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Phase-field Modeling and Simulations of Dendrite Growth
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The phase-field method has recently emerged as the most powerful computational tool for simulating
complicated dendrite growth. However, these simulations are still limited to two-dimensional or small
three-dimensional spaces; therefore, to realistic and practical dendritic structures, it is crucial to develop
a large-scale phase-field simulation technique. This review discusses the phase-field modeling and simu-
lations of dendrite growth from the fundamental model to cutting-edge very-large-scale simulations. First,
phase-field models for the dendrite growth of pure materials and binary alloys and their histories are sum-
marized. Then, models and studies of interface anisotropy, polycrystalline solidification, and solidification
with convection, which are very important in dendritic solidification, are reviewed. Finally, by introducing
very-large-scale phase-field simulations performed recently using a graphics processing unit supercom-
puter, the power, potential and importance of the very-large-scale phase-field simulation are emphasized.
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1. Introduction

Casting is performed at the beginning of all working
processes. Although the solidification defects and micro-
structures formed during casting are reduced and changed
in subsequent working processes such as hot-rolling, cold-
rolling, and heat treatment, the solidification defects are not
eliminated perfectly, and the solidification microstructures
still strongly affect the microstructure evolution in the fol-
lowing working processes. Therefore, in order to improve
the properties of the final product and to reduce the cost of
the following working processes, it is very important to
accurately control the solidification microstructures. Many
solidification microstructures are formed through the
growth of dendrites, which are typical structures grown dur-
ing solidification.1–3) Therefore, in order to accurately con-
trol the solidification microstructures, it is crucial to control
and predict dendrite growth. Recent advances in in situ tech-
niques for the observation of metallic material solidification
by synchrotron X-ray imaging4–14) have been improving our
understanding of dendritic growth. However, in the present
situation, those in situ observations are limited to thin sam-
ples that are essentially two-dimensional (2D) or small sys-
tems in which only a small number of dendrites grow,
whereas the collective behavior of many dendrites in three-
dimensional (3D) space is of primary importance in control-
ling the solidification microstructures. Therefore, to gain
further understanding of dendrite growth, we need numeri-
cal simulation techniques for modeling dendrite growth in
addition to further progress in experimental techniques.

Although many numerical techniques for simulating den-
drite growth have been investigated, it has been difficult to

reproduce the complicated dendrite morphology and its
spatio-temporal evolution, which is governed by thermal
and solutal fields. In this context, the success of the dendrit-
ic growth simulation by Kobayashi15) brought the phase-
field method into the spotlight. The phase-field method can
avoid the difficulties in solving the free-boundary problem
by alternatively solving the time evolution equation of the
phase-field variable φ , which was newly introduced to
express phase state of the material (solid or liquid). In this
approach, the sharp interface is replaced by a diffuse inter-
face with a finite thickness, where the phase-field variable
φ changes smoothly and steeply, for example from φ = 0 in
liquid to φ = 1 in solid. This idea enabled us to simulate the
interface migration without tracking the interface. For this
reason, the phase-field method can be considered an ambig-
uous or vague method; however, because it is very versatile,
it is used as a powerful numerical tool for simulating not
only dendrite growth but also various material microstruc-
tures. Figure 1 shows the changes in the number of pub-
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Fig. 1. Changes in number of papers published with “phase field” in
title or key words from 1990 to 2012 according to SCOPUS
database. (Online version in color.)
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lished articles whose title or key words include the phrase
“phase field” according to the SCOPUS database. As can be
seen in the figure, the number of articles regarding the
phase-field method exponentially increases from 1990 after
Kobayashi’s successful dendrite growth phase-field simula-
tion. Today, phase-field models for various problems have
been developed, and the method has attained maturity. On
the other hand, phase-field computations need fine numeri-
cal lattices to express smooth changes in the phase-field
variable in small interfaces. Hence, the present dendrite
growth computations are limited to 2D or to 3D with a small
number of dendrites. As a next stage in phase-field research,
development of large-scale simulation techniques is a key to
reproducing realistic and practical material microstructure
formation. Figure 2 shows a large-scale phase-field simula-
tion of directional solidification of a binary alloy, which was
performed using the graphics processing unit (GPU) super-
computer TSUBAME2.0 at Tokyo Institute of Technology,
Japan. The ACM Gordon Bell Award Special Achievement
in Scalability and Time-to-Solution was awarded for this
achievement in 2011.16) We believe that this advance repre-
sents a great opportunity for phase-field study and marks the
beginning of very-large-scale phase-field simulations.

