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Abstract

We introduce a new relaxation scheme for structural topology opti-

mization problems with local stress constraints based on a phase-field

method. The starting point of the relaxation is a reformulation of

the material problem involving linear and 0–1 constraints only. The

0–1 constraints are then relaxed and approximated by a Cahn-Hilliard

type penalty in the objective functional, which yields convergence of

minimizers to 0–1 designs as the penalty parameter decreases to zero.

A major advantage of this kind of relaxation opposed to standard ap-

proaches is a uniform constraint qualification that is satisfied for any

positive value of the penalization parameter.

The relaxation scheme yields a large-scale optimization problem

with a high number of linear inequality constraints. We discretize the

problem by finite elements and solve the arising finite-dimensional pro-

gramming problems by a primal-dual interior point method. Numeri-

cal experiments for problems with stress constraints based on different

criteria indicate the success and robustness of the new approach.
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1 Introduction

Topology optimization denotes problems of finding optimal material distri-
butions in given design domains subject to certain criteria and, possibly,
satisfying several additional constraints. In the last two decades, advances
in homogenization, optimization theory, and numerical analysis, as well as
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new engineering approaches caused topology optimization techniques to be-
come a standard tool of engineering design (cf. [5, 17] for an overview), in
particular in structural mechanics.

In structural optimization there are two design-constraint combinations
of particular importance, namely the maximization of material stiffness at
given mass and the minimization of mass while keeping a certain stiffness.
The formulation of the first combination as the so-called minimal compli-
ance problem has become standard, and seems to be well-understood with
respect to its mathematical properties (cf. e.g. [2, 8, 25]), and various suc-
cessful numerical techniques have been proposed (cf. e.g. [3, 7, 19, 26, 31]).
The treatment of the second problem is by far less understood and until
now there seems to be no approach that is capable of computing reliable
(global) optima within reasonable computational effort. The main source of
difficulties in this problem is a lack of constraint qualification in the feasible
set defined by the local stress constraints, which already appear for simple
truss structures (cf. [23, 28]). Moreover, there are several complications for
specific methods, e.g. convergence issues of homogenized stress criteria for
material interpolation schemes (cf. [5, 16]).

We start by describing the main mathematical setup used in the sequel.
By Ω ⊂ R

d (d = 2, 3) we denote the design domain, which we assume to
be sufficiently regular. The function u : Ω ⊂ R

d → R
d denotes the elastic

displacement, the strain

eij :=
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

and the stress σ, determined from the strain via a standard linearly elastic
relation

σij =
∑

k,ℓ

Cijkℓekℓ

with a suitable symmetric positive definite elasticity tensor (Cijkℓ), i.e.,

∑

i,j,k,ℓ

Cijkℓeijekℓ ≥ η
∑

ij

e2
ij

for some η > 0. Below we shall abbreviate the stress-strain relation as
σ = C : e. The scaled density of the material is denoted by χ : Ω → {0, 1},
which we normalize to χ(x) = 1 if there is material at the point x and
χ(x) = 0 otherwise. Then the stress constrained topology optimization
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problem is given by
∫

Ω
χ dx → min

χ∈{0,1} a.e.
,

div σ = 0 in {χ = 1},
σ = C : e in Ω,

u = 0 on ΓD ⊂ ∂Ω,
σ · n = t on ΓN ⊂ ∂Ω,
σ · n = 0 on ∂{χ = 1} ∪ (∂Ω − ΓD − ΓN ),

σmin ≤ σ ≤ σmax in {χ = 1},
umin ≤ u ≤ umax in Ω,

where n denotes the outward unit normal and t is a traction force applied
on a part ΓN of the boundary ∂Ω. In the current geometrical setup, the
material is kept fixed on ΓD, while the remaining part ∂Ω−ΓD − ΓN needs
not to represent material boundaries. Moreover, we have ignored body forces
for simplicity, but they could be incorporated by adding a right-hand side
to the divergence equation.

The matrices σmin and σmax denote the allowed minimal and maximal
value for the local stresses, respectively. We shall call this criterion total
stress constraints. Alternatively, the case of von Mises stress constraints is
of interest, where the local constraints on σ are replaced by

Φ(σ) ≤ Φmax, (1.1)

where the von Mises stress is denoted via the functional Φ : R
d×d → R given

by

Φ(σ) =

√

∑

i,j(λi − λj)2

2

where λj, j = 1, . . . , d are the principal stresses (the eigenvalues of σ). Note
that for d = 2, the case we are focussing on, we simply have

Φ(σ) =
|λ2 − λ1|√

2
=

√

(σ11 + σ22)2 + 4σ2
12

2
.

A frequently used approach to overcome the difficulties with the missing
constraint qualification is the so-called epsilon-relaxation approach (cf. [15,
23]), originally used in the optimization of truss structures, which perturbs
the stress criterion by some small parameter ǫ. In the topology optimization
of continuum structures, the ǫ-relaxation can be combined with standard
material interpolation schemes and finite element discretization in order to
compute approximations of solutions, an approach carried out by Duysinx
and Bendsoe [16]. A drawback of the ǫ-relaxation approach is the fact that
the constraint qualification is not uniform for positive ǫ and there could still
be points at which e.g. the Mangasarian-Fromovitz qualification is violated.
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Recently, it has been shown for such examples by Stolpe and Svanberg [28]
that the trajectories of minimizers of the ǫ-relaxed approach can have a
discontinuity for arbitrarily small ǫ and as a consequence it is difficult (or
even impossible) to compute reliable minimizers of topology optimization
problems with local stress constraints using this approach.

