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Noname manusript No.(will be inserted by the editor)
Phase-�eld models for brittle and ohesive fratureJulien Vignollet · Stefan May · René de Borst · Clemens V. Verhoosel
Reeived: date / Aepted: dateAbstrat In this paper we �rst reapitulate some ba-si notions of brittle and ohesive frature models, aswell as the phase-�eld approximation to frature. Next,a ritial assessment is made of the sensitivity of thephase-�eld approah to brittle frature, in partiularthe degradation funtion, and the use of monolithi vspartitioned solution shemes. The last part of the pa-per makes extensions to a reently developed phase-�eld model for ohesive frature, in partiular for prop-agating raks. Using some simple examples the urrentstate of the ohesive phase-�eld model is shown.Keywords Phase-�eld models · brittle frature ·ohesive frature · damage1 IntrodutionThe modelling of disontinuities, inluding interfaes, isof a growing importane in the mehanis of materials.Basially, two methods exist to apture disontinuities:one an either distribute them over a �nite width, orhandle them as true disontinuities, i.e. in a disretesense.Julien VignolletShool of Engineering, University of GlasgowE-mail: Julien.Vignollet�glasgow.a.ukStefan MayShool of Engineering, University of GlasgowE-mail: S.May.2�researh.gla.a.ukRené de BorstShool of Engineering, University of GlasgowE-mail: Rene.DeBorst�glasgow.a.ukClemens V. VerhooselDepartment of Mehanial EngineeringEindhoven University of TehnologyE-mail: C.V.Verhoosel�tue.nl

When a disontinuity has a stationary harater,suh as in grain boundaries, it is fairly straightforwardto desribe it in a disrete manner, sine it is then pos-sible to reate a onforming mesh suh that the dis-ontinuity, either in displaements or in displaementgradients, is modelled expliitly. An evolving or movingdisontinuity is more di�ult to apture. A possibilityis to adapt the mesh upon every hange in the topology,as was done by Ingra�ea and o-workers in the ontextof linear elasti frature mehanis [16℄, and later forohesive frature [9℄.Another approah is to model frature within theframework of ontinuum mehanis. A fundamentalproblem then emerges, namely that standard ontin-uum models do not furnish a non-zero length salewhih is indispensable for desribing frature. To rem-edy this de�ieny, regularisation methods have beenproposed, inluding nonloal averaging, the addition ofvisosity or rate dependeny, or the inlusion of ou-ple stresses or higher-order strain gradients [5℄. Thee�et of these strategies is that the disontinuity istransformed into a ontinuous displaement distribu-tion. The internal length sale is set by the onstitutivemodel, and for a su�iently �ne disretisation, the nu-merially alulated results are objetive with respetto mesh re�nement. Partiularly in damage mehanis,gradient approahes have gained popularity [20℄.Not unrelated to gradient damage approahes arethe phase-�eld models for frature. However, the pointof departure is ompletely di�erent. In gradient damagemodels an intrinsially mehanial approah is adopted,and the damage model is regularised by adding gradi-ents to restore well-posedness of the boundary valueproblem in the post-peak regime. The basi idea inphase-�eld models, on the other hand, is to replae thezero-width disontinuity by a small, but �nite zone with



2 Julien Vignollet et al.sharp gradients in a mathematially onsistent man-ner. Indeed, the latter requirement inevitably leads tospatial derivatives in the energy funtional, similar togradient damage models. The �rst attempts to applyphase-�eld models for frature have foused on brit-tle frature. Pioneering work has been done in Refer-enes [6,7,12℄, where a phase-�eld approximation wasproposed for the variational approah to brittle fra-ture. Subsequently, a phase-�eld formulation for brittlefrature was derived based on thermodynamial onsid-erations [18,19℄. Appliations to dynami brittle fra-ture an be found in Referenes [4,8,15℄.An extension of the variational formulation for brit-tle frature to ohesive frature has been onsideredin [7℄, and a phase-�eld approximation has been devel-oped in [22℄, with a fous on the appliation to adhesivefrature, i.e. debonding along a prede�ned interfae. Aspointed out in Referene [22℄ models for brittle and o-hesive frature rely on very di�erent onepts, and thedevelopment of a ohesive phase-�eld model is a non-trivial task.In this ontribution we will �rst review some ba-si onepts in brittle and ohesive frature, and inphase-�eld modelling. Next, we will assess the perfor-mane of reently proposed brittle phase-�eld modelsat the hand of an established example and an elemen-tary one-dimensional bar, where we investigate a num-ber of fators that an ritially a�et the performaneof phase-�eld models in brittle frature. A ontribu-tion on how to apply phase-�eld models to propagatingohesive raks follows in Setion 4, aompanied byrevisiting the one-dimensional example analysed beforeusing a brittle phase-�eld model, and a two-dimensionalexample also analysed in [22℄.2 Frature and phase-�eld models2.1 Brittle and ohesive fratureWe onsider a volume Ω with an internal disontinuityboundary Γd as shown in Figure 1. As a starting pointwe onsider the potential energy for the ase of a dis-rete desription of brittle frature in the Gri�th sense[12℄:
Ψpot =

