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Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed.
The models applied incorporate homogeneous and heterogeneous nucleation of growth centers
and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon
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films, etc. are also displayed. Advantages, problems, and possible solutions associated with
quantitative PF simulations are discussed briefly.
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I. INTRODUCTION

MANY of the materials used in everyday life are
polycrystalline, including metals, minerals, polymers,
drugs, some types of food, ice, snow, kidney stone,
cholesterol, etc., whose properties are determined by
their microstructure; i.e., the size-, shape-, and compo-
sition distribution of the crystallites of which they
consist. Recent advances in phase-field (PF) modeling,
driven partly by the ever-increasing computational
power and partly by the evolution of numerical methods
and mathematical models, have made a quantitative
prediction of microstructure possible. The main virtue
of the PF approach is that a mathematical model based
on physical principles relates the microstructural evolu-
tion to the physicochemical properties available in
databases, etc.[1]

The PF models are classical field theoretical
approaches, in which crystallization is monitored by a
coarse-grained structural order parameter, termed the
phase field, whose time evolution follows relaxation
dynamics of the nonconserved type. It is usually coupled
to the time evolution of other fields, such as temperature
or concentration. The first great success of PF modeling
was a quantitative description of a freely growing single-
crystal thermal dendrite.[1–3]

Polycrystalline solidification and grain boundary dynam-
ics were addressed from the early days by the multi-phase-
field (MPF)models.[4,5]Aspecialty of this approach is that a
large number of phase fields are used (as many as the
different crystallographicorientationsor even thenumberof
particles,[6,7]whichmaymeanmany hundreds to thousands
of fields[8,9]). A computationally less demanding route was
proposed some time ago, which relies on orientation field(s)
to monitor the local crystallographic orientation.[10–15] Of
these orientation-field-based PF (OFPF) models, those
described in References 13 and 15 became the first PF
approaches that are able to address complex polycrystalline
growth forms in two and three dimensions.
The polycrystalline structures can be formally divided

into three classes (for examples, see Figure 1[16–25]):

(I) impinging single crystals that may be compact or
dendritic;

(II) polycrystalline growth forms that start as a single
crystal, but new grains form at their perimeter as
they grow-a process termed growth front nucle-
ation (GFN[15,26–28]); and

(III) impinging polycrystalline growth forms.

While polycrystalline microstructures of Class I were
addressed successfully by both the MPF and OFPF
models[4–13,15] (even quantitatively), the polycrystalline
growth forms of Classes II and III were captured only
by the OFPF models.[13,15,26–30]

It is desirable to outline the ingredients required for a
minimum PF model of polycrystalline solidification.
Visual observation of the microstructures shown in
Figure 1 implies that the following phenomena need to
be addressed.

A. Diffusional instabilities
B. Nucleation of growth centers:

1. homogeneous
2. heterogeneous
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C. Growth front nucleation:
1. heterogeneous (induced by particles[19,31])
2. homogeneous (branching with random or fixed mis-

orientation).

While the PF models originally incorporated the
diffusional instabilities,[1–3] the rest of these processes
were built gradually into the OFPF models, leading to a
general model of polycrystalline solidification, which
might be useful as a tool for microstructure design, as
demonstrated in a few cases already. In this article, we
present a limited review of the advances the OFPF
models have made in the past in describing complex
polycrystalline microstructures. In Section II, we briefly
recapitulate the main features of the models applied in

two and three dimensions and discuss the problems/
requirements associated with quantitative PF simula-
tions. Then, in Section III, we present a number of
applications including dendritic solidification, columnar-
to-equiaxed transition (CET), formation of spherulites,
fractal-like aggregates, eutectic structures, and possible
manipulations to influence crystallization morphology.
Finally, we offer a few concluding remarks in Section IV.

II. OFPF MODELS

The OFPF models developed for two dimensions rely
on a scalar orientation field h, which specifies the
orientation of a crystal grain relative to a reference

Fig. 1—Polycrystalline patterns (Reproduced with permission from Gránásy et al.,[16] � 2006 Taylor and Francis). Impinging single crystals: (a)
Foamlike morphology formed by competing nucleation and growth.[17] (b) Polycrystalline dendritic structure formed by competing nucleation
and growth in the oxide glass.[18] Polycrystalline growth forms: (c) ‘‘Dizzy’’ dendrite formed in clay-filled polymethyl methacrylate–spolyethylene
oxide thin film.[19] (d) Spherulite formed in pure Se.[20] (e) Crystal sheaves in pyromellitic dianhydrite–oxydianilin poly(imid) layer.[21] (f) Arbor-
esque growth form in polyglycine.[22] (g) Polyethylene spherulite crystallized in the presence of n-paraffin.[23] (h) ‘‘Quadrite’’ formed by nearly
rectangular branching in isotactic polypropylene.[24] (i) Fractal-like polycrystalline aggregate of electrodeposited Cu.[25] To improve the visibility
of the experimental pictures, they are shown here in false color.
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frame via a single angle (e.g., the angle between the
normal of a specific crystal plane and laboratory frame).
This is a nonconserved field (i.e., its integral to the
volume of the system varies with time). Accordingly,
nonconserved relaxation dynamics is assumed to apply.
This is then coupled to the equations of motion (EOMs)
of the phase field and one or more conserved fields
(concentration, temperature, etc.). In three dimensions,
the situation is slightly more complex mathematically:
there are various mathematically equivalent representa-
tions of orientation such as Euler angles, rotation
vectors, Rodrigues vectors, and quaternions. Accord-
ingly, different formulations of the three-dimensional
(3D) problem were developed. In this section, we briefly
review the OFPF models put forward in two and three
dimensions.

A. Approaches in Two Dimensions

1. Field theory with discrete orientations
This is the first PF model that addresses the formation

of grains with different crystallographic orientations.
Morin et al.[32] introduced a free energy that has n
equally deep minima allowing n different crystallo-
graphic orientations, sacrificing thus the orientation
invariance of the free energy. The model relies on
nonconserved vector-field monitoring crystalline order-
ing including orientation and a conservative scalar
concentration field.

2. Kobayashi–Warren–Carter (KWC) model
This is the first real OFPF model, whose free energy is

invariant to rotation as it depends on only the differ-
ences of the orientation field h and on the absolute value
of its gradient. It has gained its final form gradu-
ally.[10,11,33–35] It was developed to describe the growth
of anisotropic single-crystal particles of different orien-
tations in two dimensions.[10] Here the orientation free
energy is proportional to rhj j, has a phase field
dependent coefficient, and is present exclusively in the
solid phase and the solid-liquid interface, so far as
/>/crit, where /crit is small enough (e.g., 10�3; note that
in this work, the phase field varies between 0 and 1,
corresponding to the bulk liquid and solid phases,
respectively).[10] To incorporate a force that reduces
curvature, a rhj j2 term is also added.[10,11]

F ¼

Z

V

dr
e2/

2
r/j j2þfð/Þ þmð/ÞH rhj j þ hð/Þ

e2h
2

rhj j2
( )

½1�

where e/, eh, and H are positive model parameters,
whereas the function f(/) has a tilted double well form,
while m(/) and h(/) tend to 0 in the liquid. The cross-
grain-boundary profiles are shown in Figure 2. With
appropriate choices of the latter functions, a Read–
Shockley-type orientation dependence of the grain
boundary energy could be recovered.[34] The model
was extensively tested for grain boundary dynamics
(Figure 3),[11,34,35] including attempts to address the
rotation of nanograins.[34]

Why the rhj j term? Let us seek the orientational free
energy, fori, in a form that satisfies the following
requirements: (1) the free energy remains a local
functional (the free-energy density depends only on h
and its derivatives), (2) it is invariant to rotation (explicit
h dependence is excluded, whereas dependence on
orientation differences is allowed), and (3) the spatial
change of h is penalized (yielding the grain boundary
energy). Seeking fori then in the form of fori = H rhj jm