Due to the well-known ill-posedness of topology optimization problems
(cf. [25]), we add a perimeter penalization to the objective functional, i.e.,
we minimize

Jγ(χ) = γ

∫

Ω
χ dx + sup

g ∈ C∞
0 (Ω; Rd)

‖g‖∞ ≤ 1

∫

Ω
div g χ dx (1.2)

for a (large) parameter γ > 0. The additional perimeter term equals the
length of the curve ∂{χ = 1} for d = 2, and the area of the surface
∂{χ = 1} for d = 3. The boundedness of the perimeter regularizes the
topology optimization problem, in particular it excludes checkerboard ef-
fects as the discretization size decreases to zero (cf. [18, 22]).

In this paper we use a different approach to the relaxation of the local
constraints. Starting point of our analysis is a reformulation of the equal-
ity constraints describing the elastic equilibrium and the local inequality
constraints for stresses and displacements into a system of linear inequality
constraints as recently proposed by Stolpe and Svanberg [29, 30]. This refor-
mulation is approximate at the continuum level, but exact for finite element
discretizations with suitable parameter choice. The main difficulty is that
the arising problem also involves 0–1 constraints in addition to the linear in-
equalities. The computational effort of methods for the global minimization
of these mixed linear programming problems grows fast with the number of
degrees of freedom in the discretization, so that the problem could be solved
only for very coarse discretizations so far (cf. [27, 30]). Instead of solving
mixed linear programming problems, we propose to use a phase-field relax-
ation of the reformulated problem. The phase-field relaxation consists in
using an interpolated material density ρ, similar to material interpolation
schemes. In addition, a Cahn-Hilliard type penalization functional (cf. [14])
of the form

P ǫ(ρ) =
ǫ

2

∫

Ω
|∇ρ|2 dx +

1

ǫ

∫

Ω
W (ρ) dx (1.3)

is used to approximate the perimeter, where W : R → R∪{+∞} is a scalar
function with exactly two minimizers at 0 and 1 satisfying W (0) = W (1) =
0. The second term of the penalty functional ensures that the values of the
material density ρ converge to 0 or 1 as ǫ→ 0, while the first term controls
the perimeter of level sets of ρ. Due to a famous result by Modica and
Mortola [21] (cf. also [1, 20]), minimizers of P ǫ with fixed volume

∫

Ω ρ dx
converge to minimizers χ of the perimeter at fixed volume over functions
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satisfying χ ∈ {0, 1} almost everywhere in Ω. This convergence arises in the
framework of Γ-convergence (cf. [10] and the references therein), which en-
sures in particular convergence of minimizers. Together with finite element
discretization, we shall use a continuation ǫ → 0 and solve the arising dis-
cretized problems by an interior-point method. Obviously, the phase-field
approach is not the only possibility to relax the reformulated constraints,
one could e.g. use a direct relaxation without further approximations, stan-
dard material interpolation schemes, or level set methods, which are closely
related to phase-field methods (cf. [4]). However, the phase-field relaxation
incorporates a variety of advantages with respect to such approaches:

• In contrast to a direct relaxation to a continuous density variable (and
also in contrast to material interpolation schemes), the phase-field
method still provides geometric information. In particular, one can ex-
pect {ρ > η} (with η << 1

2 small) to be a superset of the limit {χ = 1}
and {ρ < 1 − η} to be a subset (for ǫ sufficiently small). Moreover,
geometric quantities such as mean curvature can be approximated in
terms of derivatives of ρ for small ǫ.

• With the phase-field relaxation one can still use the density linearly
in the constraints, which is not true for material interpolation (e.g. in
SIMP one has ρp, p > 1) or for level set methods (where the unknown
is a signed distance function to some boundary, and in the relaxation
one usually takes an application of a smoothed Heaviside function).
The additional nonlinearity does not only complicate the constraints,
but might also destroy constraint qualifications.

• The parameter ǫ can be used for continuation. For ǫ being large, the
functional P ǫ is strictly convex, so that one can compute global optima
for arbitrary initial values. When decreasing ǫ, the minimizer of the
previous step can be expected to provide a good initial guess for the
next step carried out with a smaller ǫ.

To our knowledge, the phase-field approach in topology optimization was
first introduced by Bourdin and Chambolle [9] for a design problem with
design-dependent loads, another type of problem where standard material
interpolation schemes encounter diffculties. The approach has recently been
applied to minimal compliance type problems by Wang and Zhou [33].

The remainder of this paper is organized as follows: in Section 2 we re-
view the constraint reformulation due to [30] and extend the approach to an
approximate reformulation of the continuous problem. In Section 3 we intro-
duce the phase-field relaxation and analyze its basic properties. The finite
element discretization yielding linearly constrained programming problems
is discussed in Section 4, and the solution of these programming problems
by interior-point methods in Section 5. Finally, we present numerical results
obtained for local as well as for von Mises stress constraints.
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2 Reformulation of Constraints

In the following we consider a reformulation of constraints on subsets of
locally bounded stresses, i.e.,

β|σij | ≤ 1, in Ω, i, j = 1, . . . , d, (2.1)

for some (small) β > 0 such that βmaxi,j σ
max
ij < 1 and βmini,j σ

min
ij > −1

(i.e., the original total stress constraints are more restrictive for χ = 1). The
total constraints for the displacement u, the stress σ, and the density χ are
given by

div σ = 0 in {χ = 1},
σ = C : e(u) in Ω,

u = 0 on ΓD ⊂ ∂Ω,
σ · n = t on ΓN ⊂ ∂Ω,
σ · n = 0 on ∂{χ = 1} ∪ (∂Ω − ΓD − ΓN ),
χ ∈ {0, 1} a.e. in Ω,

Φmin ≤ Φ(σ) ≤ Φmax in {χ = 1},
umin ≤ u ≤ umax in Ω.