∫

Ω

ψe(ε) dV +

∫

Γd

Gc dA (1)with the elasti energy density ψe a funtion of the in-�nitesimal strain tensor ε. The elasti energy density isexpressed by Hooke's law for an isotropi linear elastimaterial as ψe(ε) = 1
2
λεiiεjj +µεijεij with λ and µ theLamé onstants, and the summation onvention applies.In Equation (1) the frature energy, i.e. the amount of
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Fig. 1: Cohesive surfaes at an internal disontinuity Γdenergy dissipated upon the reation of a unit of fra-ture surfae is denoted by Gc. The potential energy Ψpotgoverns the balane between elasti energy in the bulkmaterial and the frature energy.Most engineering materials are not perfetly brittlein the Gri�th sense, but display some dutility afterreahing the strength limit. In most ases, there existsa zone ahead of the rak tip, in whih small-sale yield-ing, miro-raking and void initiation, growth and o-alesene take plae. If this frature proess zone is suf-�iently small ompared to the strutural dimensions,brittle frature models an be used, but otherwise theohesive fores that exist in this frature proess zonemust be taken into aount. The most powerful andnatural way is to use ohesive surfae models, whihwere introdued in [2,11℄.An essential di�erene between brittle and ohesivefrature models is the dependene of the frature energyon the rak opening. The frature energy is releasedonly gradually, and energy dissipation is governed by afrature energy funtion:
G = G([[u]], κ), (2)whih depends on the jump of the displaement �eld [[u]]aross the disontinuity Γd and on a history parame-ter κ, whih obeys the Kuhn-Tuker loading/unloadingonditions. The potential energy now takes the form:
Ψpot =

∫

Ω

ψe(ε)dV +

∫

Γd

G([[u]], κ)dA (3)and the ohesive trations td are obtained through dif-ferentiation of the frature energy funtion with respetto the rak opening:
td =

∂G

∂[[u]]
→ td = td([[u]], κ). (4)



Phase-�eld models for brittle and ohesive frature 32.2 Phase �eld approximationsAs the starting point of the derivation of the phase �eldapproximation to frature, we use the Dira funtion δto relate the in�nitesimal surfae area dA at xc ∈ Γd tothe in�nitesimal volume dV of the surrounding body:
dA(xc) =

∫ ∞

−∞

δ (xn) dV, (5)where xn is a oordinate in the diretion normal tothe rak, Figure 1. Equation (5) allows for smeareddesriptions of the frature surfae by an approximationof the Dira funtion. As in Referene [4℄ we onsiderthe approximated Dira funtion
δℓ(xn) =

1

2ℓ
exp

(

−
|xn|

ℓ

) (6)with ℓ > 0 a length sale parameter. Evidently
∫ ∞

−∞

δℓ(xn)dxn = 1 (7)for arbitrary ℓ. The orresponding in�nitesimal fraturesurfae area then follows from
dAℓ(xc) =

∫ ∞

−∞

δℓ (xn) dV. (8)A fundamental problem with the smeared Dirafuntion approximation, Equation (6), is that it is notstraightforward to generalise it to more dimensions.Therefore, rather than using this approximate funtiondiretly, it is obtained impliitly through the solutionof the boundary value problem










d− 4ℓ2 d2d
dx2

n
= 0 xn ∈ R\0

d = 1 xn = 0

d = 0 xn = ±∞

(9)with d(xn) ∈ [0, 1] a salar �eld, whih equals 1 at theentre of the disontinuity, i.e. for xn = 0, and van-ishes for xn = ±∞. When d(0) = 1 is not imposed,solution of the di�erential equation (9) is equivalent tominimising
I(d) =

1

4

∫

Ω

(

d2 + 4ℓ2
dd

dxn

)

dV. (10)Sine dV = Γdxn, we have
I(e−|xn|/ℓ) = ℓΓ (11)where the rak surfae an be expressed through thefollowing volume integral:
Γ =

∫

Ω

γℓdV (12)with the rak density
γℓ =

(

1

4ℓ
d2 + ℓ||∇d||2

)

, (13)whih is the multi-dimensional generalisation of δℓ(xn).

3 Brittle frature3.1 DerivationWe will now brie�y review phase-�eld models developedfor brittle frature. These models originate from thework of Franfort, Bourdin and Marigo [6,7,12℄, andhave been revisited and improved reently in [1,17,18℄.There is a two-way oupling between the regularisedrak topology introdued in Setion 2 and the mehan-ial �eld. In a �rst step, the a priori unknown raksurfae is approximated by the rak density funtion
γℓ, f. Equations (12) - (13). This allows us to expressthe work required to reate a unit rak area as a vol-ume integral whih depends on the phase �eld variable
d and the frature energy Gc:
∫