This review summarizes the modeling and history of the

phase-field method for dendrite growth simulation and
introduces very-large-scale dendrite growth simulations
employing the phase-field method that we performed
recently.17) Because there are many excellent and detailed
review papers on phase-field methods for the simulation of
dendrite solidification18–26) or various other material micro-
structures,27–35) this review is an attempt to cover, in a simple
form, approaches ranging from the fundamental to the cut-
ting edge of phase-field modeling, as well as simulations for
beginners in the phase-field method and younger researchers.

2. Phase-field Modeling and Its History for Dendrite
Growth Simulation

In this chapter, first, the simple phase-field model that is
the basis of all more complicated phase-field models is
briefly explained. Next, phase-field models of dendritic
growth for pure materials and binary alloys are summarized,
with a short history. Then, the interface anisotropy, which is
very important to the formation of the dendrite morphology,
polycrystalline solidification simulations, and simulations of
solidification with convection are reviewed, in this order.

2.1. Fundamental Phase-field Model
In the derivation of the phase-field equations, we first

define the phase-field variable φ. Here, let us define φ = 0
in liquid and φ = 1 in solid. Then, by using the phase-field
variable φ, we construct a free energy functional F. Consid-
ering a solid-liquid coexistence system with bulk free ener-
gies and interface energy, the simplest free energy functional
F can be written as follows:

, ............................... (1)

where the free energy density f can be expressed as

, ....................... (2)

with

,................. (3)

, ............................. (4)

. ............................ (5)

Here, fchem is the chemical free energy density, which is
expressed by interpolating the bulk free energies in the solid
fS and liquid fL with a monotonically increasing function
p(φ). For p(φ), p(φ) = φ3(10 – 15φ + 6φ2) or p(φ) = φ2(3 –
2φ) is often used. The fdoub component is the double-well
potential, which represents the energy barrier at the solid-
liquid interface, where W is the height of the energy barrier
and q(φ) is a double-well function, for which q(φ) = φ2(1 –
φ)2 is often used. Finally, fgrad is the gradient energy density
with gradient coefficient a. In Eq. (3), fchem is the bulk ener-
gy and fdoub + fgrad corresponds to the interface energy.

Next, we derive the time evolution equation of φ by follow-
ing the second law of thermodynamics. Because the phase-
field variable φ is a nonconserved value, we use the Allen-
Cahn equation or time-dependent Ginzburg-Landau equation,

, ............................. (6)

Fig. 2. Time slices showing competitive dendritic growth during
directional solidification of Al–Si alloy. This phase-field
simulation was performed in a computational domain of
3.072 mm × 0.768 mm × 3.072 mm (4 096 × 1 024 × 4 096
lattices) using GPU supercomputer TSUBAME2.0 at
Tokyo Institute of Technology. (Online version in color.)
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where the functional derivative δF/δφ can be calculated as

.......................................... (7)

Here, we used p(φ) = φ3(10 – 15φ + 6φ2). Substituting Eq.
(7) into Eq. (6), we obtain the time evolution equation of the
phase-field variable φ

.......................................... (8)

As can be seen from Eq. (8), the phase-field equation reduc-
es to a reaction-diffusion equation, where first and second
terms in the bracket on the right-hand side are the diffusion
and reaction terms, respectively. Equation (8) expresses the
interface migration as a balance between smoothing by the
diffusion term and steepening by the reaction term.