(2.2)

We shall reformulate the constraints (2.1), (2.2) as linear inequality con-
straints for the case of total stress and von Mises stress constraints.

2.1 Reformulation of Total Stress Constraints

We start with the reformulation in the case of total stress constraints, i.e.,
Φ(σ) = σ. For this sake we introduce the approximate constraint sets

Cβ := {(χ,u, σ) ∈ BV (Ω; [0, 1]) × L∞(Ω; Rd) × L∞(Ω; Rd×d) |
(χ,u, σ) satisfies (2.1), (2.2)}.

and an additional artificial stress variable s ∈ L∞(Ω; Rd×d).
Let (χ,u, σ) ∈ Cβ and let s = σ if χ = 1 and s = 0 if χ = 0, i.e., s = χσ.

Then the constraints

−(1 − χ)1 ≤ β(σ − s) ≤ (1 − χ)1 (2.3)

with the matrix 1 = (1)ij and

σminχ ≤ s ≤ σmaxχ (2.4)

are satisfied. Vice versa, assume that

(χ,u, σ, s) ∈ BV (Ω; [0, 1]) × L∞(Ω; Rd) × L∞(Ω; Rd×d) × L∞(Ω; Rd×d)
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fulfills (2.3), (2.4) and χ ∈ {0, 1} almost everywhere. Then, for χ = 0 (2.4)
implies s = 0 and (2.3) gives −1 ≤ βσij ≤ 1. For χ = 1 (2.3) implies s = σ
and (2.4) becomes

σminχ ≤ σ ≤ σmaxχ.

Moreover, since either s = σ or s = 0, we obtain that div s = 0 almost
everywhere in Ω.

Due to the above arguments we conclude (χ,u, σ) ∈ Cβ if and only if
there exists s such that

div s = 0 in Ω,
σ = C : e(u) in Ω,

u = 0 on ΓD ⊂ ∂Ω,
s · n = t on ΓN ⊂ ∂Ω,
s · n = 0 on ∂Ω − ΓD − ΓN ,

−(1 − χ)1 ≤ β(σ − s) ≤ (1 − χ)1 in Ω,
χ ∈ {0, 1} a.e. in Ω,

σminχ ≤ s ≤ σmaxχ in Ω,

umin ≤ u ≤ umax in Ω.

(2.5)

Note that (except χ ∈ {0, 1}) the constraints (2.5) are linear with respect
to the new vector of unknowns (χ,u, σ, s), in particular all constraints are
formulated on Ω and not on the unknown set {χ = 1}. We would like
to mention that the drawback of the reformulation is an increase in the
number of unknowns and a high number of inequality constraints. On the
other hand, this higher number of unknowns and constraints seems to be
a reasonable price for the linear reformulation of the complicated original
constraints.

2.2 Reformulation of Von Mises Stress Constraints

In the following we discuss the reformulation of the inequalities in the case
of von Mises stress constraints for dimension d = 2 (similar computations
are possible for d = 3). Since both sides of the constraint (1.1) are positive,
we can square them and since the constraint must hold only for χ = 1, it
can be written equivalently as

χ(σ11 + σ22)
2 + 4χσ2

12 ≤ 2χ(Φmax)2.

A more conservative version of the von Mises criterion (cf. [30]) is given by

χ|σ11 + σ22| + 2χ|σ12| ≤
√

2χΦmax. (2.6)

As above we introduce an artificial stress variable s = χσ, and since χ2 = χ,
we can reformulate the von Mises constraint as

(s11 + s22)
2 + 4(s12)

2 ≤ 2χ(Φmax)2.
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The reformulation of the von Mises stress constraints on the constraint set
Cβ is given by

div s = 0 in Ω,
σ = C : e(u) in Ω,

u = 0 on ΓD ⊂ ∂Ω,
s · n = t on ΓN ⊂ ∂Ω,
s · n = 0 on ∂Ω − ΓD − ΓN ,

−(1 − χ)1 ≤ β(σ − s) ≤ (1 − χ)1 in Ω,

(s11 + s22)
2 + 4(s12)

2 ≤ 2χ(Φmax)2 in Ω,
χ ∈ {0, 1} a.e. in Ω,

umin ≤ u ≤ umax in Ω.

(2.7)

Note that in this case, χ = 0 in the von Mises stress constraint does not
imply directly s = 0, but only s11 + s22 = 0 and s12 = 0. However, since s is
divergence free in addition, we may conclude for those special stresses that
∇s11 = 0. Hence, s is of the form

s = χσ + (1 − χ)

(

C 0
0 −C

)

for any constant C ∈ R. Since such artificial stresses will not change the von
Mises stress, and since s does not a have a physical meaning for χ = 0, the
additional terms will not play a major role (we are basically free to define s

arbitrarily in {χ = 0}). The reformulation (2.7) involves convex quadratic
constraints, but only with respect to the stress variable s, which still yields
constraint qualification after relaxation and discretization.

In this paper we rather use the conservative von Mises stress criterion
(2.6), which can actually be reformulated into linear inequalities. Again we
use s = χσ to obtain

|s11 + s22| + 2|s12| ≤
√

2χΦmax.

Moreover, we introduce functions p1, p2, q1, and q2 such that

pi ≥ 0, qi ≥ 0, i = 1, 2

and
−p1 ≤ s11 + s22 ≤ p2, −q1 ≤ s12 ≤ q2.

From these constraints we obtain that

|s11 + s22| ≤ max{p1, p2}, |s12| ≤ max{q1, q2}.