Γd

GcdA =

∫

Ω

Gcγℓ(d,∇d) dV. (14)The other step is inspired by onepts developed indamage mehanis and relies on the assumption thatthe evolution of the phase �eld is diretly related torak growth. As suh it an be used to model the lossof sti�ness of the bulk of the solid. This is ahieved bythe introdution of a degradation funtion g = g(d),whih must satisfy the following properties:










g : [0, 1] → [0, 1]

g′(d) < 0 d ∈ [0, 1[

g′(1) = 0

(15)These properties are mathematially and physiallymotivated, and are required to ensure damage propaga-tion and to provide an upper bound to the phase �eld
d variable of 1 [18℄. But the atual hoie of this fun-tion has no physial relevane. A quadrati polynomialis the most widely used one:
g(d) = (1− d)2. (16)More reently, Borden [3℄ introdued a ubi degrada-tion funtion:
gs(d) = s((1−d)3−(1−d)2)+3(1−d)2−2(1−d)3. (17)As will be disussed in Setion 3.3, the main advan-tage over the quadrati funtion is that it prevents theemergene of spurious damage away from the rak tip.It also better mimis a linear elasti-brittle behaviour.This is due to the fat that lims→0 g

′
s(0) = 0, whihprevents damage initiation from the initial inrease inthe phase �eld. However, Γ -onvergene has so far onlybeen proved for the quadrati degradation funtion [10℄.In [6℄ the degradation funtion g was multiplied withthe elasti energy density of the undamaged state, ψ0,



4 Julien Vignollet et al.suh that the elasti energy density of the damagedstate reads:
ψe(ε, d) = g(d)ψ0(ε). (18)This formulation was subsequently re�ned to aountfor the fat that damage evolution ours under dif-ferent straining modes [1,4,13,17℄, and it was assumedthat the elasti energy of the undamaged state an beadditively deomposed into a damaged and an intatpart, ψ0 = ψd

0 + ψi
0, so that the degradation funtion gonly ats on the damaged part:

ψe(ε, d) = g(d)ψd
0 (ε) + ψi

0(ε). (19)This split an result from the deomposition of thestrain tensor into positive and negative strain ompo-nents, or from that into spherial and deviatori strainomponents. Substituting Equations (14) and (19) intoEquation (1) yields the smeared form of the total po-tential energy for brittle frature:
Ψ =

∫

Ω

g(d)ψd
0 (ε) + ψi

0(ε) + Gcγl(d,∇d) dV. (20)Minimisation of Ψ and introdution of the history�eld H to enfore irreversibility [18℄ lead to the strongform:divσ(ε, d) = 0 x ∈ Ω (21a)
σn = t̄ x ∈ Γt (21b)
u = ū x ∈ Γu (21)
Gc

( d

2ℓ2
− 2∆d

)

=
∂g

∂d
H x ∈ Ω (21d)

∇d · n = 0 x ∈ Γ (21e)where t̄ and ū are the presribed boundary trationsand displaements, respetively, with Γt ∪ Γu = Γ and
Γt ∩ Γu = ∅. The Cauhy stress σ and history �eld Hread:
σ(ε, d) = g(d)

∂ψd
0

∂ε
+
∂ψi

0

∂ε
(22)

H(t) = max
t
ψd
0 (t). (23)The weak form of Equation (21) an be derived in astandard fashion. The �nite element approximation ofthe domain problem involves the following approxima-tions of the �eld variables and their derivatives:

{

u(x) = Nu(x)u
e

d(x) = Nd(x)d
e







ε(x) = Bu(x)u
e

∂d(x)

∂x
= Bd(x)d

e
(24)In order to apture possible snapbak behaviour,the �nite element formulation was augmented by adissipation-based ar-length solver [14,21℄. The result-ing set of oupled, nonlinear equations is linearised and

solved using a Newton-Raphson iterative sheme, whihgives the iterative hange of the state vetor at iteration
k:




δd

δu

δλ





k

=





Kdd Kdu 0

Kud Kuu −f̂
ext

0
T

h
T w





−1

k−1





−f
int
d

λf̂ext − f
int
u

−ψ





k−1 (25)with
f
int
d =

∫

Ω

[

Gc

(

1

2l
N

T
dNd + 2lBT

dBd

)

d+
∂g

∂d
HN

T
d

]

dV(26)
f
int
u =

∫

Ω

B
T
u

(

gDd +D
i)
BuudV (27)

ψ =
1

2
f̂
ext (λ0∆u−∆λu0)−∆τ (28)

Kdd =
∂f intd

∂d
Kdu =

∂f intd

∂u
(29)

Kud =
∂f intu

∂d
Kuu =

∂f intu

∂u
(30)

h =
∂ψ

∂u
w =

∂ψ

∂λ
(31)where f̂

ext is the normalised load vetor, λ is the loadfator, ∆τ is the inremental dissipation, and D
d and

D
i orrespond to the damaged and intat parts ofthe elastiity matrix, respetively. λ0 and u0 are theonverged values for the load fator and displaementsof the previous inrement.3.2 Example 1: Single edge nothed plate in pure shearIn order to verify the implementation of the brittlemodel, a nothed square plate of unit length, Figure 2,is subjeted to a shear loading. This benhmark testhas been examined for instane in [3,18℄. The materialparameters are λ = 121.15MPa, µ = 80.77MPa and