(m > 0) and requiring (4) a finite grain boundary
thickness, one finds that the exponents m > 1 are
excluded owing to the tendency that the grain boundary
region extends without limits, leaving m = 1 the only
acceptable choice. This choice, however, leaves the
interface profile of h uncertain. Making the coefficient
m phase field dependent so that it has a minimum at the
grain boundary, a mathematically sharp change of h is
obtained at the minimum of m(/), which can be
transformed to a gradual change of finite interface
thickness by adding the rhj j2 term. (For further details,
see, e.g., References 11, 28, or 29.) This choice of the
orientational free energy leads to a singular diffusivity
problem for the time evolution of the orientation field,
whose mathematical aspects are addressed in Reference
36.
The time evolution of triple- and quadrijunctions is

addressed in some detail in Reference 11. The dihedral
angle at symmetric three-grain junctions was determined
for different relative orientations, indicating that the
dihedral angle increases with the increasing orienta-
tional difference between the symmetric grains. The
behavior of quadruple junctions was also studied.[11]

Figure 3 illustrates the impingement of four particles. In
the simulation shown in panel (a), the grains have the
same orientation pairwise on the left and right. Grains
of the same orientation coalesce with each other, and a
grain boundary is formed along the vertical centerline.
In panel (b), the grains on the right have slightly
different orientations, resulting in a just perceptible
dihedral angle after impingement. In simulation (c), a
larger misorientation is prescribed between the grains on
the right, yielding a dihedral angle larger than in
simulation (b). In the case shown in panel (d), all four
particles are of different orientation. This leads to an
unstable quadrijunction where the upper left and lower
right grains form a low-energy low-angle boundary,
owing to the small orientation difference between them.

Fig. 2—Cross-grain-boundary profiles of the phase and orientation
fields in the KWC model (Reproduced with permission from Warren
et al.,[11] � 2003 Elsevier B.V.). Note the minimum of the PF follow-
ing from the PF dependence of the coefficient of the rhj j term.
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3. Gránásy–Pusztai–Börzsönyi (GPB) model
This model is a specific extension of the KWC model,

in which the EOMs are supplemented with fluctuations
and the orientation field is extended to the liquid state,
where it is made to fluctuate in time and space. A strong
coupling is realized between the phase and orientation
fields. This leads to interesting new features of the
model. (1) As soon as a solid-type fluctuation appears in
the liquid, orientational ordering starts; i.e., the crystal-
lite appears with an orientation emerging from the local
orientational fluctuations. (2) The orientation field has
its own mobility determining the time scale of orienta-
tional ordering. If the latter is slow relative to front
propagation, orientational defects (bunches of disloca-
tions, taken on the face value) may be quenched into the
crystalline phase, which can instigate the formation of
new grains at the perimeter leading to GFN.

This approach has been worked out first in two
dimensions, for binary alloys,[12] on the basis of the PF
model of Warren and Boettinger:[37]

F ¼

Z

V

dr
e2/T

2
r/j j2þ

e2cT

2
rcj j2þfð/; c;TÞ þ fori

( )

½2�

where e/ and ec are constants, T the temperature, and c
the concentration field, while we follow the convention
of having / = 0 in the liquid and / = 1 in the crystal.
The local free energy density has the form f(/, c,
T) = w(c)T g(/)+ p(/) fS(c)+ [1 � p(/)] fL(c), where
the ‘‘double well’’ and ‘‘interpolation’’ functions are of

the forms g(/) = 1/4/
2(1 � /)2 and p(/) = /3(10 �

15/+6/2), whereas the free energy scale is w(c) = (1 –
c) wA+ c wB.

[27] Functions fS,L(c,T) can be taken from
databases or from the ideal/regular solution models. In
the case of the ideal solution model, the free energy
surface has two minima, corresponding to the bulk
crystalline and liquid phases,[37] and ec = 0.[38] The
orientational free energy, fori, is assumed to have either
the simple form fori = HTp(/)|�h| taken from Refer-
ence 12 (H determines the magnitude of the grain
boundary energy) or a more complex one with cusps
from Reference 27.
The time evolution of the system is assumed to follow

relaxation dynamics described by the EOMs:

_/ ¼ �M/

dF

d/

� �

þ f/

_c ¼ r Mcr
dF

dc

� �

þ fj

� �

_h ¼ �Mh

dF

dh

� �

þ fh

½3�

whereM/,Mc, andMh are the mobilities determining the
time scale for the three fields, while f/, fj, and fh are the
noise terms added to the EOMs representing the thermal
fluctuations. Anisotropies of the form s = 1+ s0 cos[k(0
- 2ph/k)] were introduced for the square-gradient terms
and the phase field mobility,[12,13,26–30] where s0 is the
magnitude of anisotropy and k the symmetry parame-
ter (k = 4, for fourfold symmetry of s), whereas

Fig. 3—Impingement of four particles in the KWC model as a function of particle orientation: (Reproduced with permission from Warren
et al.,[11] � 2003 Elsevier B.V.) (a) crystals on the left and the right have different orientations, (b) the same but the orientation of the crystals on
the right differ slightly, (c) the same but the orientation difference is large on the right, and (d) all the particles have different orientation.
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0 = atan(/y//x), while �/ = [/x, /y]. Note that the
orientation field is normalized so that h 2 [0, 1].

On the model’s physical background: Assigning local
crystal orientation to liquid regions, even if they are
fluctuating, may seem artificial at first sight. However,
owing to geometrical and chemical constraints, a short-
range order similar to the short-range order in the solid
exists even in simple liquids. Rotating the crystalline
first-neighbor shell so that it aligns optimally with the
local liquid structure, one may assign a local orientation
to every atom in the liquid. The orientation obtained in
this way fluctuates in time and space. The agreement is
not necessarily good; the correlation of the atomic
positions shows how accurate this fit is. (The fluctuating
orientation fields and the phase field play these roles.)
Moving toward the solid from the liquid, the amplitude
of the orientational fluctuations diminishes, the correla-
tion between the local liquid structure and the crystal
structure improves, and the local orientation defined this
way homes on the orientation of the crystal. The
proposed fori recovers this behavior by prescribing a
strong coupling between the orientation and phase fields.

Remarkably, fori consists of the factor p(/). It is there
to avoid double counting the orientational contribution,
which is already incorporated into the free energy of the
bulk liquid. With the appropriate choice of model
parameters, one may obtain an ordered liquid around
the crystal (i.e., the homogeneous orientation field of the
crystal extends into the liquid), which means that one
can also exclude the orientational contribution to the
solid-liquid interface free energy, thus simplifying use of
the model.

The parameters that control the intensity of GFN in
this model are (a) the thermodynamic driving force; (b)
the ratio of the PF and orientational mobilities (Mh/M/)
that reflects the ratio of rotational and translational
diffusion coefficients, Mh/M/ � v = Drot/Dtr; and (c)
the depth of the metastable free energy cusp for
branching if fori from Reference 27 is used. Varying
any of these parameters in the latter case, the solidifi-
cation morphology can be tuned between a needle
crystal and a spherulite, as demonstrated for branching
with a 30 deg angle in Figure 4.

This model was primarily used to address polycrys-
talline growth often with a zero orientational mobility in
the solid and a nonzero value in the liquid, a choice
reflecting the expectation that grain boundary dynamics
happens on a time scale far longer than that of
solidification. Assuming, however, nonzero orienta-
tional mobility in the solid, this model displays multi-
grain dynamics comparable to the KWC model.

Summarizing, with noise representing the thermal
fluctuations and an appropriate boundary condition
that determines the contact angle on foreign particles,[39]

this model incorporates all the ingredients required for
addressing complex polycrystalline morphologies: (1)
diffusional instabilities, (2) nucleation of growth centers
(homogeneous[12] and heterogeneous[39,40]), and (3)
GFN (heterogeneous induced by foreign particles[41]

and by random[26] or fixed misorientation[27] branching).
A very broad range of complex polycrystalline mor-
phologies was successfully described by this model (for

reviews, see References 28, 29, and 42). A similar OFPF
model was used to address crystallization kinetics.[43] A
single-component version with thermal transport was
applied for polymer crystallization.[44]

Extension to eutectic systems: In the binary case, two
solid phases crystallize simultaneously from the liquid.
The model defined by Eq. [2] is satisfactory only if the
two solids have the same crystal structure, limiting the
validity of the model to a very few systems (for which
the free energy of the solid has a double well form as a
function of c). To realize the experimental observation
that a well-defined orientational relationship exists
between the solid phases, a specific orientation free
energy term was adopted. It penalizes zero misorienta-
tion at the solid-solid phase boundary and prefers a
well-defined orientational difference (Figure 5).[45]

A four-field extension using solid-liquid and solid-solid
phase fields (besides concentration and orientation fields)
was developed to avoid the structural limitation.[29]

It is worth noting that for describing a single equiaxed
eutectic grain, in which the orientation relationship of
the two crystalline phases is rigorously fixed, one does
not need an orientation field. As a result, a single
anisotropy function can be satisfactory for handling
anisotropic eutectic solidification so far as one domain is
concerned.

