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We propose a novel approach to describe wetting of plane solid surfaces by liquid drops. A two-
dimensional nonconserved phase field variable is employed to distinguish between wetted and nonwetted
regions on the surface. The imbalance in the Young’s force provides for the exchange of relative stability
of the two phases. The three-phase contact line tension arises from the gradient energy and contact angle
hysteresis from the kinetic coefficient. Using this theory, we discuss contact angle hysteresis on
chemically heterogeneous surfaces. We show significant departure from the classical Cassie theory,
which is attributed to defect pinning of the continuous triple line.
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The wetting of surfaces by liquid drops, as characterized
by contact angles, has been studied for several decades due
to the numerous practical applications [1]. Experimentally,
the contact angle of a sessile drop has been observed to
take a range of values. The highest (lowest) stable contact
angle is termed the advancing (receding) angle �a (�r),
above (below) which the radius of the wetted area will
increase (decrease), thus bringing the drop to manifest this
limiting value of contact angle. Intermediate drop contact
angles, �r < � < �a are all metastable states for the drop
[1]. The contact angle hysteresis (CAH) �� � �a � �r
proves to be an important quantity that determines the
ease of drop movement and self-cleaning nature of the
surface [2].

The origin of CAH is attributed to several factors such as
surface roughness, chemical contaminants and solutes in
the liquid [1], among others. Experimentally, CAH has
been found to be either independent [3,4] or primarily
caused by surface roughness and heterogeneity [5].
Theoretical models of CAH have focused on roughness
[6] and heterogeneity [7] as providing energy barriers to
the drop attaining the global free energy minimum. In this
connection, it has been pointed out that the drop metastable
state is a phenomenon associated with the one-dimensional
three-phase contact line (CL) kinetics and not the two-
dimensional surface energy [1,8]. Owing to the directional
nature of the choice of the drop metastable state, a kinetic
model of the triple line appears necessary for modeling
CAH. In addition, it proves difficult to incorporate each of
the potential sources of CAH explicitly. It is thus desirable
to develop a coarse-grained model which demonstrates
hysteresis without explicit consideration of the underlying
causes.

In this Letter, we propose a simple phenomenological
model of a sessile liquid drop on a solid surface. The model
is developed in a Ginzburg-Landau framework (widely
referred to as the phase field model) first used to describe
superconducting phase transitions [9]. In the context of
wetting by liquid drops, we note three distinctive features

of the model: (i) The three-dimensional system is de-
scribed in a two-dimensional setting. Assuming the drop
radius to be much smaller than the capillary length (R�������������
�=�g

p
) the drop shape is approximated by a spherical cap.

The surface area of the liquid-vapor interface is then
related to the wetted surface area on the solid surface and
the contact angle. A two-dimensional description of the
wetted and nonwetted regions on the solid surface is thus
sufficient to describe the total energy of the solid-liquid-
vapor system. (ii) A special form of the kinetic coefficient
is chosen to describe rate independent CAH. (iii) The triple
line tension arises naturally from the gradient energy term
of the phase field model. For this model, the only constit-
utive information required is the advancing and receding
angles and the surface energy of the liquid-vapor interface.
The physical origin(s) of hysteresis is not explicitly
considered.

We employ a two-dimensional field variable ��x; t�,
x 2 A to describe the amount of wetting on the solid
surface. The phase field variable ��x; t� takes a value 1
where the solid surface is in contact with liquid and 0
where the solid surface is in contact with vapor. The phase
field variable suffers continuous but steep changes at the
boundary between the wetted and nonwetted regions. Since
our order parameter describes the amount of wetting of the
solid surface, we are able to use a nonconserved phase field
variable in contrast to [10] in which a three-dimensional
conserved order parameter describes the volume of the
liquid.

Consider a sessile drop on a smooth chemically homo-
geneous surface. Neglecting gravity, the drop takes the
shape of a spherical cap and the wetted solid surface region
is circular. For a drop volume V and wetted circle radius R,
from geometrical considerations,

 V � 1
3�R

3�2� 3 cos�� cos3��=sin3�; (1)

where � is the contact angle of the drop.
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We write the free energy of the system as

 F �
Z
A

�
h��� �

1

2
�jr�j2

�
dA; (2)

where dA is the elemental area on the solid surface. The
term 1

2�jr�j
2 with � > 0 represents a gradient energy

which penalizes the presence of interfaces between regions
of constant �. In the present context, the interface between
the wetted and nonwetted regions of the solid surface
represents the triple line between the solid, liquid, and
vapor phases. The gradient term is thus associated with
the triple line tension.