Gc = 2.7 · 10−3N/mm. The bottom edge is �xed, andthe top edge is moved horizontally by ū. The vertialdisplaements are prevented on the entire boundary Γ ,inluding on the initial noth. Following [18℄, the straintensor was deomposed into positive and negative om-ponents, and irreversibility was enfored by using thehistory �eld H.The results are shown in Figure 3, and were ob-tained using a monolithi sheme, a 100x100-elementmesh of linear quadrilaterals, and a length sale ℓ =
0.02mm. The results are in good agreeement with thosein [18℄. This example shows the qualitative apabilitiesof the brittle phase �eld formulation: the model is able
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0.5mm

0.5mm

ū

0.5mm

0.5mmFig. 2: Nothed plate: the top edge is moved horizon-tally by ūto trak the evolution of raks of arbitrary geometriesand to predit the nonlinear fore-displaement rela-tionship until omplete failure.
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(b) Phase �eld ontour plotFig. 3: Response of the nothed plate under shear load-ing

3.3 Example 3: Bar with redued sti�ness in themiddle under tensionNext, the one-dimensional bar of Figure 4 is onsidered.The bar has a redued thikness in the entre and isloaded at the right edge by a fore λf̂ . The Young'smodulus is E = 10MPa and the frature toughness
Gc = 0.1N/mm. The bar has a length L = 1mm and athikness b = 1mm. The length sale parameter is ho-sen to be ℓ = L

20
. Sine the problem is one-dimensional,

ψd
0 = E and ψi

0 = 0, so that the degradation funtion
g diretly ats on the Young's modulus E.

λf̂

h h
2

h

L

L
3

L
3

L
3Fig. 4: 1D tension test for a bar with a redued thiknessin the entreInspetion of the strong form, Equation (21d),shows that at the onset of loading the `driving fore'term g′H = g′ψd

0 (ε) starts to grow, foring the phase�eld, and onsequently also the rak density γℓ, to in-rease along the entire bar. As shown by Equation (14),this proess dissipates energy, whih explains the earlydeparture from linearity of the fore-displaement urvein Figure 5.Next, the importane of using a monolithi solverfor this nonlinear problem is studied. For a onstantmesh size (150 elements, h = 0.0067mm) and a lengthsale ℓ = 0.05mm, the response of the system for thestaggered and the monolithi shemes is ompared. Fig-ure 6 shows that the staggered sheme is very sensitiveto the size of the load inrements, and has not on-verged for the smallest step size. Indeed, the gain inexpended e�ort per load step for the staggered shemeis easily ompensated by the smaller number of stepsneeded in the monolithi sheme to ahieve the sameauray.The dependene on the length sale ℓ is shownin Figure 7 for a onstant mesh size (150 elements,
h = 0.0067mm), whih respets the rule of thumb ℓ > hto aurately approximate the rak topology as pro-posed in [19℄. Clearly, an inreasing length sale resultsin a dereasing peak fore. This makes it di�ult to in-terpret the length sale parameter for the brittle model.
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Fig. 5: Mesh re�nement study for a onstant lengthsale ℓ = 0.05mm. The irles denote loading stepswhere fore ontrol has been used and the triangles de-note the steps where ar-length ontrol has been used
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Fig. 6: Comparison of the monolithi and the staggeredapproahes for ℓ = 0.05mm with a onstant mesh size(150 elements, h = 0.0067mm)On one hand, ℓ has been introdued on purely mathe-matial ground, Setion 2, whih is independent fromthe mehanial �eld problem. On the other hand, whenlinking the phase �eld and the mehanial �eld, thelength sale parameter seems to behave like a materialparameter, f. [1,4℄.From Figures 5 - 7 it appears that the brittle modeldoes not exhibit linear elasti behaviour prior to soft-ening. Instead, the urves show nonlinearity from thevery beginning. Therefore, a ubi degradation fun-tion has been proposed in [3℄, whih results in a linearbehaviour up to the peak fore. The drawbak of thisfuntion is that an additional parameter s is introdued,
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Fig. 8: Comparison of the quadrati and ubi degra-dation funtionsFinally, the approximated rak length Γℓ is exam-ined using Equation (12). The relative error is givenby
ΓE =

Γℓ − Γ

Γ
, (32)where the exat rak length is Γd = h/2 = 0.5mm. AsFigure 9 shows, this is a rather rude approximationdue to the fat that the model predits a damaged zonewhih spans the entire weakened part of the bar. Thetendeny that is displayed by the irles vs the trian-gles in Figure 9 suggests that this an be improved by



Phase-�eld models for brittle and ohesive frature 7reduing the length of the bar in the entre. However,there is a onern that upon a redution of the lengthsale, the approximation for the rak length deterio-rates (although ℓ≫ h).
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Fig. 9: Error ΓE for the �nal approximated rak length
Γl. The irles denote a bar with a ratio 1:1:1, the tri-angles denote a bar with a ratio 2:1:2
4 Cohesive fratureThe objetive of this setion is to revisit the phase-�eldmodel for ohesive frature proposed in Referene [22℄and to show some further developments that allow forthe modelling of propagating raks. Firstly, the mainfeatures of the model are summarised. Re�nements andmodi�ations are presented next, followed by some ex-amples.4.1 The mehanial �eld problemSimilar to the brittle model, the oupling between thephase �eld and the mehanial �eld problems requiresthe introdution of phase-�eld quantities in the poten-tial in order to smear out the rak surfae.Like the brittle model presented in Setion 3, thetopology of the smeared rak is introdued in the ex-pression of the energy dissipation D, and the seondterm of Equation (3) is rewritten as:
D =