Finally, we impose the constraints

pi + qj ≤
√

2χΦmax, i, j = 1, 2.
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As a consequence of the latter we obtain

max{p1, p2} + max{q1, q2} ≤
√

2χΦmax,

which implies the conservative von Mises constraints for s. On the other
hand, if the constraint is satisfied by s, the variables

p1 = −min{s11 + s22, 0}, p2 = max{s11 + s22, 0},
q1 = −min{s12, 0}, q2 = max{s12, 0}

satisfy the new linear constraints and thus, we conclude equivalence to the
original conservative von Mises constraints. The reformulation of the con-
servative von Mises stress constraints on the constraint set Cβ is given by

div s = 0 in Ω,
σ = C : e(u) in Ω,

u = 0 on ΓD ⊂ ∂Ω,
s · n = t on ΓN ⊂ ∂Ω,
s · n = 0 on ∂Ω − ΓD − ΓN ,

−(1 − χ)1 ≤ β(σ − s) ≤ (1 − χ)1 in Ω,
pi ≥ 0, qi ≥ 0 in Ω, i = 1, 2,

−p1 ≤ s11 + s22 ≤ p2 in Ω,
−q1 ≤ s12 ≤ q2 in Ω,

pi + qj ≤
√

2χΦmax in Ω, i, j = 1, 2,
χ ∈ {0, 1} a.e. in Ω,

umin ≤ u ≤ umax in Ω.

3 Phase-Field Relaxation

We now turn our attention to the relaxation of the stress constrained topol-
ogy optimization problem. For this sake we replace the indicator function
χ by a density ρ : Ω → [0, 1] and approximate the perimeter term in the
regularized objective functional J γ (1.2) by the Cahn-Hilliard term P ǫ (1.3).
The resulting relaxation in the case of total stress constraints is given by

M(ρ) = γ
∫

Ω ρ dx + P ǫ(ρ) → min,
div s = 0 in Ω,

σ = C : e(u) in Ω,
u = 0 on ΓD,

s · n = t on ΓN ,
s · n = 0 on ∂Ω − ΓD − ΓN ,

ρ = 1 on ΓN ,
−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1 in Ω,

σminρ ≤ s ≤ σmaxρ in Ω,
0 ≤ ρ ≤ 1 a.e. in Ω,

umin ≤ u ≤ umax in Ω.

(3.1)
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The function space setting for this relaxation is given by

(ρ,u, σ, s) ∈ (H1(Ω) ∩L∞(Ω))×L∞(Ω; Rd)×L∞(Ω; Rd×d)×L∞(Ω; Rd×d).

Note that, in addition to the original constraint reformulation (2.5), we have
added a Dirichlet boundary condition for ρ on ΓN , which is well-defined in
the sense of traces of functions in H1(Ω). The reasoning for adding this
condition is as follows: in the original constraint we have s · n = t 6= 0

on ΓN . Hence, there exists a small open neighbourhood of ΓN in Ω, where
χ = 1 (since otherwise χ = 0 would imply s = 0 and thus s · n = 0 on ΓN ).
In the relaxed formulation, the trace of ρ is positive by analogous arguments,
but not necessarily equal to one. Thus, the additional constraint will not
change the limit of the constraint set, but on the other hand it restricts the
relaxation and simplifies the analysis of the relaxed problem.

In a similar way we can give a relaxed formulation of the problem with
conservative von Mises stress constraints (d = 2) as

M(ρ) = γ
∫

Ω ρ dx + P ǫ(ρ) → min,
div s = 0 in Ω,

σ = C : e(u) in Ω,
u = 0 on ΓD,

s · n = t on ΓN ,
s · n = 0 on ∂Ω − ΓD − ΓN ,

ρ = 1 on ΓN ,
−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1 in Ω,

pi ≥ 0, qi ≥ 0 in Ω, i = 1, 2,
−p1 ≤ s11 + s22 ≤ p2 in Ω,

−q1 ≤ s12 ≤ q2 in Ω,

pi + qj ≤
√

2χΦmax in Ω, i, j = 1, 2
0 ≤ ρ ≤ 1 a.e. in Ω,

umin ≤ u ≤ umax in Ω,

(3.2)

with variables

(ρ,u, σ, s,p,q) ∈ (H1(Ω) ∩ L∞(Ω)) × L∞(Ω; Rd) ×
L∞(Ω; Rd×d)2 × L∞(Ω; Rd)2,

with the notation p = (p1, p2) and q = (q1, q2). In our discussion below we
will focus on total stress constraints, i.e., the relaxed optimization problem
(3.1), but analogous reasoning is possible for von Mises stress constraints.

3.1 Structure of the Relaxed Problem

In the following we further examine the structure of the relaxed problem
(3.1). Due to the term W (ρ) in the Cahn-Hilliard penalty, we have to
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expect the objective functional to be nonconvex, in particular for small ǫ,
when minimizers are forced to take values close to 0 or 1. For large ǫ, the
first term of the Cahn-Hilliard energy dominates and thus, the optimization
problem is convex:

Theorem 3.1. Let W ∈ C2([0, 1]). Then there exists ǫ0 > 0 dependent on

Ω only, such that the objective functional ρ 7→M(ρ) = γ
∫

Ω ρ dx + P ǫ(ρ) is

convex for all ǫ > ǫ0.

Proof. The objective functional is twice continuously differentiable with
derivatives

M ′(ρ)ψ = γ

∫

Ω
ψ dx + ǫ

∫

Ω
∇ρ · ∇ψ dx +

1

ǫ

∫

Ω
W ′(ρ)ψ dx

and

M ′′(ρ)(ψ1, ψ2) = ǫ

∫

Ω
∇ψ1 · ∇ψ2 dx +

1

ǫ

∫

Ω
W ′′(ρ)ψ1ψ2 dx.

