropy, we extend the Taylor series expansion of

local free energy density to higher order, here up to fourth order. This leads to ECH-type equations

[40–42].

Following this approach, we expand the local free energy density f to higher order
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The tensorial Taylor series coefficients must reflect the underlying symmetry of material. We omit

odd-ranked tensors, because they are zero for the centrosymmetric materials of interest in the present

study. As in [39], we present in the following text a formal definition of the remaining even-ranked

tensors:

�
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From these definitions and because the order of differentiation can be exchanged for sufficiently

smooth functions, these tensors possess various symmetries. Following similar arguments as before,

the number of fourth-rank tensors can be reduced from five to three [40], and hence, the local free

energy density f can be written as

f .�; r�; r2�/ D f0.�/ C
X
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2.3. Anisotropic phase-field fracture model

Here, we only consider cubic symmetry, and therefore, the second-rank tensor �ij should be

isotropic, that is, a scalar coefficient �, which as discussed earlier has units of length in the present

context (Equation (2)). Under cubic symmetry, any given fourth-rank tensor Cijkl expressed in the

material principal axes has only three independent parameters. Resorting to Voigt notation, such

tensors in 3D take the form

2

6

6

6

6

6

4

C11 C12 C12

C12 C11 C12 0

C12 C12 C11

C44

0 C44

C44

3

7

7

7

7

7

5

; (16)

while in 2D, the tensor Cijkl can be written as

2

4

C11 C12 0

C12 C11 0

0 0 C44

3

5 : (17)

See Appendix A for the expression of these tensors when the principal material axes are not aligned

with the coordinate axes.

By using this rule for Q̨ ijkl , Q̌
ijkl , and Q
ijkl and by rescaling these tensors as .˛; ˇ; 
/ D

1=�3
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Q̨ ; Q̌; Q

�

to make them non-dimensional, the surface energy F in 2D becomes
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(18)

where NGc is an energy per unit area scale for the surface energy. As discussed in the following text,

the actual surface energy Gc.�/ in this model is orientation dependent, and therefore, NGc does not

have a direct mechanical interpretation. The 3D interfacial free energy can be written analogously.



Having the aforementioned anisotropic interfacial free energy F , we can formulate the anisotropic

phase-field model for fracture as

EŒu; �� D

Z

�

.g.�/ C �k/W."/ d� C F Œ��; (19)

where there are different choices for the functions f0.�/ and g.�/ consistent with the variational

theory of brittle fracture; see, for example, [43, 44] for a discussion. Here, we adopt the standard

choices f0 D .1 � �/2=.4�/ and g.�/ D �2, although it has been suggested that g.�/ D �3

prevents the emergence of spurious damage away from the crack tip and better mimics a linear

elastic-brittle behavior for finite � [45], at the expense of nonlinearity in the model.

2.4. Resulting anisotropic surface energy

To gain insight about the resulting anisotropic surface energy, we consider a planar crack interface

with a normal vector n forming an angle � with the x-axis and introduce a coordinate perpendicular

to the crack ´ D x � n. We neglect the elastic energy and rewrite the free energy in Equation (18),

assuming that � D �.´/. We have
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The tensor ˇijkl has no contribution to the surface energy, because
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and @�=@´ vanishes away from the crack. Consequently, this term does not enter into the Euler-

Lagrange equation in this idealized planar crack setting. Accordingly, the energy in Equation (20)

simplifies to
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where 
 is given by
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and ˛ can be written similarly.



In the absence of an analytical solution to the Euler-Lagrange equation of this functional, the

crack profile and interface energy can be calculated numerically. To compute the surface energy as

a function of orientation, Gc.�/, we fix � and solve the Euler-Lagrange equation of the functional

in Equation (22), a fourth-order ordinary differential equation, subject to the following boundary

conditions: �.0/ D �0.0/ D �0.C1/ D 0 and �.C1/ D 1. In practice, one of the boundaries is

taken sufficiently far away from ´ D 0, for example, 50 �, and the differential equation is approxi-

mated with MATLAB’s bvp4c function, implementing an adaptive collocation method. For each � ,

we evaluate the functional in Equation (22) at corresponding optimal profile to obtain a polar plot

of the surface energy and its reciprocal, as shown in Figure 2 for several parameter values. It is clear

that consistently with the assumed cubic symmetry of the model, the polar plots exhibit fourfold

symmetry. The figure shows that the tensor 
ijkl can produce both weakly and strongly anisotropic

energies, as indicated by the convexity of the polar plots of 1=Gc.�/. Because the tensors ˛ijkl and

ˇijkl introduce nonlinearity in the surface energy, which becomes non-quadratic, here we focus on

models including only the tensor 
ijkl . It is interesting to note that models with only the tensor ˛ijkl

can produce strongly anisotropic surface energies (not shown here) but result in nonlinear second-

order PDEs. This makes the numerical discretization simpler, as C 0 finite elements could be directly

used, but as previously discussed, other second-order strongly anisotropic models have been shown

to be ill-posed because the energy of kinks is not stabilized [36].