∫

Γ

G([[u]], κ)dA =

∫

Ω

G([[u]], κ)γℓ(d,∇d)dV (33)with G([[u]], κ) the frature energy funtion. Equa-tion (33) transforms a disrete rak into a rak thatis smeared over a �nite length orthogonal to the rak

surfae, see also Figure 10. Formally, the smeared o-hesive zone is de�ned by d(x) > 0, but in pratie thisis relaxed and:
Γℓ = {x ∈ Ω|d(x) > ǫ} (34)is taken to de�ne the smeared ohesive rak, with ǫ asmall tolerane. Aording to Equation (33), γℓ an beinterpreted as the funtion that on�nes the dissipationof energy to the ohesive zone.

Fig. 10: Γd represents the disrete ohesive zone andthe entre of the smeared ohesive zone ΓℓThe de�nition of a disrete quantity like a jump isnon-trivial in smeared models. For this purpose an aux-iliary �eld, v, was introdued in Referene [22℄, and isalso used here:
[[u]](xc) ≈

∫ ∞

−∞

v(x)δℓdxn. (35)The auxiliary �eld thus approximates the rak openingat any point xc ∈ Γd, i.e. on the disrete rak surfae
Γd. Further, for any point x ∈ Γℓ, with Γℓ the area overwhih the disrete rak has been distributed, it is pos-sible to �nd the nearest point xc ∈ Γd. Requiring thatthe auxiliary �eld v remains onstant in the diretionnormal to the rak, i.e.
∂v

∂xn
= 0 (36)we obtain that

v(x) = v
(

xc + xnn(xc)
)

= v(xc) (37)with n the normal to the rak, and the displaementjump an be approximated as:
[[u]](xc) ≈ v(xc)

∫ ∞

−∞

δℓdxn = v(xc). (38)



8 Julien Vignollet et al.As a onsequene of the introdution of the auxiliary�eld, the frature energy funtion beomes
G([[u]], κ) ≈ G(v, κ) (39)and the tration in the ohesive zone reads:
td(v, κ) =

∂G(v, κ)

∂v
while ∫ ∞

0

td(v, κ)dv = Gc.(40)The seond step of the oupling requires the deriva-tion of the elasti energy density funtion ψe of thedamaged model that takes into aount rak growth.It relies on the assumption that the total strain ε anbe split into an elasti term and a term that aountsfor damage:
ε = ε

e + ε
d (41)suh that

ψe(ε, d) = ψe(εe) = ψe(ε− ε
d). (42)This split an be derived expliitly from energy on-siderations. On one hand, the seond priniple of ther-modynamis gives:

0 ≤ Ḋ = σij ε̇ij − ψ̇e

= σij(ε̇
e
ij + ε̇dij)−

∂ψe

∂εeij
ε̇eij

= σij(ε̇
e
ij + ε̇dij)− σij ε̇

e
ij

= σij ε̇
d
ij . (43)On the other hand, use of Equation (33) allow the ex-pliit evaluation of the energy dissipation rate:

Ḋ =
d

dt

(

γℓ(d)G(v)
)

= γℓtdv̇ + G
∂γℓ
∂d

ḋ (44)where v̇ ould have equally been replaed by [[u]]. The�rst term in Equation (44) measures the inrement ofenergy dissipated as a result of further opening the ex-isting rak by an inrement v̇. The seond term orre-sponds to the energy dissipated through the extensionof the ohesive zone by an inrement ḋ. Under the hy-pothesis that the smeared jump v is initially zero in thenewly reated ohesive zone, it an be assumed that ad-vaning the ohesive zone as a result of a hange ḋ inthe phase �eld, is not aompanied by any dissipationof energy as G(0) = 0. Under this assumption and om-bining Equations (43) and (44), the part of the totalstrain ε that purely results from damage evolution anbe evaluated as:
ε̇
d = γℓ sym(v̇ ⊗ n). (45)

Consequently, the elasti strain reads:
ε
e = ∇s

u− γℓ sym(v ⊗ n), (46)with ∇s the symmetrised gradient operator. If the dis-plaement, the auxiliary and the phase �elds are all ap-proximated by pieewise linear funtions, the �rst termin Equation (46) is onstant in the one-dimensionalase, while the seond term is a quadrati polynomial.It was reported in [22℄ that this order mismath leadsto stress osillations, and it was suggested that the aux-iliary and the phase �elds are approximated with linearfuntions, while the displaements are approximatedusing ubi polynomials.Finally, the smeared form of the total potential en-ergy for ohesive frature beomes
Ψ =