Due the constraint 0 ≤ ρ ≤ 1, we obtain |W ′′(ρ)| ≤ W0, where W0 ∈ R

is the maximum of W ′′ in the interval [0, 1]. Moreover, since ρ = 1 on
ΓN , admissible variations satisfy ψ = 0 on ΓN and due to a Poincaré-type
inequality, there exists a constant CP > 0 such that

∫

Ω
ψ2 dx ≤ CP

∫

Ω
|∇ψ|2 dx

for all admissible variations ψ ∈ H1(Ω) with ψ = 0 on ΓN . Hence,

M ′′(ρ)(ψ,ψ) ≥ (ǫ− W0CP

ǫ
)

∫

Ω
|∇ψ|2 dx.

Consequently, for ǫ ≥ ǫ0 :=
√
W0CP , M is convex. Since all constraints are

linear, the relaxed optimization problem (3.1) is convex.

So far, we have not discussed possible choices for the function W . Com-
monly used in phase-field simulations of phase-transition problems (e.g. in
the Allen-Cahn and Cahn-Hilliard equation, cf. e.g. [4, 13]) is the double-well

potential

W (r) = r2(1 − r)2, r ∈ R.

Recently, the so-called double-obstacle potential

W (r) = r(1 − r), r ∈ [0, 1] (3.3)

has received further attention (cf. [6]). In the case of evolutions like the
Allen-Cahn equation, the use of the double-obstacle potential is rather a
computational complication, since 0 ≤ ρ ≤ 1 has to be enforced (in contrast
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to the evolution with the double-well potential), and the partial differential
equation has to be reformulated as a variational inequality. In our case, the
choice of the double-obstacle potential (3.3) seems more attractive, since we
enforce the bound constraints on ρ anyway (within our system of inequality
constraints) and the double-obstacle problem causes a polynomial nonlin-
earity of lower degree than the double-well potential. Using (3.3) in P ǫ, we
observe that (3.1) and (3.2) are quadratic optimization problems subject to
linear constraints.

3.2 Existence of Solutions

We now investigate the existence of solutions of the relaxed problem (3.1).
For this sake we introduce the Banach spaces of functions with essentially
bounded strain

BS∞(Ω) := { u ∈ L∞(Ω; Rd) | e(u) ∈ L∞(Ω; Rd×d) }

and with square-integrable strain

BS2(Ω) := { u ∈ L2(Ω; Rd) | e(u) ∈ L2(Ω; Rd×d) },

with norms
‖u‖BS∞ := max{‖u‖∞, ‖e(u)‖∞}

and

‖u‖BS2 :=
√

‖u‖2
2 + ‖e(u)‖2

2.

One can verify by standard arguments that BS∞(Ω) is a Banach space
(including all elements of the Sobolev space W 1,∞(Ω; Rd)) and that BS2(Ω)
is a Hilbert space with scalar product

〈u,v〉BS2 := 〈u,v〉L2 + 〈e(u), e(v)〉L2 .

As usual for weak solutions of partial differential equations, we under-
stand the equality constraints on s in a standard weak sense, i.e.,

∫

Ω
s : ∇Ψ dx =

∫

ΓN

(t · n)Ψ da, ∀ Ψ ∈W 1,2(Ω; Rd),Ψ|ΓD
= 0.

Similarly, we interpret the stress-strain relation in an L2-sense, i.e.,

∫

Ω
[σ : Ψ − Ψ : C : e(u)] dx = 0 ∀ Ψ ∈ L2(Ω; Rd×d).

We start the analysis with a lower semicontinuity property:

Lemma 3.2. Let W be defined by (3.3). Then the functional M : H 1(Ω) →
R is sequentially weakly lower semicontinuous.
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Proof. Due to the compact embedding H1(Ω) →֒ L2(Ω), the linear func-
tional ρ 7→ γ

∫

Ω ρ dx and the quadratic functional ρ 7→ 1
ǫ

∫

ΩW (ρ) dx are
weakly continuous. Together with the sequential weak lower semicontinuity
of the square of the norm in Hilbert spaces applied to the third term in M ,
we obtain the assertion.

Besides lower semicontinuity, a fundamental ingredient for the existence
of solutions is compactness in appropriate topologies. In order to obtain
some weak compactness, we examine the boundedness of the constraint set:

Lemma 3.3. Let ǫ > 0 and let

(ρ,u, σ, s) ∈ L∞(Ω) ×BS∞(Ω) × L∞(Ω; Rd×d)2

satisfy the constraints in (3.1). Then, (ρ,u, σ, s) lies in a bounded set with

respect to the corresponding norms.

Proof. From the bound constraints 0 ≤ ρ ≤ 1 we immediately conclude that
ρ lies in the unit ball of L∞(Ω). Consequently, we deduce

min
{

0, σmin
}

≤ s ≤ max {σmax,0}

and hence, s is bounded in the norm of L∞(Ω; Rd×d). Due to

s − 1 − ρ

β
1 ≤ σ ≤ s +

1 − ρ

β
1

we further conclude the boundedness of σ in the norm of L∞(Ω; Rd×d).
Finally, the bound constraints on u imply its boundedness in the norm
of L∞(Ω; Rd) and together with the stress-strain relation and the positive
definiteness we may conclude the boundedness of u in the norm of BS∞(Ω).

With these preliminary results we can provide an existence result for the
relaxed topology optimization problem for arbitrary positive ǫ:

Theorem 3.4. Let ǫ > 0, β > 0, and let W be defined by (3.3). Moreover,

let the admissible set defined by the constraints in (3.1) be nonempty. Then

there exists a solution

(ρ,u, σ, s) ∈ (H1(Ω) ∩ L∞(Ω)) ×BS∞(Ω) × L∞(Ω; Rd×d)2

of the constrained optimization problem (3.1).