4. Henry–Mellenthin–Plapp model
The Henry–Mellenthin–Plapp model was developed

for single-component solidification coupled to a tem-
perature field.[46,47] An adaptation of this approach to
a binary system can be obtained by replacing the

Fig. 4—Effect of parameters governing GFN in the PF theory in the
case of branching with fixed (30 deg) angle. Orientation maps are
shown. The liquid phase characterized by fluctuating orientation is
painted black to make it easier to distinguish crystal from fluid. Dif-
ferent colors stand for different crystallographic orientations: the se-
quence gray, blue, violet, red, and orange corresponds to 30 deg
multiples of increasing misorientation relative to yellow, which is the
orientation of the seed crystal. Upper row: Supersaturation increases
from left to right (S = 0.75, 0.9, 0.95, and 1). S = (c0 � cS)/(cL �
cS), where c0, cS, and cL are solidus and liquidus compositions,
respectively. Central row: Ratio of the orientational and PF mobili-
ties decreases from left to right (Mh/M/ = 0.5, 0.1, 0.05, and 0.025).
Bottom row: Depth of the metastable cusp in fori

[27] increases from
left to right (x = 0.1, 0.15, 0.2, and 0.25).
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orientation free energy in Eq. [2] by a term fori = q(/)
H0|�h|

2, where q(/) = (7/ 3 � 6/ 4)/(1 � /)2. Despite
the singular coefficient q(/), a grain boundary structure
similar to the one obtained in the case of the KWC
model is predicted (Figure 6).[46] With an orientation
mobility of the form Mh = Mh,0/q(/), grain boundary
dynamics similar to that in the KWC model was
observed as exemplified by the evolution of four
differently oriented grains yielding an unstable quadri-
junction, as shown in Figure 7.

Herein, we extend the orientation field to the liquid
phase the same way as done in the case of the GPB
model. To ensure satisfactory ordering of the fluctuating
orientation field at the solid-liquid interface, we employ
a different mobility coefficient, Mh = Mh,0 [1 � p(/)](1
� /)2.

B. Generalizations to Three Dimensions

Two essentially equivalent extensions were put for-
ward at the same time.[14,15]

1. Pusztai–Bortel–Gránásy (PBG) model
In three dimensions, the relative orientation with

respect to the laboratory system can be uniquely defined
by a single rotation of angle g around a specific axis and
can be expressed in terms of the three Euler angles.[15]

Unfortunately, this representation has disadvantages: It
has divergences at 0 = 0 and p, and one has to use
trigonometric functions, which are time consuming in

numerical calculations. A possible way to avoid these
difficulties is to use four symmetric Euler parameters,
q0 = cos(g/2), q1 = c1 sin(g/2), q2 = c2 sin(g/2), and
q3 = c3 sin(g/2). (Here the ci terms are the components
of the unit vector c defining the rotation axis.) These
four parameters, q = (q0, q1, q2, q3), often termed
quaternions, satisfy the relationship

P

i qi
2 = 1. Accord-

ingly, they can be viewed as a point on the
four-dimensional (4D) unit sphere.[48] (

P

i stands for
summation with respect to i = 0, 1, 2, and 3.)
The angular difference d between two orientations

represented by quaternions q1 and q2 reads as
cos(d) = ½ [Tr(R) � 1], where the matrix of rotation

Fig. 5—Snapshots of concentration (upper row) and orientation (lower row) fields for equiaxed solidification in the eutectic Ag-Cu alloy. Time
increase from left to right. (Yellow-Ag, blue-Cu; note the correlation between the orientations of the two solid phases.)

Fig. 6—Cross-grain-boundary profiles of the phase (solid line) and
orientation (dashed line) fields in the Henry–Mellenthin–Plapp model
(Reproduced with permission from Henry et al.,[46] � 2012 American
Physical Society). Note the similarity to the profiles from the KWC
model.
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R is related to the individual rotation matrices R(q1) and
R(q2), which rotate the reference system into the
corresponding local orientations, as R = R(q1)ÆR(q2)

�1.
After lengthy but straightforward algebraic manipula-
tions, the angular difference can be obtained in terms of
the differences of the respective quaternion coordinates:
cos(d) = 1 � 2D2+D4/2, where D2 = (q2 � q1)

2 =
P

i

Dqi
2 is the square of the Euclidian distance between

points q1 and q2 on the 4D unit sphere. When compared
with the Taylor expansion of cos(d), one finds that 2D is
an excellent approximation of d. Using this approxima-
tion, the orientational difference of the two grains can be
approximated as d � 2D.

To penalize spatial changes in crystal orientation in
three dimensions, we have proposed the following
orientational contribution to the free energy:

fori ¼ 2HT ½1� pð/Þ�
X

i
rqið Þ2

n o1=2
½4�

This form recovers the 2D model, provided that the
orientational transition across the grain boundary has a
common rotation axis as in two dimensions. As in the
GPB model, the orientation fields, q(r), were extended to
the liquid, where they were made to fluctuate in time and

space. The quaternion properties (
P

iqi
2 = 1) were taken

into account during the derivation of the EOMs for the
four orientational fields qi(r) via the method of Lagrange
multipliers. Using the relationship

P

i qi (¶qi/¶t) = 0
that follows from the quaternion properties, and
expressing the Lagrange multiplier in terms of qi and
�qi, the EOMs for the orientation (quaternion) fields
were obtained in the following form:[15]

@qi
@t

¼Mq

r HTpð/Þ
rqi

P

lðrqlÞ
2

h i1=2

0

B

@

1

C

A

�qi
X

k
qkr HTpð/Þ

rqk
P

lðrqlÞ
2

h i1=2
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=
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>

;

þfi

½5�

Here Mq is the common mobility coefficient for the
symmetric quaternion fields, while Gaussian white noise
terms of amplitude fi = fS,i+(fL,i � fS,i) [1 � p(/)]
were added to the orientation fields so that the quater-
nion properties of the qi fields are retained. (fL,i and fS,i
are the noise amplitudes in the liquid and solid phases.)
This formulation of the problem is valid only for the

triclinic structure with no rotational symmetry (space
group P1). For other structures, the crystal symmetries
yield equivalent orientations that do not form grain
boundaries. This effect of the symmetries can be taken
into account when discretizing the differential operators
in the EOMs for the quaternion fields: Computing the
angular difference between a central cell and its neigh-
bors, all equivalent orientations of the neighbors are
considered; the respective angular differences d are
calculated (using matrices of rotation R¢ = RÆSÆR�1,
where S is a symmetry operator), of which the smallest d
value has to be used in calculating the differential
operator.
Anisotropy functions of the from s3D = 1 � 3e3D+

4e3D(/x
4+/y

4+/z
4)/Œ�/Œ4 were used to incorporate

cubic anisotropy for the solid-liquid interface free
energy[49] and for the PF mobility.[15,30] Here e3D is the
strength of the anisotropy. Other anisotropy functions
can be taken from atomistic simulations.[50,51]

This approach was used to address a broad range of
polycrystalline solidification morphologies in three
dimensions, including multidendritic solidification,[15,30]

disordered dendrites,[30] spherulites,[15,30] and shish-ke-
bab structure,[40] and was adopted for modeling grain
boundary dynamics.[52] It also served as a basis for
developing the quantitative OFPF model for solidifica-
tion.[53]

2. Kobayashi–Warren (KW) model
A different formulation (mathematically analogous to

the PBG model apart from the square-gradient term)
was put forward essentially at the same time as the
previous one.[14,54] Replacing rhj j by rPj j in Eq. [1],
one obtains

Fig. 7—Impingement of four differently oriented particles (h = 0,
0.25, 0.5, and 0.75) in the binary Henry–Mellenthin–Plapp model
supplemented with fluctuating orientation field. Time elapses from
left to right and from top to bottom. Upper six panels: orientation
field. Different colors denote different orientations. Lower six panels:
PF map. Anisotropy of sixfold symmetry leading to faceting was
used for the interface free energy.
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fori ¼ mð/ÞH rPj j þ hð/Þ
e2P
2

rPj j2 ½6�

where P is a rotational matrix, member of SO(3) (special
orthogonal group in three dimensions). It is a 3 9 3
orthogonal matrix (PTP = I, where I is the identity
matrix) and has a positive determinant det P = 1.
Relying on the projective formulation, nine EOMs are
defined so that the solution is kept within SO(3) by
taking a projection of driving force onto the tangential
plane of SO(3). The EOMs have the form
sP@P=@t ¼ pP �dF=dPð Þ, where pP is the projection
operator, a formulation of high numerical efficiency.
This formalism was used to address grain boundary
motion in References 14 and 54 (Figure 8).