The coefficients a, W, and Mφ in Eq. (8) are related to the
interface thickness δ, interface energy γ, and interface
mobility M as follows:

, ................................ (9)

, ............................... (10)

, ........................... (11)

where, b = 2tanh–1(1 – 2φ0). Setting φ0 = 0.1, we obtain b =
2.2. By solving Eq. (8) under the one-dimensional (1D)
equilibrium condition ∂φ/∂t = 0, we can derive the 1D equi-
librium profile of φ as

. .................. (12)

Figure 3 shows the relations among φeq, φ0, and δ. Equa-
tions (9) and (10) can be derived from the relations δ = x1 – x2

and . Equation (11) can be derived by

comparing the 1D steady growth condition of Eq. (8) to a
constant velocity V = M(fL – fS).

To determine fS and fL in Eq. (8), which are functions of

temperature and/or concentration, the thermal conduction
equation and/or diffusion equation are solved at the same
time. Then, because the distributions of temperature and con-
centration in the interface region change depending on the
interface thickness, the interface migration rate also changes
depending on the interface thickness. Therefore, the results
are usually not quantitative. On the other hand, if fS – fL is a
constant, Eq. (8) provides quantitative results independent of

the interface thickness. Now, setting ,

simulation should be performed in the range of –0.5 ≤ β ≤
0.5. Then, because β ∝  δ (fL – fS), we need a small interface
thickness δ when fL – fS is large, and we can use a large δ
when fL – fS is small. This is a very important point when
choosing the value of δ or the size of the numerical lattice
Δx. We usually use δ = 4Δx ~ 8Δx, depending on the prob-
lem. In addition, an interface thickness satisfying Δx ≤ R/5
should be used, where R is the dendrite tip radius.

2.2. Pure Material Solidification
In a phase-field simulation of the dendrite growth of a

pure material, a thermal conductivity equation describing
the latent heat release from solid-liquid interface, such as

, .................... (13)

is solved in addition to Eq. (8). Here, T is temperature, κ is
the thermal diffusion coefficient, L is latent heat, and cp is
specific heat. In pure material solidification, a thermody-
namic driving force fL – fS = L(Tm – T)/Tm is usually used in
Eq. (8), where Tm is the melting temperature.

Although some studies on phase-field models for the
solidification of pure material were performed before
1990,36–39) actual dendrite growth simulation using the phase-
field method was first achieved by Kobayashi15) by introduc-
ing the interface anisotropy (see Section 2.4), which is very
important to the formation of four- or six-fold symmetry of
the dendrite shape. Kobayashi’s paper15) was published in
1993, and it only discussed the simulation of 2D dendrites.
However, he had already succeeded in simulating 3D den-
drite growth and produced movies of it before 1990.40) These
results fascinated many related researchers. By imposing a
sharp interface limit where the interface width goes to zero,
the parameters in phase-field equation could be related to the
material parameters such as the interface energy and kinetic
coefficient, and detailed simulations using the material
parameters were performed.41,42) Because those models were
derived from a free energy functional even though the tem-
perature changes, a thermodynamically consistent model was
also derived from the entropy functional.43,44) It was pointed
out that the results change depending on the interface thick-
ness, because the temperature profile in the interface chang-
es when the interface thickness changes. Therefore, the
above models are valid only under the conditions of a small
interface thickness and high undercooling.45,46) Karma46–49)

solved this problem by imposing a thin interface limit on the
phase-field equations, which enabled quantitative simula-
tions independent of the interface thickness under the low-
undercooling condition, where the kinetic undercooling is
negligibly small compared to the curvature undercooling. In

Fig. 3. Relation between equilibrium profile of phase-field φeq and
interface thickness δ.
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other words, the phase-field mobility shown in Eq. (11) does
not include the interface kinetic coefficient50) Karma’s quan-
titative model was derived for a pure material with equal
thermal diffusivities in the solid and liquid phases, and it
was also applied to different thermal diffusivities.51)