Proof. For admissible densities ρ ≥ 0, the objective functional M is bounded
below by zero and hence, the infimumm0 ofM on the admissible set is finite.
Hence, we can find a minimizing sequence

(ρn,un, σn, sn) ∈ (H1(Ω) ∩ L∞(Ω)) ×BS∞(Ω) × L∞(Ω; Rd×d)2

13



such that M(ρn) → m0. Since M(ρn) converges, the sequence is bounded
in particular and since

2

ǫ
M(ρn) ≥

∫

Ω
|∇ρn|2dx,

we obtain boundedness of ρn in H1(Ω). Due to lemma 3.3 and standard
precompactness results for bounded sets in weak or weak-* topologies, we
can extract a subsequence (again denoted by the superscript n) such that

ρn → ρ̂ weak in H1(Ω), and weak-* in L∞(Ω),

un → û weak in BS2(Ω), and weak-* in L∞(Ω; Rd),

σn → σ̂ weak-* in L∞(Ω; Rd×d),

sn → ŝ weak-* in L∞(Ω; Rd×d).

Due to closedness of simple bounds with respect to weak-* convergence in
L∞, we can conclude that the limit (ρ̂, û, σ̂, ŝ) satisfies all the inequalities
in (3.1). Moreover, since for Ψ ∈ W 1,2(Ω; Rd) we have in particular ∇Ψ ∈
L1(Ω), we may conclude that

∫

ΓN

(t · n)Ψ da =

∫

Ω
sn : ∇Ψ dx →

∫

Ω
s : ∇Ψ dx

due to weak-* convergence in L∞. Hence, ŝ satisfies the associated equality
constraints. From the weak convergence of un in BS2(Ω) we conclude that
û satisfies the stress-strain relation and hence, (ρ,u, σ, s) is in the admissible
set. With the sequential lower semicontinuity from Lemma 3.2 we finally
obtain that thus, (ρ,u, σ, s) is a solution of the optimization problem (3.1).

4 Discretization

In the following we consider the discretization of the relaxed problems for
Ω ⊂ R

2, detailing the analysis again for the case of (3.1). For simplicity
(and motivated by the typical choices of design domains), we assume that
Ω is of polygonal shape.

Our aim is to construct a finite element approximation on a triangular
grid, i.e., we decompose Ω =

⋃

T∈T h T for a suitable family T h of triangles
satisfying standard regularity conditions (cf. [11]). The parameter h > 0
denotes the grid size (equal to the maximal diameter of triangles in T h).
We shall use two different discrete subspaces, namely the H 1-subspace of
linear elements (for the density ρ and displacement components ui)

Vh := {ϕ ∈ C(Ω) | ϕ is affinely linear in T, ∀ T ∈ T h},
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and the L∞-subspace of constant elements (for the stress components σij

and sij)

Wh := {ϕ ∈ L∞(Ω) | ϕ is constant in T, ∀ T ∈ T h}.

Note that for u ∈ Vh × Vh ⊂ BS∞(Ω), we obtain ∂ui

∂xj
∈ Wh.

The equality constraints are discretized by a standard finite element
approach, i.e., we look for s ∈ (Wh)2×2, σ ∈ (Wh)2×2, and u ∈ Vh × Vh

satisfying
∫

Ω
s : ∇Ψ dx =

∫

ΓN

(t · n)Ψ da, ∀ Ψ ∈ Vh × Vh,Ψ|ΓD
= 0

and
∫

Ω
[σ : Ψ − Ψ : C : e(u)] dx = 0 ∀ Ψ ∈ (Wh)2×2.

The bound constraints on the displacement and density ρ ∈ Vh can be
enforced directly, for piecewise linear functions, the constraints hold if and
only if they hold in all nodes of the grid.

Finally, we need to discretize the inequality constraints involving both
stress variables and the density. Since the components of σ and s are in a
different subspace than ρ, the discretization is not straight-forward. In par-
ticular, we cannot pose local constraints in the grid nodes or on edges, since
functions in Wh are discontinuous over the edges. Consequently, the more
promising approach is to interpret the inequality constraints as constraints
in Wh. For this sake we introduce the discrete projection operator (with
respect to the L2-norm) Ph : Vh → Wh,

(Phv)|T :=
1

|T |

∫

T

v dx, ∀ T ∈ T h,∀ v ∈ Vh.

The discretized formulation of constraints in Wh can then be formulated as

−(1 − Phρ)1 ≤ β(σ − s) ≤ (1 − Phρ)1 in Ω,

σminPhρ ≤ s ≤ σmaxPhρ in Ω.

In order to obtain a linearly constrained quadratic programming prob-
lem, we represent the functions in subspaces by standard basis functions,
namely a set of nodal basis functions {φj}j=1,...,N for Vh and a set of basis
functions {ψj}j=1,...,M with support in single triangles for Wh. We can write

ρ =

N
∑

j=1

Rjφj, ui =

N
∑

j=1

U i
jφj

and

sij =
M
∑

k=1

Sij
k ψk, σij =

M
∑

k=1

Σij
k .
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The coefficients Rj , U
i
j , S

ij
k , and Σij

k can be collected into vectors R ∈ R
N ,

U ∈ R
2N , S ∈ R

3M , and Σ ∈ R
3M (using the symmetry Sij

k = Sji
k and

Σij
k = Σji

k ). The discretized problem can now be written equivalently as
a quadratic programming problem with linear constraints for the unknown
(R,U,Σ,S) ∈ R

3N+6M :

γETR +
ǫ

2
RTKR +

1

ǫ
RT (E − MR) → min

(

I − LT
1 L1

)

BTS = T,
DΣ −CBU = 0,

L1U = 0,
L2R = 1,

−Q(1 −PR) ≤ β(Σ − S) ≤ Q(1− PR),

σ
minQPR ≤ S ≤ σ

maxQPR,
0 ≤ R ≤ 1,

umin ≤ U ≤ umax.