In Eq. (2), h��� is a double-well potential with minima
at � � 0 and� � 1. Since � � 0 represents the nonwetted
region, we account for the solid-vapor interfacial energy
(�SV) by requiring h�0� � �SV. At � � 1, the energy con-
tribution arises from both the solid-liquid (�SL) and the
liquid-vapor (�LV) interfacial energies: dE � �SLdA�
�LVdALV, where dALV is the elemental area on the spheri-
cal cap (the liquid-vapor interface of the drop). Using
Eq. (1), we can show that dALV � dA cos�. Thus, requir-
ing h�1� � �SL � �LV cos� allows us to account for en-
ergy contributions of the solid-liquid and liquid-vapor
interfaces. The Gibbs free energy of the three-dimensional
system is thus reduced to a two-dimensional representa-
tion. For convenience, without loss of generality, we
choose h�1� � �SL � �LV cos�� �SV and h�0� � 0 by
shifting the reference energy of the system. The two wells
have equal energy when �SL � �LV cos�Y � �SV � 0,
which is the classical Young’s equation for the thermody-
namic equilibrium contact angle �Y .

We choose the form h��� � �LVf�1� 3H��4 �
2�2H � 1��3 � �2g, where H � cos�� cos�Y is the
Young’s force imbalance which induces motion in the
drop. This form is chosen such that h��� has minima at
� � 0, 1 and h�1� � h�0� � �LVH. Figure 1 is a plot of the
coarse-grained free energy of the system h���=�LV for

three different contact angles. The middle curve corre-
sponds to the Young’s equilibrium condition. The equilib-
rium Young’s angle for the material is taken to be the
average of the cosines of the advancing and receding
angles �Y � cos�1�12 �cos�a � cos�r�� � 100:1	; using
typical values for a silanized surface �a � 104:2	 and
�r � 96:1	, and �LV � 72:8 mJ=m2 [11].

The evolution equation in the Ginzburg-Landau frame-
work is of the form

 � _� � �
�F
��
� �r2��

@h���
@�

; (3)

where � is the functional derivative and �> 0 is the
kinetic coefficient. Equation (3) is solved in conjunction
with the volume constraint Eq. (1) using the wetted circle

radius of the drop R�t� �
�������������������������������������
�1=��

R
��x; t�dA

q
. For a given

drop volume V�t� and wetted circle radius R�t�, the contact
angle ��t� is solved using Eq. (1). For � < �>��Y , h�1�>
�<�h�0� and the nonwetted (wetted) region is metastable.
The resulting Young’s force (H) causes the evolution of �
which changes the wetted circle radius, thereby causing the
contact angle to tend towards the equilibrium contact
angle.

Next, we examine the role of the gradient term to make
the connection with the triple line tension. For the case of a
circular wetted footprint of radius R, of a sessile drop on
the surface; the evolution Eq. (3) in polar coordinates is
� _� � ��@2�=@r2 � �1=r�@�=@r� � @h=@�. Multiplying
the equation by @�=@r and integrating from 0< r<1,
we obtain (assuming constant �)

 	�v � h�0� � h�1� � 	�=R; (4)

where we have used the boundary conditions � � 1,
@�=@r � 0 at r � 0 and � � 0, @�=@r � 0 at r � 1.
Here, v � �@�=@t�r=�@�=@r�t is the velocity of � � con-
stant surfaces [12] and 	 �

R
1
0 �@�=@r�

2dr. Equation (4)
is the sharp interface limit of the phase field theory [13].
For a stationary interface, Eq. (4) reduces to �SL �
�LV cos�0Y � �SV � 
=R � 0 which is the modified
Young’s equation accounting for triple line tension with

 � 	� [14]. The contact angle for a spherical drop of
finite radius �0Y is larger than the Young’s contact angle �Y
for positive line tension. We note that since the gradient
coefficient plays the role of the line tension, negative
values of 
 reported in literature (e.g., [15]) cannot be
treated using this theory. A full three-dimensional descrip-
tion may be required in such a case.