With Figure 2 at hand, we can further discuss the notion of strong surface energy anisotropy.

The classical Wulff construction for the equilibrium shape of crystals [46] naturally distinguishes

between energies with convex and non-convex reciprocal energy plot. Non-convex plots lead to

forbidden free-surface directions and faceting. In the crystal growth literature, there is another local

notion of surface stability, given in 2D by the surface stiffness

S.�/ D G00
c .�/ C Gc.�/; (25)

Figure 2. Polar representation of the surface energy (top) and its reciprocal (bottom) only considering the
tensor 
ijkl (˛ and ˇ are set to zero). (a) shows a weakly anisotropic energy (convex reciprocal energy plot)

with 
0 D 10:0 and 
4 D 0:5. (b) shows a strongly anisotropic energy with 
0 D 10:0 and 
4 D 0:9.



which has the sign of the curvature of the polar plot of the reciprocal surface energy [47]. This

local characterization of convexity, and of strong/weak anisotropy, does not coincide with the global

characterization in terms of the convexity of the polar plot of 1=Gc.�/ for non-smooth energies.

Furthermore, as illustrated in the examples and in [7], the local characterization of free-surface

(crack) stability is less restrictive than the global characterization, in that, it allows for metastable

orientations. The local characterization of surface stability in 3D is discussed in [48].

We note that in the present phase-field model, the thickness of the interface depends on the ori-

entation. Identifying the smallest thickness is important to set the parameter �, with units of length,

relative to the grid spacing. In the isotropic limit, this model gives rise to a family of higher-order

phase-field models. In particular, if all terms ˛ij , ˇij , and 
ij are zero except for 
11 D 
12, we

recover the fourth-order model proposed in [34].

3. NUMERICAL IMPLEMENTATION

Because the free energy involves second-order derivatives of �, a direct Galerkin approach requires

C 1 continuous approximations. We resort here to LME approximants [28], a meshfree method with

non-negative and smooth basis functions. In this method, the support size of the basis functions

can be modified through a non-dimensional aspect ratio parameter, which we take equal to 1.0

in all examples [49]. LME approximants have been successfully applied to fourth-order phase-

field models, for example, in the simulation of biomembranes [30, 50]. Adaptive local refinement

is straightforward and leads to very efficient phase-field solutions as elaborated in the references

earlier, although we do not fully exploit this feature here. Adaptive refinement can be cumbersome in

other techniques delivering smooth approximants, such as isogeometric methods. However, recent

advances in T-splines [51] and hierarchical B-splines [52] alleviate the rigidity of these methods

and may soon become accessible in 3D [53]. These adaptive spline techniques have been exploited

in the numerical approximation of higher-order phase-field models of fracture [34]. To combine the

highly accurate boundary representation of isogeometric methods with the flexibility of LME in the

bulk, we have recently proposed a blending method [54].

We make sure that the phase-field profile is sufficiently resolved by the grid, by requiring that

the regularization length � is large enough compared with the grid spacing h, that is, � > 2h.

Because the crack path is not known a priori, we consider uniform grids, except in the regions where

cracks cannot propagate; see Examples 2 and 3 in the following text. All the simulations consider

an elastically isotropic material with Young’s modulus E D 109 N/m2 and Poisson’s ratio � D 0:3.

We minimize the total energy in Equation (19) with respect to the displacement field and the

phase-field following the alternate minimization algorithm described in [55]. At each load step,

the energy is first minimized with respect to u holding � fixed and then minimized with respect

to � holding u fixed. This procedure is iterated until convergence. This algorithm is particularly

convenient in our examples. Because we only consider the ECH model with the tensor 
ijkl , each

one of the minimization steps involves a quadratic functional and hence the solution of a linear

system. The minimization of the total energy can be performed with a variety of methods, including

a monolithic Newton-type method. It is important to bear in mind that the staggered minimization

process, as most optimization algorithms, leads in general to local minimizers and could even lead

to saddle points of the total energy.

4. RESULTS

We now demonstrate through representative numerical simulations the ability of the proposed model

to capture nontrivial crack patterns in brittle materials with strongly anisotropic surface energy.