(4.1)

In the objective functional, E ∈ R
N is a vector representing the coefficients of

the constant function 1 with respect to the basis functions φj . K ∈ R
N×N is

a stiffness matrix arising from the finite element discretization of the negative
Laplacian in Vh, and M ∈ R

N×N is a mass matrix for the identity in Vh.
In the discretized formulation of the constraints, the matrix B ∈ R

3M×2N is
the discretization of the divergence operator (restricted to symmetric stress
tensors), C ∈ R

3M×3M represents the stress-strain relation, D is a (diagonal)
mass matrix for the identity in Wh, and T ∈ R

2N is a discrete representation
of the traction force. The matrices L1 ∈ R

2N1×2N and L2 ∈ R
N2×N with

entries 0 or 1 realize the boundary conditions, where N1 is the number of
node points on ΓD and N2 is the number of node points on ΓN . σ

min and
σ

max are diagonal matrices, representing the corresponding entries of σmin

and σmax. Finally, Q ∈ R
3M×M is an extension matrix and P ∈ R

M×N is
the matrix representation of the projection operator Ph.

The above reasoning shows that after discretization we end up with a
linearly constrained quadratic programming problem for the variable

X = (R,U,Σ,S) ∈ R
3N+6M

with 2N + 3M + 2N1 + N2 equality, 12M inequality constraints and 6N
bound constraints. Note that 2N1 equalities corresponding to the diver-
gence constraint for nodal points in ΓD are actually in the form 0 = 0 and
can be eliminated. In addition, we can eliminate the components of U cor-
responding to nodal points on ΓD and the corresponding bound constraints
(we have to assume umin ≤ 0 ≤ umax in order to obtain feasible points
anyway). Moreover, we can eliminate the components of R correspond-
ing to nodal values on ΓN and the corresponding bound constraints. Since
all values of Σ are determined by the corresponding equality constraints,
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we remove these constraints and replace Σ by CBU in the inequality con-
straints. We consequently end up with a smaller programming problem with
3N + 3M − 2N1 −N2 unknowns, 2N − 2N1 −N2 equality constraints, 12M
inequality constraints, and 6N − 4N1 − 2N2 bound constraints.

The existence of solutions for the reduced programming problem can be
verified in an analogous way to the infinite-dimensional situation under the
assumption that there exists a feasible point.

4.1 Constraint Qualification

For linear constraints, the common notions of constraint qualification such
as linear independence, Mangasarian-Fromovitz, or Slater qualification are
aquivalent. In order to obtain constraint qualification for the linear con-
straints, it suffices to show that the equality constraints are linearly in-
dependent and that there exists a feasible point satisfying all inequalities
strictly. Note again that the feasible set does not depend on the relaxation
parameter ǫ and hence, the constraint qualification is always uniform with
respect to the relaxation.

The linear independence of the equality constraints can be verified by
standard reasoning for finite element discretizations and we therefore turn
our attention to the inequality constraints. In order to verify constraint
qualification, we shall use a natural assumption, namely that the stress and
displacement obtained from a design domain completely filled with material
satisfy the displacement and stress constraints strictly. This assumption is
natural, since one expects the maximal stress and displacement to increase
for decreasing mass. Thus, if the constraints are active at maximal mass
already, it is quite unlikely to find an optimal design with lower mass anyway,
or, in other words, the constraints are too severe to compute a different
optimum. In mathematical terms, the assumption can be formulated as
follows: Let R1 = 1 and let U1 and S1 = boldsymbolΣ1 be the solutions of
the corresponding elasticity problem:

(I − LT
1 L1)B

T S1 = T, DΣ1 − CBU1 = 0, L1U
1 = 0,

which can be shown to be uniquely defined from standard finite element
theory. Then we assume that

σ
minQPR1 < S1 < σ

maxQPR1, umin < U1 < umax, (4.2)

where < means strict inequality for each component. Then we obtain the
following result:

Theorem 4.1. Let (4.2) be satisfied and let β > 0 be sufficiently small.

Then, the constraint set in (4.1) with the elimination of variables and con-

straints as explained above satisfies the linear inequality constraint qualifi-

cation condition.
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Proof. As noticed above, it suffices to find a feasible point satisfying the
constraints strictly. For this sake we choose a density Rη = η1 with η < 1.
Then ‖R1 − Rη‖ = N(1 − η), i.e., the distance to R1 becomes arbitrarily
small as η → 1. Because of continuity, we can find η < 1, and a solution
Uη, Sη = ηΣη of

(I − LT
1 L1)B

T Sη = T, DΣη − CBUη = 0, L1U
η = 0,

such that

σ
minQPRη < Sη < σ

maxQPRη, umin < Uη < umax

holds. Moreover, we have

0 < Rη = η1 < 1

and

−Q(1 − η)1 = −Q(1− PRη) < β(Ση − Sη)

= β(1 − η)Ση < Q(1− PRη) = Q(1 − η)1,

provided β is sufficiently small. Hence, all (reduced) inequality constraints
are satisfied strictly by (Rη,Uη ,Sη ,Ση), which implies the assertion.