C. Quantitative OFPF Modeling

While these OPFP models can be regarded as quan-
titative with a physical interface thickness (about 1 nm),
large scale 3D simulations (a few cubic microns) are
essentially impossible with this resolution.* A possible

remedy is to use a broader interface. However, doing so
leads to artifacts (enhanced solute trapping, etc.[55]) that

need to be corrected (via introducing appropriate
antitrapping currents and specific choices of the inter-
polation functions)[55,56] to restore the proper growth
kinetics. The methodology for performing quantitative
PF computations was developed in depth.[55,56]

Since such methodology is based on a broad solid-
liquid interface, the magnitude of the OFPF model
parameters (H, Mh, and the amplitude of the orienta-
tional noise) needs to be reconsidered. We have to
choose them so that (1) we keep the free energy of the
solid-solid interfaces realistic and (2) we retain the
validity of quantitative methodology in the presence of
the orientation field. While the first condition requires
the choice of H so that the large-angle grain boundaries
have a free energy of about 2cSL, the second requires
that the mobility Mh is so large and the noise amplitude
so small that an orientationally ordered layer covers the
solid-liquid interface. Under such conditions, orienta-
tional ordering is so fast that it avoids influencing
growth dynamics, and the orientational contribution to
the free energy of the solid-liquid interface is negligible.
Unfortunately, under such conditions, nucleation by

noise cannot be quantitative (the computation cells used in
quantitative simulations are usually orders of magnitude
larger than the nuclei), so nucleation has to be done ‘‘by
hand.’’ (For such large cell volumes, the amplitude of the
discretized fluctuation-dissipation noise is so small that
nucleation will never happen.) Nucleation can be done
consistently with the free energy functional. In the case of
homogeneous nucleation, one may divide the simulation
box into composition ranges and obtain the nucleation
barrier for each of them by solving the Euler–Lagrange
equation with the appropriate boundary conditions
(unperturbed liquid in the far-field, zero-field gradients at
the center), computing then the nucleation rate and placing
the appropriate number of growth centers of random
orientation at random positions in every time-step, as also
done in Reference 12. Heterogeneous nucleation can be
analogously modeled by introducing particles of a given
size distribution, and examining the individual particles in
every time step whether they are activated as growth
centers according to the free growth limited model of
particle-induced solidification by Greer et al.[57]

Pusztai combined[53] Kim’s multicomponent quanti-
tative model[56] with the orientation free energy of the

Fig. 8—Simulation of grain coarsening in three dimensions using the KW model (Reproduced with permission from Kobayashi and Warren,[54] �
2005 Elsevier B.V.). The isosurfaces of rPj j are displayed. The time elapses from left to right. The structural evolution after impingement is shown.

*Quantitative PF simulations: In principle, quantitative computa-
tions are possible using the PF models, provided that the physical
interface thickness is used (~1 nm). However, this would require an
enormous computational power, especially if noise representing fluc-
tuations is also considered. Prescribing a reasonable numerical reso-
lution across the solid-liquid interface (say, 10 points), the spatial step
falls on the Angstrom scale. A cubic micron requires then a grid of
10,0003, which is accessible at present only for the largest supercom-
puters. A further problem is that in the case of finite difference
methods, the accessible time scale is restricted to nanoseconds, which
means that only extreme undercoolings/fast processes can be ad-
dressed. While advanced methods (implicit scheme, adaptive grid) may
ease these problems to some extent, they are difficult to parallelize
efficiently. Evidently, one may perform the computations with a broad
interface. However, it is accompanied with unwanted side effects such
as enhanced solute trapping, different dynamics, etc.; so computations
with broad interfaces can only be regarded as qualitative. To circum-
vent this impasse, methods were developed that use broad interfaces,
however, with corrections that restore the proper growth dynamics and
compositions.[55] These are termed as ‘‘quantitative PF models.’’
Unfortunately, in such models, nucleation cannot be realized by
adding fluctuation-dissipation noise to the EOMs.
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PBG model and used it for a quantitative analysis of the
columnar to equiaxed transition (CET) in the Al-Ti
system (in thin quasi-2D slices and in three dimen-
sions),[58] where the thermodynamic data were taken
from appropriate expressions in a CALPHAD-type
assessment[59] and particle-induced crystallization was
handled using the free-growth-limited model of Greer
et al.[57] A computer animation illustrating CET in this
system is available at Reference 60.

III. RESULTS

In this section, we show a few examples, where the
OFPF models contributed to the understanding of
polycrystalline solidification.

A. Crystallization Kinetics

The formal theory of polycrystalline solidification
incorporating nucleation and growth rates known as the
Johnson–Mehl–Avrami–Kolmogorov (JMAK) the-
ory[61] relates the time evolution of the crystalline
fraction X to the nucleation and growth rates as

X ¼ 1� exp �½ t� t0ð Þ=s�pf g ½7�

where t0 is an incubation time due to the relaxation of the
athermal fluctuation spectrum, s is a time constant related
to the nucleation and growth rates, and p = 1+ d is the
Avrami–Kolmogorov exponent, while d is the number of
dimensions. Equation [7] is exact provided that (1) the
system is infinite, (2) the nucleation rate is spatially
homogeneous, and (3) either a common time-dependent
growth rate applies or anisotropically growing convex
particles are aligned in parallel. (Equation [7] can be
deduced by, e.g., the time cone method.[62]) For constant
nucleation and growth rates in an infinite 2D system,
p = 3 applies. Values of the Avrami–Kolmogorov expo-
nent for different transformation mechanisms are com-
piled in Reference 61. This parameterization of

transformation kinetics is widely used in different
branches of sciences, including materials science, chem-
istry, geophysics, biology, cosmology, etc. Theoreti-
cal,[63,64] numerical,[64–66] and experimental[67] studies
show that for anisotropic growth (i.e., needle crystals), p
decreases with increasing transformed fractionX due to a
multilevel blocking of impingement events. Another
essential class of transformations is one in which the
crystal grains interact with each other indirectly via their
diffusion fields-a phenomenon known as soft impinge-
ment.While, to the latter case, handbooks[61] assign a d/2
contribution to the exponent from dimensionality, this
often appears to be a crude approximation and the JMAK
approach breaks down. A range of approximate treat-
ments was proposed to address problems of the latter
kind.[67–69] However, numerical simulations based on the
OFPF models that incorporate both anisotropic growth
and diffusion-controlled front propagation in a natural way
are expected to address even cases dominated by such
complex solidification morphologies as dendrites.
Interesting results from OFPF studies:

(a) 2D simulations for spherulitic structures forming
under almost perfect solute trapping conditions
(i.e., composition of the liquid and solid were very
close) yielded essentially constant nucleation and
growth rates and a perfect fit to the JMAK kinet-
ics, with p = 3.04 ± 0.02 falling very close to the
theoretical expectation (p = 3).[27]

(b) In agreement with Monte Carlo simulations in two
dimensions,[64–66] the nucleation and growth of
elongated needle crystals in three dimensions led
to an exponent p that decreases with increasing X
(Figure 9).[15]