2.3. Binary Alloy Solidification
A phase-field model for binary alloy solidification has

also been developed, similarly to that for the pure material
described in section 2.1. Wheeler, Boettinger, and McFadden
(WBM) first developed a phase-field model for isothermal
solidification of a binary alloy, which is called the WBM
model,52–54) by directly extending the pure material model41,42)

to a binary alloy. In order to use the WBM model under
nonisothermal conditions, Warren and Boettinger55) derived
the phase-field equations for binary alloy solidification from
the entropy functional.43) With this model, realistic and beau-
tiful 2D dendrite growth in a binary alloy was successfully
simulated under both isothermal55) and nonisothermal56,57)

conditions. However, because the solute concentration
changes in the interface region, the results change depend-
ing on the interface thickness. Kim, Kim, and Suzuki (KKS)
pointed out that in the free energy density defined in the
WBM model, an extra energy term appears in the interface
region.58) Although the interfacial region was defined in the
WBM model as a mixture of solid and liquid with the same
composition and different chemical potentials, in the KKS
model, the interfacial region was defined as a mixture of solid
and liquid with different compositions, as c = p(φ)cS + (1 –
p(φ))cL, and the same chemical potential, ∂fS/∂cS = ∂fL/∂cL =
μc. In this case, Eq. (8) can be modified as

........................................ (14)

The diffusion equation can be derived from the Cahn-Hilliard
equation

,..................... (15)

as

, ... (16)

where D is the diffusion coefficient. When KKS’s idea is
introduced, the extra energy caused by the interpolation of
the bulk energies of the liquid and solid phases can be elim-
inated. However, the KKS model was inadequate to quanti-
tatively model the low-growth-rate regime. To overcome this
limitation, Karma has developed a quantitative phase-field
model of dilute binary alloy solidification with zero diffusiv-
ity in the solid (one-side model) in such a low-growth-rate
regime.59) In Karma’s quantitative model, an antitrapping
current term that controls solute diffusion across the inter-
face is added to the diffusion equation. The model was also
successfully applied to nonisothermal solidification.60)

Recently, Ohno and Matsuura developed a quantitative
phase-field model for dilute alloy solidification with arbi-

trary value of the solid diffusivity.61,62) The solute diffusivity
in a solid is very important in the solidification of steel,
which is the most important material for practical applica-
tions. Although these quantitative models introducing an
antitrapping current term are common at present, these mod-
els are not universal and are only valid for slow solidifica-
tion. Therefore, the development of a phase-field model that
enables the simulation of binary alloy solidification under
all thermal conditions is being researched even today.63)

2.4. Interface Anisotropy
The morphology of growing dendrites depends sensitively

on the anisotropy of the interface energy and interface kinet-
ics, even though the anisotropy is small, ~ 1%, especially for
the interface energy.3,20,26) In many cases, the anisotropy of
the interface energy is included in the gradient coefficient as

........................................ (17)

for a 3D cubic structure. Here, ζ is the strength of the anisot-
ropy and  is the average value of a. In 2D, Eq. (17) reduces
to

........................................ (18)

where Θ is the angle between the x-axis and the interface
normal. Using Eq. (17) in 3D, Eq. (8) can be modified as

........................................ (19)

Experimental measurements of the anisotropy of the
interface energy are limited to those by Napolitano et al.64–66)

and the anisotropy of the interface kinetics has not been
reported. Therefore, at present, atomic-scale simulations
such as molecular dynamics (MD) simulations are believed
to be the most powerful tool for evaluating this anisotropy.
Hoyt et al.67) have developed a method to compute such a
small anisotropy of the solid-liquid interface energy, and the
anisotropies of the interface energies for various systems
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have been simulated by their group68–74) and others.75–84)

Many MD simulations computing the solid-liquid interface
kinetics have been performed.85–92) Phase-field dendritic
growth simulations using the interface anisotropy calculated
by these MD simulations have also been performed success-
fully.93–95) This coupled computation is believed to be a
promising technique for accurate dendrite growth simulation.

For a high-interface-anisotropy problem, a special treat-
ment is needed for the anisotropy function. In 2D facet96–99)

or needle100,101) crystal growth simulations, a convexification
scheme proposed by Eggleston et al.102) has been widely used.
However, it was pointed out that this scheme cannot express
the nucleation of facets. Therefore, various generalization
schemes for high anisotropy have been developed.103–107) A
cusp interface energy model108,109) has also been used to treat
the facet and a high-anisotropy kinetic coefficient110,111) has
been modeled. Recently, dendrite growth simulations have
been performed both in the 2D112–114) and 3D115,116) spaces
for materials with the hexagonal close-packed structure,
such as Mg alloys, which are the lightest metallic materials,
and therefore, very important as future industrial materials.