If the kinetic coefficient � is chosen to be constant, it
can be seen from Eq. (4) that metastable contact angles are
not allowed [16]. Furthermore, in this case CAH is depen-
dent on the interfacial velocity and vanishes under quasi-
static conditions (nearly zero interfacial velocity).
However, it has empirically been observed that CAH is
nonzero and nearly independent of the rate of interface
motion at small expansion rates [3,17]. In general, the
kinetic coefficient � is allowed to be a function of (x, t,

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.04

−0.02

0

0.02

0.04

0.06

0.08

FIG. 1 (color online). Coarse grain energy h���=�LV for three
contact angles.
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�, _�,r�) with the restriction that �> 0 for all admissible
values of its arguments [13]. Thus we choose a modified
kinetic coefficient of the form � � ��H �jr�j� �
!j _�jm�=j _�j, �,!> 0, where H is the Heaviside function
H �x� � 1 for x > 0 and H �x� � 0 for x 
 0. � is the rate
independent contribution to the hysteresis width (and is
related to �a, �r measured at quasistatic drop conditions)
whereas !j _�jm provides a power law dependence of the
hysteresis on the velocity of triple line. This form is similar
to that used in [18] to model the hysteresis of isothermal
stress-strain curves in shape memory alloys. Using this
form for the kinetic coefficient, the evolution Eq. (3) can
be rewritten as [18]
 

!1=m _� �
����������r2��

@h
@�

����������H �jr�j�
�

1=m

� sgn
�
�r2��

@h
@�

�
; (5)

where sgn�S� gives the sign of S. In the above equation � is
the imbalance in the Young’s force at which the drop
remains stuck in the advancing and receding angles for
_�! 0; thus �=�LV �

1
2 �cos�r � cos�a�. Note that hys-

teresis in the current model arises from kinetics as hypothe-
sized in [8].

We choose � � 2:25� 10�11 J, which yields a value for

� 10�7 J=m, consistent with empirical observations [7].
The equations were spatially discretized using a grid of
dx � dy � 1:5 �m (typical wetted circle radius is R �
1:2 mm). For �a � 104:1	 and �r � 96:9	, the rate inde-
pendent hysteresis parameter � � 4:4 mJ=m2. The nu-
merical simulations in this work are performed under
quasistatic conditions. By this we mean that the drop
contact angles and wetted radius are obtained as _�! 0.
The power law exponent is set to m � 1 (as is standard in
the Ginzburg-Landau equation) and the rate coefficient
! � 20 Js=m2. In the current work only the rate indepen-
dent term is obtained from the quasistatic hysteresis data.
The rate dependent term does not contribute to hysteresis
under quasistatic conditions [17]. The ! term facilitates
the kinetic evolution of the drop from an arbitrary initial
state to the final equilibrium condition.

We now employ our model to study chemically hetero-
geneous surfaces which are of great practical interest in
automanipulation of sessile drops. Consider a smooth het-
erogeneous surface composed of two component materials
A and B with equilibrium contact angles �AY and �BY , re-
spectively. The equilibrium contact angle on the heteroge-
neous surface is given by the Cassie equation [19]

 cos�CY � f cos�AY � �1� f� cos�BY; (6)

where f is the area fraction of material A. Equation (6) can
be derived from Gibbs free energy minimization [7]. It is
worth emphasizing that the Cassie equation relates the
equilibrium contact angles and area fractions of the com-
ponent materials to the equilibrium contact angle on the

composite surface �CY . It has been widely hypothesized that
Eq. (6) also holds for advancing and receding angles,
which are determined by CL kinetics. Since the current
model incorporates both surface free energy minimization
as well as the CL kinetics, we are in a position to test this
hypothesis. We accomplish this by modeling a sessile drop
on a composite surface of two materials with identical
equilibrium contact angles but with slightly different
amounts of hysteresis: �Aa � 104:1	, �Ar � 96:9	 (�A �
4:4 mJ=m2) and �Ba � 104:8	, �Br � 96:2	 (�B �
5:3 mJ=m2).