∫

Ω

(

ψe(εe) + γℓ G(v) +
α

2

∣

∣

∣

∣

∂v

∂xn

∣

∣

∣

∣

2
)

dV (47)where a penalty term has been added to enfore theauxiliary �eld v to remain onstant along the normalof the rak.4.1.1 Disretised �eldsWith the potentials of the phase �eld, Equation (10),and the mehanial �eld, Equation (47), at hand, wesolve them in a staggered manner, similar to [22℄. Thedisrete phase �eld problem is solved �rst, in order toinitialise the topology of the smeared ohesive rak.This solution is used as an input to solve the disretemehanial problem. The algorithmi �ow is shown inAlgorithm 1, while details regarding the mehanialproblem are derived below.The governing equations of the mehanial prob-lem are obtained by minimising the potential, Equa-tion (47):divσ = 0 x ∈ Ω (48a)
σσσn = t̄ x ∈ Γ (48b)
γℓ
(

td − σn
)

= α
∂2v

∂x2n
x ∈ Γℓ (48)

∂v

∂xn
= 0 x ∈ ∂Γℓ (48d)Note that in the momentum balane, Equation (48a),the Cauhy stress σ is a funtion of the elasti strainonly. Furthermore, the rak density funtion γℓ atsas a swith that enfores the ohesive law in Equa-tion (48).



Phase-�eld models for brittle and ohesive frature 9As for the brittle model, the weak form is obtainedfrom Equation (48). Approximation of the �eld vari-ables and their derivatives as
{

u(x) = Nu(x)u
e

v(x) = Nv(x)v
e

{

ε(x) = Bu(x)u
esym(v ⊗ n) = Bv(x)v

e (49)
∂v

∂xn
= Gv(x)v

e (50)results in a nonlinear set of equations whih an belinearised and solved using a Newton-Raphson iterativesheme, again enhaned by the dissipation-based ar-length method [14,21℄. The update of the state vetorat iteration k an be derived as:
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k−1 (51)with:
f
int
v =

∫

Ω

−γℓB
T
v CBuu+ γ2ℓB

T
v CBvv

+γℓN
T
v td + αGT

v Gvv dV (52)
f
int
u =

∫

Ω

B
T
uCBuu− γℓB

T
uCBvvdV (53)

ψ =
1

2
f̂
ext (λ0∆u−∆λu0)−∆τ (54)

Kvv =
∂f intv

∂v
Kvu =

∂f intv

∂u
(55)

Kuv =
∂f intu

∂v
Kuu =

∂f intu

∂u
(56)

h =
∂ψ

∂u
w =

∂ψ

∂λ
. (57)4.2 Crak propagationIn Referene [22℄, the position and growth of the phase�eld was ontrolled by a driving fore term

F = C
8ℓ2

h2
δd(xn) (58)whih results from the addition of a penalty term ontothe weak form of the phase �eld problem, with C thepenalty weight and δd(xn) is the Dira funtion entredat Γd. A rak set S was then de�ned, whih is a listof Gauss points where d = 1. This approah has somedisadvantages, sine it not only requires an additionalparameter and more omputations in order to evaluate

the driving fore, but linear shape funtions that en-fore d = 1 at a Gauss point an lead to nodal phase�eld variables that loally exeed 1.Here, we propose to build the entre of the ohesivezone Γd with a rak set S whih only ontains nodes.Consequently, the driving fore F is no longer required.Upon minimisation of the potential of the phase-�eldpotential, Equation (10), the strong form










d− 4ℓ2∇2d = 0 x ∈ Ω

d(x) = 1 x ∈ Γd

∇d · n = 0 x ∈ Γ

(59)is obtained. Equation (59) implies that the entre ofthe ohesive zone Γd is built using Dirihlet boundaryonditions.Next, the weak form of Equation (59) an be derivedand an be disretised via:






d(x) = Nd(x)d
e

∂d(x)

∂x
= Bd(x)d

e.
(60)The linear phase �eld problem is then solved for theDirihlet onditions d̄ = [1 . . . 1]T presribed at thenodes in the rak set S:

[

Kdd

]

[

d
e

d̄

]

= f
ext
d = 0 (61)with

Kdd =

∫

Ω

Gc
1

2ℓ
N

T
dNd + 2ℓBT

dBddV. (62)Finally, the rak density is evaluated aording to:
γℓ = d

T( 1

4ℓ
N

T
dNd + ℓBT

dBd

)

d. (63)At the beginning of the simulation, the rak set S0is an inventory of nodes loating a potential initial de-fet. For the �rst iteration (j = 0) of any subsequentinrement i, the rak set is initially frozen to the pre-viously onverged state: Si
j=0 = Si−1�nal. The mehanial�eld problem is solved iteratively until a balane hasbeen obtained between the internal and the externalloads. The nuleation riterion is then evaluated withthe updated displaement and jump �elds {ue,ve}ij=0.As in [22℄, the maximum prinipal stress is used as thepropagation riterion. This has the additional bene�tof diretly providing the rak normal vetor.When the major prinipal stress σ1 exeeds thefrature strength tu, the rak must be advanedto dissipate more energy. The Gauss point gpj =

maxx∈gp (σ1
j (x)

) is identi�ed, and the node nj losestto gpj is added to the rak set, whih beomes Si
j=1.Con�ning the rak set to nodes an result in a mesh



10 Julien Vignollet et al.dependene. This is irumvented by shifting the nodenj to the loation of gpj . The phase-�eld problem isthen solved and the rak density is updated. The me-hanial �eld problem must be updated for the sameinrement i with the new rak set Si
j=1.One equilibrium has been obtained, the nuleationriterion is heked again. If it is not violated, one anadvane to the next inrement. Otherwise a new phase-�eld distribution must be obtained. The proedure isrepeated until the loads are in equilibrium and the nu-leation riteria is violated nowhere.4.3 Example 1: Propagating rak along a prede�nedpathThe delamination peel test of [22℄ is revisited with thedevelopments presented in the previous setion. The ge-ometry of the beam is depited in Figure 11 and theelasti parameters are E = 100MPa and ν = 0.3. Thefrature strength and energy are taken as tu = 1MPaand Gc = 0.1N/mm.