4.1. Example 1: Crack propagation direction as a function of material orientation

We consider first a square domain with boundary conditions that promote the nucleation of a crack

at the center of the left side of the domain, as depicted in Figure 3(a). The material used for the
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Figure 3. Example 1: geometry and boundary condition (a) and polar plot of the reciprocal surface energy
(b), exhibiting strong anisotropy. The green arrow indicates a fixed material direction (one of the weakest

directions), and ˛ denotes the angle between the fixed material direction and the x-axis.

simulations has cubic symmetry and strongly anisotropic fracture surface energy. The surface energy

parameters
�

NGc D 500:0 N/m; 
11 D 19:0; 
12 D �18:0; 
44 D 0:5
	

are chosen so that the max-

imum and minimum of Gc.�/ are 1157.5 and 707.1 N/m, respectively. The model is discretized

with 200 � 200 uniformly distributed control points and the regularized length scale parameter �

is set to 0.01 m. Fixing � D 0:01 m, we observe no dependence of the results when the mesh is

refined. The polar plot of the reciprocal surface energy is shown in Figure 3(b), where ˛ denotes the

angle between a fixed material direction and the x-axis. For materials with isotropic surface energy,

the symmetry of the surface energy and of the boundary conditions imposes a crack propagation

along the x-axis. In contrast, for a material with anisotropic surface energy, the crack path will

emerge from a competition between elastic energy release rate maximization and surface energy

minimization and therefore will in general deviate from the x direction.

We analyze next how the crack direction changes as we change the material orientation. When the

fixed material direction represented by the green arrow, a weak direction, coincides with the x-axis,

the crack will propagate along this axis (Figure 4(a) and (b)). This situation is schematically shown

in Figure 4(c), where the black line, representing material orientation, and red line, representing the

crack propagation direction, are collinear. When the fixed material direction is rotated clockwise by

an angle ˛ (˛ 6 45ı) with respect to the x-axis, the crack orientation also rotates clockwise by an

angle � relative to the x-axis (Figure 4(d) and (e)). The schematic representation of this situation

is shown in Figure 4(f). The sum of these signed angles ˛ C � , that is, the deviation of the red

segment from the horizontal, quantifies the crack deviation from the weakest material direction.

When the fixed material direction is further rotated clockwise (˛ > 45ı), the crack no longer follows

the clockwise rotation of the material but rather finds an energetically favorable configuration by

rotating counter-clockwise by a smaller amount (Figure 4(g–i)). Following the analogy of Wulff’s

construction [7], this behavior can be understood by noting that the preferred crack direction is given

by the first tangency point of the polar plots in Figure 4(b, e, and h) with a vertical line moving

leftwards toward the polar plot. Because this analogy is only an approximation in the present setting,

the red points denoting the actual crack orientations slightly deviate from the tangency points just

described.

We analyze next the systematic dependence of the crack propagation direction as a function

of material orientation and visualize it with the previously introduced schematic representation

as a rosace plot in Figure 5(a). This figure clearly highlights the four sectors of forbidden crack

directions, as in the experiments in [7]. The polar plot of the reciprocal surface energy is shown

in Figure 5(b), where the black line indicates the directions of observed cracks and the red line

indicates the crack directions never observed as we continuously rotate the material orientation.

The gray line is the double-tangent construction forming the convex-hull of the plot, as in the



Figure 4. Example 1, as the material orientation is rotated relative to the sample geometry (top to bottom),
˛ denotes the material orientation and � the crack orientation, both relative to the x-axis aligned with the
specimen. The first column shows the phase-field for a material oriented as shown in the second column,
representing the polar plot of the reciprocal surface energy. The right column shows a schematic polar
representation of the crack orientation (red segments, weak directions are vertical and horizontal) and the

material orientation (black segment).

classical Maxwell construction [56]. The inset shows that there are observed crack directions inside

of the convex-hull of the polar plot, suggesting that a mere convexification of the energy may

yield a poor effective model. The regions where cracks are observed seem to agree well with

the local stability condition given by the stiffness in Equation (25) and graphically determined

by the regions of the polar plot with positive curvature. The experiments in [7] are consistent

with this behavior suggesting a local MERR principle as discussed in Section 1, which in the

simulations may be related to the trapping of the algorithm at local minima. However, we find

that the point separating observed and forbidden directions, that is, separating the black from

the red portions of the curve, does not coincide with the point where the stiffness of the sur-

face energy (Equation (25)) changes sign. The point where S.�/ D 0 is marked with a cross

in the inset of Figure 5(b). This difference may be due to inaccuracies in the numerical esti-

mation of the crack direction or to the effect of boundary conditions. In any case, it deserves

further scrutiny.