We perform numerical simulations of a drop spreading
on a smooth surface composed of squares of material B of
side a centered b apart embedded in material A. By varying
a in the range of 0–75 �m and setting b � 75 �m we
obtain different area fractions of component B. Figure 2
shows the contact angle as a function of the area fraction of
component B. The advancing and receding angles follow
Cassie theory closely. It may therefore be inferred that for a
case of a composite material of similar components, Cassie
theory applied to advancing and receding angles is justi-
fied. For small differences in the component material prop-
erties such as the current case, the CL pinning strength at
the sharp material property discontinuities is sufficiently
low that the CL is relatively unwrinkled and remains
circular [See Fig. 3(a)]. In addition, the inset in Fig. 2
shows that the model is capable of reproducing CAH.
The effect of line tension becomes apparent from CAH
observed when a water drop is cycled between volumes of
1 and 10 �L on a smooth homogeneous surface A (inset in
Fig. 2). The slight decrease in the advancing angle �a with
volume from points B toC is due to the decreasing effect of

=R (see the modified Young’s equation) [14].

We next examine the situation for composite materials
with dissimilar component surfaces. When the hysteresis

FIG. 2 (color online). cos� as a function of the area fraction of
component B. The lines represent Cassie theory predictions and
the symbols represent the numerical simulations. The inset
shows the hysteresis for a homogeneous surface A.
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value of material B is increased to �Ba � 119:9	, �Br �
83:4	 (�B � 22:1 mJ=m2), Cassie theory is found to
underpredict the advancing angle and overpredict the re-
ceding angle. When the difference between the wettability
properties of the two component materials is sufficiently
large, triple line is strongly pinned locally resulting in a
wrinkled state [Fig. 3(b)]. The wrinkling of the CL and
resulting deviation from Cassie equation has also been
experimentally observed in [20]. Note that the contortion
of the CL results in change in the local contact angle along
the CL. We use the spherical cap approximation to deter-
mine the macroscopic contact angle. An asymptotic analy-
sis shows that contortion of the CL provides an O�"2�
correction to the equivalent spherical cap surface area,
where " is the ratio of the CL wrinkling amplitude to the
drop average footprint radius. Thus this method is appli-
cable to situations where "� 1.

Finally, we test Cassie theory in the case of a composite
surface consisting of a silanized surface (material A) and
an ‘‘ideal superhydrophobic material’’ with �BY � 180	

and no hysteresis (�B � 0) (material B). Figure 4 is a

plot of cos� versus area fraction of material B. As can be
observed, both advancing and receding angles are, respec-
tively, greater and less than that predicted by Cassie theory
due to the strong pinning forces that arise at the sharp
discontinuities in surface properties, which cause the CL
in the advancing (receding) situation to be constrained at a
wetted circle radius less (greater) than the radius predicted
based on Cassie theory.

In conclusion, we report a novel two-dimensional phase
field method to describe wetting of surfaces by liquid
drops. The exact three-dimensional description is reduced
to a two-dimensional representation by assuming that the
drop takes the shape of a spherical cap and is not distorted
by local CL wrinkling. The gradient energy term describes
the triple line tension and CAH is obtained through a
modified kinetic coefficient. Numerical simulations of ses-
sile drops on composite surfaces show deviation from the
classical Cassie theory for large pinning effects originating
at the discontinuities in the material properties. The pin-
ning is apparent through wrinkling of the CL. The theory
has potential for wide applicability in studying the behav-
ior of sessile drops including the effect of defect pinning
and in designing composite surfaces for sessile drop
automanipulators.
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FIG. 4 (color online). cos� as a function of the area fraction of
component B. The lines represent the Cassie theory predictions
and the symbols represent the numerical simulations.

FIG. 3 (color online). (a) Three-phase contact line for �Aa �
104:1	, �Ar � 96:9	 and �Ba � 104:8	, �Br � 96:2	.
(b) Contorted three-phase contact line due to strong pinning
when �Aa � 104:1	, �Ar � 96:9	 and �Ba � 119:9	, �Br � 83:4	.
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