9mm 1mm

0.5mm

0.5mm

ū

ūFig. 11: Geometry of the propagating rak exampleThe deohesion relation is hosen as
td(v) =

{

tu + kv v ≤ 0

tuexp(− tu
Gc
v
)

v > 0
(64)where k prevents rak interpenetration. Herein, k =

1 · 104MPa/mm has been used. The tolerane ǫ, thatde�nes the ohesive zone, Equation (34), is taken as 1 ·
10−2. The penalty parameter that enfores the onstantjump in the diretion normal to the rak is taken as
α = tu.The purpose of this test is to demonstrate the abilityof the urrent formulation to model a propagating rakalong a prede�ned path. Hene, instead of allowing therak to urve away from the entre line of the beam, itis fored to remain straight and to grow along the en-tre line. Consequently, the rak normals are prede�nedand set suh that n = {0, 1}.In the following, we onsider:

� two mesh sizes: a oarse mesh with h = 0.1mm anda �ner mesh with h = 0.05mm. For both meshes,the length sale is taken as ℓ = 0.1mm.� two mesh types: strutured and unstrutured, Fig-ures 12a and 12d, respetively. The unstruturedmeshes are generated by a routine that shifts thenodes of the strutured mesh by a random amountin the interval [−0.1h; 0.1h]. To further perturb thestruture of the mesh, this routine an be run su-essively n times, whih will be referred to as `n-loops'.� two shemes: in the onstant mesh ase, the nodaloordinates are frozen for the entire simulation. Forthe moving mesh, the moving node algorithm de-sribed in Setion 4.2 is used.In order to allow for a fair omparison betweenthe various ases, we onsistently enfore nodes in therakset to be loated on the entre line of the beam.This means that for the moving mesh sheme, the mov-ing nodes an only align laterally with the x-oordinateo�ending Gauss point. For the strutured mesh, nodesannot move vertially, see Figure 12. For the unstru-tured mesh, nodes are fored to move to the entre lineof the beam, Figure 12d.
(a) Strutured mesh, initial noth(b) Strutured mesh, �xed nodes() Strutured mesh, moving nodes(d) Unstrutured mesh, moving nodes

Fig. 12: Phase �eld distribution: at the beginning ofthe simulation (a), and for ū = 1.5mm (b)�(d). 100×10elements (h ≈ 0.1mm).It is observed from Figure 13 that for a given exter-nal load, the model evaluates the same ohesive zone



Phase-�eld models for brittle and ohesive frature 11for a strutured mesh with �xed nodes, as well as fora strutured and an unstrutured mesh with movingnodes. The fore-displaement response of the modelfor the various ases is shown in Figure 13. We �rst notethat for sake of larity, the results for the strutured �nemesh � with onstant and with moving nodes � are notpresented as they are very lose to those of the oarsemesh. This on�rms that the shown results representthe onverged solution. Figure 13 also shows that themodel is able to predit the ritial load and the �rstpart of the softening regime for unstrutured meshes,even if thereafter the urves diverge progressively. Thisphenomenon is more marked when the struture of themesh is perturbed more strongly.
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Fig. 13: Fore-displaement relation for various meshesand di�erent numbers of perturbation loopsThe slow departure from the onverged solution forthe strutured meshes an be explained by onsideringthe elasti strain distribution εeyy in the ohesive zone.As shown in Figure 14a for ū = 0.75mm, a wavy pat-tern in the elasti strain evolves in the wake of the raktip, see also Figure 14b. These patterns are not observedfor the strutured mesh. These strain osillations tendto lok the elasti strains, and therefore the stressesin the ohesive zone, whih auses the sti�er responseobserved in Figure 13. This phenomenon an have sev-eral auses. The elementary method used to generateunstrutured meshes resulted in a relatively poor meshquality. The use of ubi Lagrange funtions for thedisplaements an be another reason. Potential solu-tions are to use mesh improvement tehnologies, stresssmoothing, or the use of splines (isogeometri analysis).