(a) (b) 

Figure 5. Systematic dependence of crack propagation (red segments) with material orientation (black seg-
ments), represented as a rosace with the convention of the previous figure (a). The polar plot of the reciprocal
surface energy is represented in (b) and color coded depending on whether a given orientation is ever
observed (black) or not (red) as we continuously rotate the material orientation. The inset shows that there
are observed crack directions within the convex-hull of the polar plot. The region of observed cracks appears
to correspond with the region of positive surface energy stiffness S.�/ (positive curvature of the polar plot)

(Equation (25)).

Figure 6. Example 2: crack propagation guided along a forbidden direction. (a) Computational model with
boundary conditions. The displacement field at top and bottom bands is fully constrained. (b) Zigzag crack
path obtained when the crack is guided along a forbidden direction. (c) The polar plot of the reciprocal

surface energy and the double-tangent construction.

4.2. Example 2: Zigzag crack paths

In the presence of strong surface energy anisotropy, we analyze now how a crack propagates when

the boundary conditions constrain the crack propagation along a forbidden direction. In the present

example, we fully constrain the displacement field in the upper and lower bands of the domain



as shown in Figure 6(a) to guide the crack as in the groove of a double cantilever beam crack

propagation experiment [57]. A similar crack-guiding device has been implemented in [7] with

tougher adhesive tapes. The surface energy parameters are the same as in Example 1, and � is set

to 0.005 m. The domain is discretized with a spacing of 1/400 m in a central band of 0.5 m height,

while the grid is coarser in the upper and lower parts of the domain.

Figure 6(b) shows that, as in Example 1, the system initially chooses crack direction close to

a weak direction. However, as the crack feels the presence of the constrained region but before

touching it, it sharply turns to adopt a distant weak orientation that drives it apart from the obstacle.

Interestingly, this new crack segment with angle �2 turns upwards further apart from the constrained

band in the lower part of the domain. Analogously, the third and last kinking event occurs before the

crack reaches the upper constrained band. The kinking events are presumably the result of a more

favorable elastic energy release rate as the crack deviates from the straight horizontal trajectory and

approaches a mechanically constrained region. There is probably an energy cost associated to crack

bending, here sharp kinking, implicit in the model and due to the second derivatives in the phase-

field in the surface energy. Therefore, the elastic energy release rate incentive to kinking presumably

needs to overcome this energetic penalty to sharply turning crack direction. Figure 6(c) shows the

representation of the two crack orientations in the polar plot. In an effective model with a convexified

surface energy, there are no forbidden directions and, if guided, the crack will propagate along the

x-axis (blue point) with an energy cost given by the double-tangent construction, here 972.5 N/m.

We compare this energy with the average surface energy per projected length along x, 1008.5 N/m

to find a reasonable agreement. One of the factors that may explain the difference is, again, the

energetic cost of kinks implicit in the model, which we have not explored so far.

Figure 7. Example 3: crack propagation guided along an allowed but high-energy direction (b, c) or along
a forbidden direction (d, e). The red and green dots in (c) represent the initial and final crack orientation,

while in (e) represent the two orientations of the sawtooth pattern.



4.3. Example 3

Inspired by the experiments in [7], we consider now a longer domain with similar boundary con-

ditions to Example 2, as shown in Figure 7(a). We consider here a slightly different surface energy
�

NGc D 500:0 N/m; 
11 D 17:0; 
12 D �15:0; 
44 D 2:0
	

so that the maximum and minimum of

Gc.�/ are 1131.7 and 826.4 N/m. As before, a central strip 0.15 m high has uniformly distributed

points with a small node spacing of 1/400 m, while the remainder of the domain has a coarser grid.

The regularized length scale parameter � is set to 0.005 m. As before, we expect that the crack will

initially deflect away from the x-axis toward a weak direction. However, as shown in Figure 7(b), if

the boundary of the guide (here parallel to x) is not a forbidden direction (Figure 7(c)) rather than

kinking to adopt a weak direction, the crack runs along a direction of relatively large surface energy.

In contrast, if the direction of the guide is a forbidden direction, as in Figure 7(d and e), the crack

adopts a sawtooth configuration as in Example 2. Now, the upper kinking points are precisely at the

upper boundary of the crack guide, while the lower kinks are very far apart from the lower boundary

of the guide. As before, the location of these kinks emerges from the competition of elastic energy

release rate, surface energy, and possibly kinking energy. The essential phenomenology of these two

calculations has been reported experimentally in [7].