(c) Large simulations for anisotropic growth in two
dimensions (Figure 10) have led to p � 3 for con-
tinuously nucleating dendritic structures.[12,28,29]

This finding is attributable to a self-similar growth
of squarelike equiaxed dendrites (the square is
filled by secondary and higher dendrite arms and
interdendritic liquid), yielding thus steady-state

Fig. 9—Nucleation and growth of needle crystals in three dimensions, as predicted by the PBG model (Reproduced with permission from Pusz-
tai et al.,[15] � 2005 IOP Publishing). Left: snapshot of crystallites. Different colors correspond to different orientations. Right: Avrami–Kol-
mogorov exponent as a function of normalized crystalline fraction.
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solidification without long-range diffusion (the sol-
ute expelled from the dendrites accumulates in the
interdendritic liquid), for which indeed p = 1+ d
(=3 here) applies theoretically. For a similar
growth morphology but a constant number of

seeds, the theoretically expected value p = d (�2)
was observed in OFPF simulations.[43]

However, often the Avrami–Kolmogorov exponent
deviates from these values. For example, in a 2D study
of slender dendritic needle crystals[43] without secondary
arms, p was found to decrease with increasing X,
indicating that in this case the various level of blocking
effects dominates the value of p.[43]

Another possibility is that owing to a large nucleation
rate, the steady-state growth stage is not achieved for the
majority of dendrites, a situation studied in three dimen-
sions.[30,49] Then, the particles interact via their diffusion
fields, in which case, in 3D handbooks,[61] expect p values
falling between 2.5, corresponding to steady-state nucle-
ation and fully diffusion-controlled growth (p = 1+ d/
2), and 4.0, corresponding to steady-state nucleation and
growth (p = 1+ d). Indeed such values (p = 2.99 ±

0.01[30] and p = 3.21 ± 0.01[49]) were observed in large
scale simulations for multidendritic solidification (Fig-
ure 11). The larger the nucleation rate, the closer the
interaction of the particles to the diffusion-controlled
case. Apparently, besides reducing p, soft impingement is
expected to reduce p with an extent increasing with
increasing X; an expectation supported by theory[67] and
PF simulations.[28]Further work is yet needed to separate
the effects of anisotropy and soft impingement.
Kinetics of crystallization in thin films was also

investigated using the 3D version of the OFPF model.[49]

The Avrami–Kolmogorov exponent observed, p = 2.37
± 0.01,[49] falls between p = 1+ d/2 = 2.0, corre-
sponding to steady-state nucleation and fully diffusion
controlled growth, and p = 1+ d = 3.0, correspond-
ing to steady-state nucleation and growth rates, pro-
vided that d = 2 is justifiable for thin films, an
assumption valid as long as the thickness of the film is
small relative to the size of the crystallites.

B. Columnar-to-Equiaxed Transition (CET)[70,71]

When casting alloys in a mold, the temperature
increases inward and crystallization starts by heteroge-
neous nucleation on the walls. Due to the anisotropic
growth of crystallites, grains nucleated with different
orientations compete, a phenomenon leading to the
selection of orientations, whose fast growth direction is
essentially antiparallel with the heat flow, yielding an
elongated columnar morphology.
Owing to a compositional difference between the solid

and liquid phases, the solidification front is preceded by a
diffusion field. This combined with an appropriate tem-
perature gradient may lead to a region ahead of the front,
where the melt is undercooled and foreign particles may
induce nucleation, leading now to the formation of the
equiaxed morphology that grows in the direction of heat
flow. The latter phenomenon leads to the formation of
small fairly uniform grain sizes. Depending on the circum-
stances, onemaywish to enhance or eliminateCET.[71]For
this, it is essential to understand the mechanism governing
this phenomenon. The CET is captured fairly well by the
phenomenological model of Hunt,[72] however, in terms of
parameters which are difficult to quantify.

Fig. 11—Snapshot of nucleating and growing dendrites in three
dimensions, as predicted by the PBG model (Reproduced with per-
mission from Pusztai et al.,[30] � 2008 IOP Publishing). Here, a sub-
stantial fraction of the dendrites cannot reach the fully developed
(steady-state) stage; thus, the Avrami–Kolmogorov exponent is
p = 2.99 ± 0.012 [2.5,4.0]. (A 6803 grid was used in the simulation.)

Fig. 10—Soft impingement of nucleating and growing dendrite fields
in Cu-Ni at 1574 K (1301 �C), as predicted by the GPB model
(Reproduced with permission from Gránásy et al.,[12] � 2002 Ameri-
can Physical Society). The p � 3 found is consistent with nucleation
and growth of impinging self-similar particles without long-range
diffusion. (Computation performed on a 7000 9 7000 grid, corre-
sponding to 92.1 lm 9 92.1 lm.)
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PF modeling was used to investigate the CET in two
dimensions as early as 2006, however, without an
orientation field.[73] In the quantitative model the
authors used (incorporating antitrapping current), a
few simplifications were made, such as a dilute alloy and
identical crystallographic orientation being assumed for
all the grains, in addition to placing the nucleation sites
on a crystal lattice.

In a recent OFPF study,[58] all these simplifications
were removed and quantitative computations were made
for the CET in Al-Ti alloys. For this purpose, Kim’s
model[56] and the PBG model[15,49] were combined,
allowing us to use arbitrary thermodynamics in a
quantitative model relying on the antitrapping current.
The thermodynamic properties were taken from a
CALPHAD assessment of the Al-Ti system.[59] Heter-
ogeneous nucleation of the crystalline phase was
approximated by the free-growth-limited model of
Greer et al.[57] The foreign particles were assumed to
follow a Gaussian size distribution.

As done in Reference 73, first, we have evaluated the
parameters (nucleation undercooling, undercooling at

the dendrite tip, and density equiaxed grains) of Hunt’s
model from the simulations. Varying the pulling velocity
V, and the temperature gradient G, we then performed
16 simulations: 8 above and 8 below Hunt’s curve. The
results are displayed in Figure 12 for two dimensions.
Apparently, the PF simulations are consistent with
Hunt’s model: nucleation-controlled equiaxed structure
appears for the eight runs above Hunt’s curve, whereas
columnar dendritic structure is seen for the rest. Similar
results were obtained in three dimensions (Figure 13).[74]

C. Polycrystalline Growth Forms

The OFPF models achieved their most spectacular
results when applied for describing exotic polycrystalline
growth forms, inaccessible for other methods.

1. Disordered (‘‘dizzy’’) dendrites: particles vs Mh

Experiments on clay-filled polymer films indicate that
single crystals can be perturbed to form polycrystalline
structures that are locally dendritic[19,31] via dendrite tip
deflection caused by foreign particles.[41] This phenom-

Fig. 12—Snapshot of CET, as predicted by quantitative OFPF modeling in two dimensions for an Al-Ti alloy.[58] The upper block of 16 panels
shows the concentration map, whereas the lower 16 panels display the orientation field. (Different colors correspond to different orientations.)
The individual panels show half of the full simulation box (0.75 mm 9 0.15 mm or 1500 9 300 grid). Within the 16-panel blocks, the tempera-
ture gradient G varies as [5, 10, 20, and 40] 9 104 K/m from left to right, whereas the pulling velocity increases as V = [4, 8, 16, and 32] 9
10�4 m/s from bottom to top. Foreign particles of Gaussian size distribution centered at 20 nm and standard deviation of 4 nm were assumed.
There were (on average) ~200 foreign randomly placed particles in the simulation window. A maximum 10 pct of them were activated.
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enon was captured successfully (Figure 14) via intro-
ducing into the GPB approach an economic model of
foreign particles, termed ‘‘orientation pinning centers’’
(areas of fixed orientation).[28,41]

Increasing the number of foreign particles, one can
transform a single-crystal dendrite into a densely
branched seaweedlike polycrystalline agglomerate of
small crystallites. Such morphologies are observed for
single crystals if the anisotropy is small. In our case, the
anisotropy averages out along the perimeter due to the
randomly oriented small crystallites. This particle-
induced formation of new grains can be regarded as
the heterogeneous mode of GFN.