2.5. Polycrystalline Solidification
To simulate polycrystalline solidification in which multi-

ple dendrites grow in different directions, there are roughly
two types of phase-field models. One is a multi-phase-field
(MPF) model117–129) that uses multiple phase-field variables
to distinguish different grains and/or phases, and the other
is a KWC130–135) (Kobayashi, Warren and Carter)130)-type
model, where two order parameters representing the phase-
field and orientation-field are used. The MPF model is a gen-
eral model for simulating the solidification of multiple-phase
and multiple-component alloys, and it can treat solidifica-
tion and grain growth simultaneously. Among the various
models of this type, the MPF model developed by Steinbach
et al.119) is used most widely. In the MPF model, a double-
obstacle function instead of a double-well function is used
to make the energy at the triple point larger than that in the
interface. KWC-type models are useful for simulating the
growth of multiple dendrites until they impinge. However,
it is difficult to model the grain growth quantitatively. Nev-
ertheless, KWC-type models are very interesting, and
Gránásy et al. successfully simulated polycrystalline solidi-
fication and spherulite growth using their own KWC-type
model.21,32,100,101,136,137)

2.6. Solidification with Convection
Convection plays dominant role in the formation of the

solidification microstructure in real situations,26) although
almost all dendrite growth simulations are performed under
conditions without convection. In fluid dynamics, the dif-
fuse interface model has been used for the two-phase flow
problem, among others, for a long time.138) By applying such
know-how in fluid dynamics to solidification, Anderson et
al.,139–141) Tönhardt et al.,142–144) and Beckermann et al.145–148)

developed models for solidification with convection by cou-
pling the phase-field equations and Navier-Stokes equations.
Beckermann et al.145–148) introduced a friction term into the
Navier-Stokes equations to impose a no-slip condition at the
solid-liquid interface, which acts as a distributed momentum
sink in the interface region where the phase-field changes.

Since then, many phase-field simulations of dendritic growth
with forced flows and natural convection have been per-
formed. Because these simulations have high computational
costs, adaptive mesh (ADM) techniques,149–151) the numeri-
cally efficient Lattice Boltzmann method,152–157) and parallel
computing158,159) have been used. However, for the dendrite
growth problem with convection, 2D simulations160–165) pro-
vide results completely different from the real 3D phenom-
ena. Therefore, recently, 3D simulations157,166–170) have been
performed, although they are limited to small regions with
small numbers of dendrites.

3. Large-scale Dendrite Growth Simulations

The major disadvantage of the phase-field method is that
many numerical lattices are required to achieve a smooth
distribution of the phase-field in the small interface region.
Therefore, the dendrite growth simulations performed so far
have been limited to 2D or to 3D with a small computational
region. To overcome this disadvantage, ADM techniques have
been widely used in 2D142,144,150,171–178) and 3D169,170,179–183)

dendrite growth simulations. Because the regions in which
the phase-field variable changes are limited to near the inter-
face region, the ADM can drastically reduce the number of
numerical lattices, which makes it promising for simultane-
ous application with quantitative phase-field models. Paral-
lel computations125,184–186) have also been applied to large-
scale phase-field simulations. Nevertheless, the 3D dendrite
growth simulations reported so far have been restricted to
one or a small number of dendrites,186,187) a small region
only around the tip,188) narrow channels,189) or cellular struc-
tures,81,190–192) even though interactions between multiple
dendrites are very important in real solidification micro-
structures. Hence, in the next step of phase-field study, it is
crucial to develop large-scale simulation technologies.