5. CONCLUSIONS

The fracture behavior of materials with strongly anisotropic surface energy is very important in

many applications and leads to very interesting physics, including forbidden crack propagation

directions, the possibility of guiding cracks along relatively high-energy directions, and sawtooth

crack patterns. However, strongly anisotropic fracture had not been simulated computationally

before to the best of our knowledge. This problem of fracture mechanics forces us to deeply interro-

gate fundamental questions such as the criteria to select the crack path. Recent theoretical [15] and

experimental [7] studies favor a natural generalization of the MERR criterion. Previous phase-field

models for weak anisotropy of the surface energy are consistent with this view and support a con-

figurational torque balance [17] equivalent to MERR under certain conditions. The current work,

presenting a variational phase-field model for materials with strongly anisotropic surface energy,

provides a new tool to analyze this problem from the computational side and may be a starting point

for the mathematical analysis of this problem. From a computational viewpoint, phase-field models

appear as the best approach to investigate this complex problem where the crack orientation selection

is so crucial. The variational nature of the model suggests that it obeys a MERR principle to select

crack paths, and because we obtain crack propagation directions within the convex-hull of the polar

plot of the reciprocal surface energy, the MERR principle appears to rely on local maximization, as

also suggested in [7]. We are planning further studies to closely examine these issues.

To formulate the phase-field model for strongly anisotropic fracture, we have combined the classi-

cal variational phase-field model of brittle fracture [27] with the ECH framework [40, 41], proposed

in the context of phase-field models of crystal growth. The result is a fourth-order model, because

the energy functional involves the Hessian of the phase-field. Consequently, its numerical imple-

mentation by direct Galerkin methods requires smooth basis functions. Here, we resort to LME

approximants, a family of smooth meshfree basis functions. We present a selected set of numeri-

cal examples that illustrate the main features of strongly anisotropic crack propagations. Our results

reproduce many of the experimental observations in [7].

Our work is only a first step in the modeling and simulation of strongly anisotropic fracture using

phase-field models, and many questions arise. From a theoretical viewpoint, we would like to under-

stand the relation between our proposed model and a sharp-interphase crack propagation direction.

We also plan to investigate the energetic penalty for crack bending implicit in the phase-field model,

which presumably imposes an energy cost to crack kinking. It is not clear at this point how this

contribution depends on the tensors ˛ijkl , ˇijkl , and 
ijkl of the ECH framework, and more impor-

tantly, it is not clear either if such a penalty has a physical meaning. Another set of interesting

questions revolves around the modeling capabilities of the ECH framework, including the symme-

tries that can be described with such models, or the kinds of angle dependence of Gc.�/ that can



be achieved, also including the tensors ˛ijkl and ˇijkl neglected here. A very simple motivation for

this are geological materials, which typically exhibit twofold strong anisotropy. These tensors in the

ECH model could be made dependent on the phase-field, and the surface energy may depend on the

form of the dissipation function f0.�/. All these extra features in the model introduce further non-

linearity in the equations and may require different numerical solution methods. It is also interesting

to examine if one can model surface energies such that the polar plot of 1=Gc.�/ exhibits cusps, as

one expects in brittle crystals with cleavage planes. Finally, we plan to extend this work to 3D.

APPENDIX A: ROTATION OF MATERIAL ORIENTATION RELATIVE TO THE SAMPLE

For cubic symmetry and centrosymmetric materials, the fourth-rank tensors ˛ijkl , ˇijkl , and 
ijkl

have the same major and minor symmetries as the anisotropic elastic stiffness tensor. We summarize

next how to transform these tensors to a coordinate system that does not coincide with the principal

material axes. The basis change formulae for fourth-rank tensors in Voigt notation are not straight-

forward. Suppose that the components of the fourth-rank tensor are given in basis E and we want to

determine its components in a second basis QE. The change of basis formula for the tensor expressed

as a matrix in Voigt notation C can be expressed in matrix form as

C
QE D KC

E
K

T ; (A.1)

where K is a transformation matrix [58]. In 3D, when we rotate the material about the third

coordinate vector by an angle ‚, the transformation matrix reduces to

K D

2

6

6

6

6

6

6

6

4

c2 s2 0 0 0 2cs

s2 c2 0 0 0 �2cs

0 0 1 0 0 0

0 0 0 c �s 0

0 0 0 s c 0

�cs cs 0 0 0 c2 � s2

3

7

7

7

7

7

7

7

5

;

where c D cos ‚, s D sin ‚. Consequently, in 2D, the transformation matrix for the 3 � 3 Voigt

representation of the fourth-order tensor (Equation. (17)) is just

K D

2

4

c2 s2 2cs

s2 c2 �2cs

�cs cs c2 � s2

3

5 :
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