Remarkably, a very similar effect can be seen if the
orientation mobility is reduced, while keeping the PF
mobility constant. Reducing Mh, the timescale of solid-
ification becomes too short for full orientational ordering
along the perimeter of the crystal; only local ordering is
possible, which leads to the formation ofmany differently

oriented crystallites at the solidification front (Figure 15).
This trapping of orientational defects into the crystalline
phase offers a second homogeneous mechanism for
GFN[26,28] besides the fixed angle branching enforced by
cusps in fori

[27] presented in Figure 4. While the latter is
expected to prevail at both small and large anisotropies,
trapping of orientational defects is expected only at high
undercoolings, where formany liquids the ratioMh/M/�
v = Drot/Dtr decreases by orders of magnitude.[75–78]

With these three mechanisms of GFN incorporated
into the GPB model, we have a flexible approach that
captures an amazing variety of growth morphologies
seen in laboratory and nature, including the ubiquitous
spherulites.[27]

2. Spherulites
The spherulites are partly or fully (poly) crystalline,

(more or less) densely branched growth morphologies
(Figure 16),[21,79–89] ubiquitous under highly nonequi-
librium conditions. They have an envelope roughly
spherical in three dimensions (or circular in two dimen-
sions, still retaining the name spherulite). These mor-
phologies were observed in a broad range of materials,
including pure Se;[84] oxid and metallic glasses; miner-
als;[88] polymers;[89] liquid crystals;[90,91] simple organic
liquids;[79] fats;[92] and systems of diverse biological
molecules.[93–96] Spherulitic structures were also impli-
cated in various human diseases such as Alzheimer’s,
type II diabetes, and other protein aggregation dis-
eases.[97–99]

Two main categories of the spherulitic morphologies
are usually distinguished. Category 1 spherulites grow
radially from their center, maintaining a space-filling
character via dense branching. Category 2 spherulites
are observed exclusively in systems that form needle
crystals, which branch at the two ends, forming crystal
‘‘sheaves,’’ splaying out increasingly during growth. At
longer times, the sheaves often develop ‘‘eyes’’ (untrans-
formed regions) on one or both sides of the nucleation
site. Ultimately, a roughly spherical (circular) growth
pattern evolves, with eye structures apparent in the core
region. Typical patterns observed in experimental sys-
tems[21,27,80–87] are shown in Figure 16. It was shown
that this variability of the spherulitic morphology can be
captured with only a handful of model parameters of the
GPB model relying on the fori with cusps (cf. Figures 16
and 17).[27]

It is reassuring that the patchy nature of the orien-
tation field that the GPB model predicts for spherulites
is in remarkable agreement with the available experi-
mental results[100,101] (Figure 18). Systematic compari-
son with the experiments, however, is needed to see the
limitations of the model.
Comparable similarities between experiments and

simulations can be seen in three dimensions for the
Category 2 spherulites[102] and the floral spherulites[103]

(Figure 19).

3. Fractal-like polycrystals
Fractal-like aggregates are usually modeled using

diffusion-limited aggregation.[104] However, as shown
previously, aggregates consisting of fine crystallites can

Fig. 13—Equiaxed (top) and dendritic columnar (bottom) morpholo-
gies observed above and below Hunt’s analytical curve predicted by
quantitative PF simulations in three dimensions for an Al-Ti al-
loy.[58]
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also be obtained by reducing the orientational mobility
(Figure 15) in the OFPF models, while retaining cou-
pling to the diffusive concentration field.[26] With appro-
priate choice of the model parameters, fractal-like
polycrystalline aggregates made of very fine crystallites
appear (Figure 20) that resemble closely the experimen-
tal morphologies observed, e.g., in electrodeposition.[25]

D. Eutectic Structures

The three-field version of the OFPF model for eutectic
solidification was used to address equiaxed[45] and epi-
taxial solidification[29] in eutectic systems. Besides the
solidification morphology,[29,45] the Avrami–Kolmogo-
rov exponent was evaluated for the equiaxed case (p � 3
for steady-state nucleation, in agreement with theoretical
expectations). The fourfield version (Figure 21), working
with solid-liquid, solid-solid, concentration, and orienta-
tion field,was employed tomodel competing epitaxial and
equiaxed eutectic solidification.[29] The orientation is

especially important if the solid-liquid interface free
energy or the kinetic coefficient is anisotropic. If, how-
ever, a single-crystal grain is considered, and the relative
orientation of the crystalline phase is well defined, as often
is the case, one can avoid the introduction of the
orientation field. An interesting example for the latter
case is the spiral eutectic dendrite shown below.

1. Spiral eutectic dendrites
Recent experimental work on ternary transparent alloys

indicates that owing to the pileup of the third component
resulting from its different solvability in the solid and liquid
phases, the flat eutectic interface becomes unstable, form-
ing dendritic morphology, which is covered by a spiraling
eutectic pattern ensuring the constant volume ratio of the
two solid phases.[105] It was shown recently that a simple
ternary extension of the PF model defined by Eq. [2]
(however, now without fori) and the respective EOMs
suffice to capture the essential properties of this interesting
bicrystalline solidification morphology.[106] Remarkably,

Fig. 14—Disordered dendrites formed in clay-filled polymer layers (darker panels, courtesy of Vincent Ferreiro and Jack F. Douglas) and in the
GPB model (lighter panels) supplemented with 18,000 orientation pinning centers (about the number of clay particles on similar area in the
experiment) distributed randomly (Reproduced with permission from Gránásy et al.,[28] � 2004 IOP Publishing). The simulations differ in the
initialization of the random number generator.
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besides the single spiral pattern, target and multiple spiral
patterns also appear (Figure 22), which do not seem to
influence the shapeof the eutecticdendrite.Apparently, the
thermal fluctuations choose from the possible patterns,
which display a peaked probability distribution,[106] a
behavior analogous to the stochastic mode selection
observed in helical Liesegang systems.[107]

E. Manipulating the Microstructure in Thin Films

Control of the crystallization morphology is essential
for various applications. Here, we briefly examine a few
tools that may be used for influencing the microstruc-
ture of thin films, such as temperature oscillations,
thermal gradients, spatial confinement, chemical and
geometrical patterning, mechanical imprinting, or film
scratching. We wish to demonstrate that PF modeling

may contribute to the understanding of how these
methods can be used to manipulate the microstructure.

1. Foreign particles, holes, and scratches
A straightforward idea is to use oriented/shaped

particles for controlling the solidification morphology.
For example, PF simulations imply that in the presence
of uniformly oriented crystalline particles (represented
here by orientation pinning centers of the same orien-
tation), the dendrite arms bend so that their final
crystallographic orientation coincides with that of the
pinning centers (Figure 23). Further interesting possi-
bilities are the application of orientation pinning lines
and uniformly rotating orientation pinning centers:
Parallel orientation pinning lines of alternating orienta-
tion lead to zigzagging dendrite arms and a striped
orientation map, whereas rotating pinning centers (ran-

Fig. 15—Effect of particulate additives (left two columns) and of reduced ratio v of the orientational to translational mobility (right two col-
umns) on the growth morphology (Reproduced with permission from Gránásy et al.,[26] � 2004 Nature Publishing Group). The first and third
columns show chemical composition maps (solidus-yellow; liquidus-black), whereas the second and fourth columns display orientation maps.
(Different colors stand for different crystallographic orientations.) In the left two columns, the number of orientation pinning centers varies from
top to bottom as N = 0, 50,000, 200,000 and 800,000. In the right two columns, v is multiplied by factors 1, 0.4, 0.3 and 0.1, from top to bot-
tom. An isotropic interfacial free energy and 50 pct kinetic anisotropy of fourfold symmetry were assumed.
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domly distributed or on a lattice) lead to spiraling
dendrites (Figure 24).[41]

Evidently, experimental realization of such complex
pinning conditions is a challenge. Suitable methods to
realize them might include the use of substrate-embed-
ded oriented particles, the rotation via an external
electromagnetic field, or angular momentum control by
laser pulses.[108] Early work on polymer thin films
showed that nucleation can be simply achieved by
piercing the film with a sharp glass fiber (Figure 25).