(a) ū = 0.75mm(b) ū = 1.5mm
Fig. 14: Contour plot of the elasti strain εeyy for theunstrutured 100×10mesh after two perturbation loops4.4 Example 2: Bar with redued sti�nessThe 1D bar problem of Setion 3.3 is revisited, now us-ing the ohesive model, but with the same dimensionsand elasti properties. A stritly deaying tration re-lation is used:
td = tuexp(− tu

Gc
[[u]]

)

≈ tuexp(− tu
Gc
v

) (65)with the frature strength tu = 2MPa. Following [22℄the penalty parameter that enfores the onstant jumpin the diretion normal to the rak is hosen as α = tu.Fore ontrol is applied up to the peak load, where thesolver swithes to the dissipative ar-length method. Intheory, all Gauss points in the area with redued sti�-ness reah the frature strength in the same inrement.However, as frature is expeted to our loally, only asingle node is added to the rak set. As desribed be-fore, the mesh is modi�ed by shifting the node losestto this Gauss point.First, the in�uene of the mesh size is investigated.Figure 15 shows that in the snapbak regime, onver-gene is obtained with muh less elements than withthe brittle frature model for ℓ = 0.05mm.Next, the impat of the length sale parameter ℓ isassessed. From Figure 16 we observe that the lengthsale parameter ℓ has no in�uene on the linear elastiregime, and neither on the peak load. A limited in�u-ene is observed in the post-peak regime. This meansthat, at variane with the brittle ase, the in�uene of
ℓ is stritly on�ned to the topologial approximationand does not govern the overall mehanial behaviourof the struture. It is also noted that the response isperfetly linear up to the maximum load.Finally, we have investigated the approximatedrak length Γℓ at failure, evaluated using quation (12).The exat rak length is Γd = h/2 = 0.5mm andthe relative error is given by Equation (32). Figure 17shows, for three di�erent length sales, that the rak
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Fig. 15: Mesh re�nement for onstant length sale pa-rameter ℓ = 0.05mm
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Fig. 16: In�uene of length sale parameter ℓ for on-stant number of 300 elements. The results for ℓ =
0.025mm and ℓ = 0.0125mm almost oinide.length approximation onverges upon mesh re�nement(although denser meshes would be required for ℓ =

0.0125mm), but also that the quality of the approxi-mation inreases as the length sale dereases. A on-vergene study in Referene [19℄ indiates that, for thephase �eld problem only, this observation is only validfor the disretised problem when the length sale islarger than the mesh size, whih seems to be in agree-ment with the urrent results.5 Conluding remarksThe present investigation on�rms that phase �eldmodels give qualitatively good results for brittle fra-ture, both for mode-I and for mode-II problems [18,
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Fig. 17: Error ΓE for the �nal rak length Γℓ19℄. However, the model an be sensitive. Using a sim-ple one-dimensional bar with a defet in the entre part,it was shown that the hoie of the degradation fun-tion may onsiderably in�uene the results, as does thehoie of the length sale parameter ℓ. The latter ob-servation makes it di�ult to interpret the length saleparameter for the brittle phase �eld model. Its intro-dution on mathematial grounds would point to a pa-rameter for the phase �eld that does not in�uene themehanial �eld problem, but this is not on�rmed inatual omputations in whih the phase �eld and themehanial �eld are lined [1,4℄. Another �nding is thatsolving the phase �eld and the mehanial �eld usinga monolithi sheme leads to a faster onvergene withrespet to mesh re�nement, ompared to a partitionedsolution strategy.In the last part of the paper the ohesive phase �eldapproah [22℄ is revisited and further elaborated, in par-tiular for propagative ohesive raks. From the theo-retial side, a new, thermodynamially motivated wayto deompose the strain �eld into an elasti ontribu-tion and a smeared rak ontribution has been pro-posed. From the implementation side, a rak set hasbeen suggested that only ontains nodes, rather than in-tegration points. To obviate loss of �exibility and ame-liorate possible rak bias, nodes are allowed to movetowards integration points were the frature riterionhas been violated (r-adaptivity). An advantage is thata driving fore term [22℄ is not needed, thereby redu-ing the number of numerial parameters. Example al-ulations � with strutured and unstrutured meshes,and with �xed and moving nodes � on adhesive rakpropagation in a antilever beam show the potential ofthe method, although the extension to arbitary rakpropagation remains a hallenge. Finally, revisiting theone-dimensional example used in the beginning for brit-
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14 Julien Vignollet et al.For Inrement i doInitialise- The external loading: either ū, λ̄ or ∆τ ;- The initial rak set: Si
j=0 = Si−1�nal ;- The internal fore vetors f intv and f intu ;- The residual: R0 = [fextv fextu ]T −

[

f intv f intu

]T;Do Crakset loop j while Sj+1 6⊂ SjDo Iterative Newton loop k for the mehanial �eld problem while ||R‖ > εrak opening ;Evaluate- The global sti�ness matries Kvv , Kvu, Kuv , Kuu ;- The inremental state vetor [δv δu]T
k

;Update- The state vetor [v u]T
k

;- The internal fore vetors f intv and f intu ;- The residual Rk = [fextv fextu ]Tk −
[

f intv f intu

]T
k
;endif σσσ1

j > tu thenExtension of the ohesive zone ;Evaluate- Prinipal stresses σ1
j and σ2

j ;- Prinipal diretions n1 and n2;Loate- The Gauss point gpj = max
x∈gp (σ1

j (x)
) ;- The losest node nj to gpjUpdate- The mesh: move Nj to the loation of gpj ;- The rak set Sj with nj ;Solve- The phase �eld problem with the new boundary onditions ;Update- The rak density funtional γℓ ;- The normal at Gauss points in the ohesive zone Γℓ ;endendend Algorithm 1: Algorithm for the ohesive model