Recently, numerical computations using GPUs, which
were originally developed as visualization processing units,
have become attractive in high-performance computing as
an alternative to CPU (central processing unit)-based parallel
computing. High performance is possible because each GPU
has many cores, from several hundred to thousands, in con-
trast to the CPU, which has only a few cores. Therefore, GPU
computation is well suited for stencil computation. Recently,
we have shown that phase-field dendrite growth simulations
can be greatly accelerated by GPUs,193) which enabled the
first-ever petascale phase-field dendrite growth computation
with single precision.16) This was realized by using 4 000
GPUs along with 16 000 CPUs of the TSUBAME 2.0 super-
computer at Tokyo Institute of Technology. The high perfor-
mance was achieved by building our simulation code from
scratch in the GPU-specific language CUDA and introduc-
ing an overlapping technique that avoids performance deg-
radation due to inter-GPU communication.16)

Figure 2 shows the competitive growth processes of mul-
tiple dendrites during directional solidification of a Al–Si
binary alloy. This simulation was carried out in a system
with dimensions of 3.072 mm × 0.768 mm × 3.072 mm
(4 096 × 1 024 × 4 096 lattices) in four million computation-
al steps. The number of GPUs used in this simulation was
512, and the computational time was about 110 hours. In
Fig. 2, we can observe a series of realistic directional solid-
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ification processes from nucleation to competitive growth in
3D. First, 32 solid seeds initially nucleated at the bottom
wall grow into star shapes (a) and then cover the bottom sur-
face through lateral growth (b). After that, the dendrites
begin growing in preferred growth directions close to the
heat flow direction (c). As the solidification front proceeds
upward, the number of dendrites gradually decreases
because of competitive growth of the dendrites (d)–(f). Fur-
thermore, very recently, we performed a much larger com-
putation in a system with dimensions of 3.072 mm × 3.078
mm × 3.072 mm (4 096 × 4 104 × 4 096 lattices) using 768
GPUs.17) Figure 4 shows the dendrite morphologies at 360
million steps, where the color indicates the inclination angle
of the dendrites relative to the bottom surface. Almost all the
conditions are same as those in Fig. 2, except for the bound-
ary conditions in the thickness direction, computational
domain size, and the number of initial solid seeds (128).
This 3D, very-large-scale simulation has enabled us to see
the effect of the preferred growth direction on the dendrite
selection phenomena in detail, as well as the detailed interac-
tions among neighboring dendrites.17) From this simulation,
it was concluded that a relatively large number of dendrites
with large inclination angles can survive and that the den-
drite interactions during competitive growth are very com-
plicated. We can also remove each dendrite grown from the
same seed. Figure 5 shows four representative dendrites
among the 46 dendrites that survived at the time shown in
Fig. 4. Table 1 shows the number of dendrites categorized
by inclination angle θ and with and without branches. Den-
drites without branches are further categorized into single or
multiple dendrites. The four dendrites shown in Fig. 5 are
indicated in Table 1. It is observed that it is relatively diffi-
cult for branching to occur for a dendrite with a small θ. On
the other hand, branching is necessary for a highly inclined
dendrite to grow continuously.

As shown above, we can obtain much information from
3D large-scale simulations of multiple dendrites. Lately, com-
parisons of phase-field computations and in situ observations
have been reported.194–200) This is a very important develop-
ment in material science. However, the phase-field compu-
tations performed in those reports are limited to 2D or small
3D spacings, which are not consistent with the actual exper-

imental conditions. From these points of view, we still need
to develop large-scale phase-field simulation techniques.

4. Conclusions

Today, more than twenty years since Kobayashi success-
fully simulated dendrite growth using the phase-field meth-
od, the number of articles regarding this method has rapidly
increased, and it has emerged as a powerful numerical tool
for simulating the microstructure evolution of various mate-
rials. In dendrite growth simulations, quantitative models
for pure materials, binary alloys, and multiple-component
alloys have been developed, and polycrystalline solidifica-
tion and dendrite growth with convection have been simu-
lated. In addition, progress in in situ observation technology
has made direct comparison of simulations and experiments
possible. For further progress in solidification science, the
development of very-large-scale phase-field simulation
technology is indispensable. We believe our recent compu-
tations using a GPU supercomputer will open the road to
such very-large-scale phase-field simulations.
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