Extending this idea, it should be possible to print arrays
of nucleation sites with specified symmetry of configura-
tion by simply rolling a cylinder with an array of asperities

over the uncrystallizedpolymer film, as in printing patterns
on a pie crust. Such a grid of nucleation sites can be used to
produce an ordered array of spherulites (Figure 26). It is
expected that the orientationof the nucleationpoints could
be controlled by making the asperities in the form of flat
pins of controlled orientation. In this way, it should be
possible to create a wide range of crystallization morphol-
ogies and to tune the topography, permeability, and
mechanical properties of the crystallized polymer film.
These orientation-controlling techniques may open a new
route for tailoring solidification microstructures.
Experience shows that scratches in polymer layers

appear to be heterogeneous nucleation sites rather than

Fig. 16—Spherulitic morphologies (Reproduced with permission from Gránásy et al.,[27] � 2005 American Physical Society). (a) Densely bran-
ched spherulite grown in a blend of isotactic and atactic polypropylene.[80] (b) ‘‘Spiky spherulite’’ formed in a malonamide-d-tartatic acid mix-
ture.[81] (c) Arboresque spherulites observed in a polypropylene film.[82] (d) and (e) ‘‘Quadrites’’ formed by close-to-rectangular branching in
isotactic polypropylene.[24,83] (f) Spherulite in pure Se.[84] (g) Crystal sheaves found in pyromellitic dianhydrite-oxydianilin poly(imid) layer.[21] (h)
Category 2 spherulites (a thin film of polybutene) with ‘‘eyes’’ on the two sides of the nucleation site.[85] (i) Multisheave structure observed in di-
lute long n-alkane blend.[86] (j) Arboresque morphology formed in polyglycine.[87] To improve the contrast, false colors were applied. The linear
size of the panels is (a) 220 lm, (b) 960 lm, (c) 2.4 mm, (d) 2.5 lm, (e) 7.6 lm, (f) 550 lm, (g) 2.5 lm, (h) 20 lm, (i) 250 lm, and (j) 1.7 lm.

Fig. 17—Spherulitic morphologies by the PF theory (Reproduced with permission from Gránásy et al.,[27] � 2005 American Physical Society).
The contrast of the composition maps was changed to enhance the visibility of the fine structure. The applied anisotropies have a twofold sym-
metry in all cases; other conditions are specified in Table II of Ref. [27]. In most cases, branching with fixed angle is the dominant GFN mecha-
nism. Exceptions are (b), (g), and (i), where the trapping of orientational defects into the solid leads to the formation of new grains at the
perimeter. Note the similarity to the experimental morphologies shown in Fig. 16.
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Fig. 18—Orientation field in Category 1 spherulites in the experiment and in the PF theory: (Left) Polarized transmission optical microscopic
image of the upper half of a spherulite (Reproduced with permission from Gatos et al.,[100] � 2006 American Chemical Society). (Right) Orienta-
tion field in a PF simulation performed using the GPB model. Note the patchy nature of the orientation field in both cases.

Fig. 19—Complex growth forms in three dimensions. (i) Category 2 spherulites in three dimensions: (a) dumbbell-shape BaCO2 crystals (Repro-
duced with permission from Yu et al.,[102] � 2003 American Physical Society); (b) and (c) Qualitative PF simulations performed using the PBG
model.[30] (ii) ‘‘Floral’’ spherulites: (d) Experimental image (Reproduced with permission from Hyde et al.,[103] � 2004 Elsevier B.V.). (e) PF sim-
ulation performed using the PBG model. It was grown from an amorphous seed (the orientation in the seed, was varied voxelwise), under
parameters for which the single crystal is an extremely slender needle.
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Fig. 20—Fractal-like polycrystalline growth forms as predicted by the GPB model. The chemical composition map (left) and the orientation field
(right) are shown. In the latter, the liquid phase is colored black. Compare the morphology with that shown in Fig. 1(i).

Fig. 21—Nucleation and growth of equiaxed eutectic grains in two dimensions, as predicted by the four-field OFPF model: (a) solid-liquid PF,
(b) solid-solid PF, (c) concentration, and (d) orientation field. The respective Avrami–Kolmogorov exponent is p � 3.
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orientation pinning lines. Accordingly, they can be
represented by appropriate boundary conditions setting
the contact angle in the PF simulations.[30,39,40] Snap-
shots of a simulation performed with a contact angle of
10 deg are shown in Figure 27. Scratching suitably the
polymer film offers a way to orient the dendrites
covering a surface.

2. Temperature gradient
Experiments indicate[109,110] that distorted spherulites

appear under the influence of the temperature gradient on
nucleation and growth kinetics, resulting in a ‘‘shooting
star’’ morphology. This type ofmorphology can readily be
described by PF simulations that incorporate a tempera-
ture gradient (Figure 28). Such temperature gradients are
prevalent in the manufacture of semicrystalline polymeric
materials, offering an opportunity for property control.

3. Crystallization in confined domains
Development of boundary conditions,[30,39,40] which

realize walls of controlled properties such as contact
angle and local crystallographic properties (glassy,
single- or polycrystalline), enabled us to define various
types of heterogeneities within the PF theory, including
particles or containers of complex shape. Using these
techniques, one may investigate whether the orientation
selector (‘‘pigtail’’) employed for producing single-crys-
tal casting can be used to get rid of spherulitic
crystallization. Whereas in the case of dendritic solidi-
fication of the many crystal orientations present initially
only a single orientation survives in the meandering
channel, leading to single-crystal freezing in the cast
volume (Figure 29(a)),[28] due to GFN (an inherent
interfacial property of this growth mode), polycrystal-
line growth propagates through the orientation selector,

Fig. 22—Eutectic patterns predicted for the two-phase bi- or multicrystalline dendritic structures by the ternary PF model.
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initiating spherulitic growth inside the cast volume
(Figure 29(b)).[111] Indeed, the latter prediction was
confirmed by recent experiments on organic thin
films[112] (Figure 29(c), (d)).

The same boundary conditions can be used to define
tubes for modeling the formation of polymeric shish-
kebab structures[113] on carbon nanotubes (Fig-
ure 30).[40]

4. Time-dependent external field
There is a great deal of interest in how temporal

variations in processing conditions (temperature, pres-
sure, etc.) influence the crystallization morphology and
the ultimate properties of the resulting materi-
als.[79,80,114–116] For example, PF simulations for den-
dritic solidification under oscillating pressure or
temperature predict that the frequency of side branching
of the dendrite can be tuned by the frequency of the
external forcing,[115,116] a phenomenon confirmed by
experiments on liquid crystals.[115,116] Periodic laser
pulses were also used to control solidification morphol-
ogy and grain boundary dynamics in polycrystalline
matter.[117–120]

The oscillating temperature was used for controlling
the crystallization morphology in polymer films, which
was made to alternate between a fractal-like seaweed
front and a smooth front. Here, seaweed morphology
forms due to a diffusional-instability-driven fingering at
the higher temperature, whereas diffusionless growth
with a smooth interface takes place at the lower limiting
temperature. The latter morphology is made possible by
a reduction of growth anisotropy of crystal growth due
to kinetic roughening occurring at large undercooling,
which leads to interface broadening. Switching between
these two growth modes, via oscillating the temperature,
leads to a concentric ring structure both in experiment
and in PF simulations, when starting from a crystalline
seed (Figure 31).

IV. SUMMARY AND CLOSING REMARKS

We reviewed the advances made in the orientation-
field-based PF models during the past decade. These
models have contributed to the understanding of phe-
nomena governing the formation of complex polycrys-
talline structures including multidendritic patterns,
CET, dendrites disordered by foreign particles, spheru-
lites, fractal-like aggregates, and spiraling eutectic den-
drites. They seem to be useful in gaining understanding
of how one may govern microstructure via perturbing
solidification.
Unsolved problems and future challenges: While one of

the advantages of the OFPF models relative to the MPF
models is that a more complete picture of grain
boundary dynamics is provided, including the possibility
for grain rotation seen in experiments,[121–124] recent
studies[46,125] point out that the simple relaxation equa-
tion for the orientation field used by the OFPF models is
not entirely consistent with the coherent crystalline
structure of matter: unlike liquid crystals (for which
relaxation dynamics would be more appropriate), a
crystal is not free to change its local orientation to lower
the free energy. The assumed relaxation dynamics of the
orientation field sometimes lead to predictions that are
qualitatively wrong. For example, in the case of a
circular grain embedded into an infinite crystal, the
OFPF models predict homogeneous grain rotation that
reduces the orientational differences. In contrast, atom-
istic studies show that the inner crystal performs a rigid
body rotation away from the orientation of the outer
crystal, due to geometrical constraints on the disloca-
tions.[126] Although the committed errors are probably
small for large-scale grain structures, this needs to be
confirmed in each case. It is appropriate to note,
however, that these problems refer to the predicted
long-term grain boundary dynamics, whereas in the
majority of the OFPF studies addressing polycrystalline

Fig. 23—Interaction between dendrites and uniformly oriented orientation pinning centers placed on a square lattice. (Predictions by the GPB
model.) The initial crystal seed had fast growth directions vertically and horizontally (orientation colored red), whereas the orientation pinning
centers had a uniform orientation that has the fast growth direction rotated left by 30 deg (colored blue, on the left) or to the right with the
same amount (colored yellow, on the right). Note the twisting of the dendrite arms toward the orientation forced by the pinning centers.
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solidification, a vanishing orientational mobility was
used inside the solid, so the respective results are not
affected. Indeed, ‘‘in the interfacial region where the
structure of the solid in not yet fully established, the
concept of rotational mobility is valid.’’[125]

A further weak point of PF/OFPF simulations is
crystal nucleation, a phenomenon that appears to be
more complex than anticipated previously (for example,
a two-step precursor-mediated process seems fairly
general[127–131]).

Most of the OFPF simulations reviewed here are
qualitative. Exceptions are, as mentioned previously, the
OFPF simulations describing CET in Al-Ti alloys (poly-
crystalline structures of Class I).[58] Further work is
needed to extend quantitative PF modeling to polycrys-
tals of Classes II and III. Besides the difficulties already
mentioned in Section II–C, it is usually a considerable

challenge to extend quantitative predictions to new
classes of materials. While on the modeling side appro-
priate theoretical tools are available, and the ever-
increasing computational power is an enormous help,
sufficiently detailed information on the material proper-
ties needed as input for the PF models is available only
for relatively few classes of materials (e.g., metallic
alloys). What one needs is thermodynamic data for all
the phases, diffusion coefficients, and interface free
energies (solid-liquid and solid-solid), with their respec-
tive anisotropies. While in many cases databases provide
the required thermodynamic and diffusion data (Thermo-
Calc,[132] ChemSage,[133] FactSage,[134] DICTRA,[135]

etc.), little is known usually of the interfacial properties,
including the magnitude and anisotropy of the interface-
free energies and the kinetic coefficient. Information on
the latter properties comes dominantly from atomistic

Fig. 24—Effect of orientation pinning lines (top panels) and uniformly rotating orientation pinning centers (bottom panels) on dendritic crystalli-
zation, as predicted by the GPB model (Reproduced with permission from Gránásy et al.,[41] � 2003 Nature Publishing Group). Panels on the
left show the concentration distribution, whereas on the right the orientation map is displayed.
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Fig. 25—Dendritic crystallization can easily be initiated in the polymer film in a controlled way by poking the polymer films with a glass fiber.
Upper row: experiment (courtesy of Matthew L. Ferguson, who obtained the images as part of his graduate research work with Professor Wolf-
gang Losert, University of Maryland); central row: PF simulation, composition map; and bottom row: PF simulation, orientation map. Note
that the dendrites instigated by the holes usually contain more than one orientation (normally three to five).

1714—VOLUME 45A, APRIL 2014 METALLURGICAL AND MATERIALS TRANSACTIONS A



simulations that are as good as the empirical
model potential applied and are often in contradiction
with the best experimental data. As a result, the extension
of quantitative simulations for further classes of materi-
als requires a concerted effort of groups of scientists.
Large international projects may provide the required
logistics.

Further efforts are needed to incorporate elasticity
and fluid flow in a way consistent with the orientation
field, yet allowing the rigid body motion of individual
dendrites.
It remains to be seen how much the combination of

advanced numerical methods (adaptive grid+ implicit
schemes) can improve the efficiency of OFPF codes.

Fig. 26—Spherulitic solidification on patterned substrate. Left and middle: PF simulation of spherulites arranged into a 5 9 5 square-grid array.
Part of the chemical composition and orientation maps rotated by 45 deg to match the experiment. Right: the experimental image shows a small
3 9 3 array or early stage PEO spherulites formed by indenting and then crystallizing a polymer film (courtesy of Brian C. Okerberg).

Fig. 27—Dendritic growth originating from a scratch in a polymer film of the PS/PVME polymer mater discussed (left panel, courtesy of Vin-
cent Ferreiro). A PF simulation with serrated scratch edges (characterized by 10 deg contact angle) is shown in the central and right panels (dis-
playing the composition and orientation maps, respectively). Note that the symmetry breaking effect of film scratching induces the dendrite to
orient nearly perpendicularly to the scratch.

Fig. 28—Spherulites grown in the temperature gradient in the experiment (left (Reproduced with permission from Pawlak et al.,[109] � 2001
Springer Publishing)) and in the PF theory (right). Note the ‘‘shooting star’’ morphology, characteristic to this scenario.
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Adaptation of such methods for the OFPF models is
often not immediately straightforward, especially when
the thermal fluctuations are considered: coarse graining
of the orientation field raises specific issues associated
with the averaging of angles.

Finally, we note that the present OFPF approaches
contain heuristic elements. Recent developments in

the area of atomistic continuum approaches (e.g., the
Phase-Field Crystal model (for a review, see Refer-
ence 136) or PF models based on the cluster
variation method[137]) offer new possibilities to
deduce physically motivated models for polycrystal-
line solidification and a remedy for some of the
problems mentioned here.

Fig. 29—Crystallization in rectangular channels: PF simulations (a) for dendritic[28] and (b) spherulitic[111] solidification in a 2D orientation selec-
tor (pigtail). The orientation field is shown (different colors correspond to different orientations, white-mold). In the case of dendritic solidifica-
tion, crystallization starts on the left with several crystallographic orientations, but only a single crystallographic orientation survives the
meandering channel. This, however, does not stand for the spherulites, where GFN cannot be disabled by the orientation selector. (c), (d) spher-
ulitic crystallization of organic thin film in a rectangular channel (Reproduced with permission from Lee et al.,[112] � 2012 John Wiley & Sons).
The polycrystalline nature of spherulitic growth is retained throughout the growth in the channel as predicted by the PF simulation shown in pa-
nel (b).
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G. Tegze, and L. Gránásy: Adv. Phys., 2012, vol. 61, pp. 665–743.
137. For a review, see T. Mohri: in Alloy Physics: A Comprehensive

Reference, W. Pfeiler, ed., Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2007, pp. 525–88.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 45A, APRIL 2014—1719

http://www.thermocalc.com
http://gtt.mch.rwth-aachen.de/gtt-web/chemsage
http://www.factsage.com//
http://www.thermocalc.com/DICTRA.htm/

	Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites---A Review
	Abstract
	Introduction
	OFPF Models
	Approaches in Two Dimensions
	Field theory with discrete orientations
	Kobayashi--Warren--Carter (KWC) model
	Gránásy--Pusztai--Börzsönyi (GPB) model
	Henry--Mellenthin--Plapp model

	Generalizations to Three Dimensions
	Pusztai--Bortel--Gránásy (PBG) model
	Kobayashi--Warren (KW) model

	Quantitative OFPF Modeling

	Results
	Crystallization Kinetics
	Columnar-to-Equiaxed Transition (CET)[70,71]
	Polycrystalline Growth Forms
	Disordered (‘‘dizzy’’) dendrites: particles vs M theta 
	Spherulites
	Fractal-like polycrystals

	Eutectic Structures
	Spiral eutectic dendrites

	Manipulating the Microstructure in Thin Films
	Foreign particles, holes, and scratches
	Temperature gradient
	Crystallization in confined domains
	Time-dependent external field


	Summary and Closing Remarks
	Acknowledgments
	References