4.2 First-Order Optimality

If the constraints satisfy constraint qualification conditions, which indeed
hold under suitable assumptions as verified above, one can formulate first-
order optimality conditions, which must hold for each solution of the opti-
mization problem. We introduce the Lagrangian L and the Lagrange pa-
rameters Λj (whose dimension will be clear from their appearence in L)
via

L = γETR + ǫ
2R

T KR + 1
ǫ
RT (E − MR)+

ΛT
1

(

(I − LT
1 L1)B

T S− T
)

+ ΛT
2 (DΣ − CBU) + ΛT

3 L1U+

ΛT
4 (L2R− 1) − ΛT

5 (Q(1− PR) + β(Σ − S)) +

ΛT
6 (β(Σ − S) − Q(1− PR)) + ΛT

7

(

σ
minQPR− S

)

+

ΛT
8 (S − σ

maxQPR) − ΛT
9 R + ΛT

10(R − 1)+

ΛT
11

(

umin − U
)

+ ΛT
12 (U − umax)

with Λj ≥ 0 for j ≥ 5.
By setting all derivatives with respect to primal variables equal to zero as

well as using the inequalities and complementarity, we obtain the first-order
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optimality conditions:

∇RL = γE + ǫKR + 1
ǫ
(E − 2MR) + LT

2 Λ4 − Λ9 + Λ10+

+PTQT
(

Λ5 + Λ6 + σ
minT

Λ7 − σ
maxTΛ8

)

= 0,

∇UL = −BTCTΛ2 + LT
1 Λ3 − Λ11 + Λ12 = 0,

∇ΣL = DT Λ2 + β(Λ6 − Λ5) = 0,

∇SL = B
(

I− LT
1 L1

)T
Λ1 + β(Λ5 −Λ6) − Λ7 + Λ8 = 0,

(

I − LT
1 L1

)

BTS = T, DΣ − CBU = 0,
L1U = 0, L2R = 1,

−Q(1− PR) − β(Σ − S) ≤ 0, ΛT
5 (Q(1− PR) + β(Σ − S)) = 0, Λ5 ≥ 0,

β(Σ − S) −Q(1 − PR) ≤ 0, ΛT
6 (β(Σ − S) − Q(1 − PR)) = 0, Λ6 ≥ 0,

σ
minQPR − S ≤ 0, ΛT

7

(

σ
minQPR − S

)

, Λ7 ≥ 0,

σ
maxQPR− S ≤ 0, ΛT

8 (σmaxQPR − S) , Λ8 ≥ 0,

−R ≤ 0, ΛT
9 R = 0, Λ9 ≥ 0,

R − 1 ≤ 0, ΛT
10(R − 1), Λ10 ≥ 0,

umin − U ≤ 0, ΛT
11

(

umin − U
)

= 0, Λ11 ≥ 0,

U − umax ≤ 0, ΛT
12 (U− umax) = 0, Λ12 ≥ 0.

5 Solution of the Discretized Problem

5.1 Continuation in ǫ

As motivated in the introduction and in section 3.1 the problem (4.1) will be
solved for a decreasing sequence of ǫ. As ǫ→ 0, in analogy to Γ-convergence
of the perimeter funtctional, we expect convergence of the sequence of the
minimum solutions to a final solution. Moreover, since the double obstacle
term is of leading order in ǫ, such a final solution will have a sharp interface
between material ({ρ=1}) and void ({ρ=0}).

To achieve this we will use a continuation method such that we choose
a decreasing sequence {ǫl} with ǫl → 0 for l = 0, . . . , L, where L describes
the total number of continuation levels. The corresponding optimization
problems are then solved by an interior-point method, as desribed in the
next section. Between the levels ǫ can be reduced, e.g., like ǫl+1 := δǫl with
0 < δ < 1 or like ǫl+1 := (ǫ0)l if 0 < ǫ0 < 1. If we decrease ǫ too slow,
we may expect from theory and observations from numerical test that the
final solution is not changed, but we end up with a possibly unnecessary
high number of levels L. On the other hand if ǫ is decreased too fast, the
optimization process might get stuck in some undesired local minimum, since
the objective functional M(ρ) is turned from convex to concave too quickly.

5.2 Interior-Point Methods

In the last two decades interior-point methods have developed to efficient
methods for large scale nonlinear programming. A major characteristic of
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these methods is that all inequality constraints are satisfied strictly, which
led to the labelling interior-point methods.

For a short introduction we consider the following general optimization
problem:

f(x) → min
x∈Rn

s.t. cI(x) ≥ 0,
cE(x) = 0,

(5.1)

where all appearing functions should be sufficiently differentiable and
cI(x) = (ci(x))i∈I and cE(x) = (ci(x))i∈E denote the inequality and equality
constraints with the corresponding index sets I and E , respectively. This
problem is then modified such that the restricting inequality constaints are
treated implicitly by adding them to the objective functional using some
barrier term. The predominant barrier function is the logarithmic barrier
function and so the new objective is now a sum of the original one and a
logarithmic interior part:

f(x) − µ
∑

i∈I

ln ci(x) → min
x∈Rn

s.t. cE (x) = 0,
(5.2)

where µ > 0 is called the barrier parameter. Minimization of (5.2) for a
decreasing sequence of the barrier parameter µ→ 0 will result in a sequence
of minimizers converging to the minimizer of the original problem (5.1).

In primal-dual methods we treat the primal variables and the dual vari-
ables (the Lagrangian multipliers of the problem) independently. Using the
following notation we state the first order optimality conditions for (5.2):
CI(x) = diag(ci(x), i ∈ I), λE the vector of Lagrange multipliers for the
equality constraints and e a vector of ones in the appropriate dimension:

∇f(x) − µ∇cI(x)TCI(x)−1e−∇cE(x)T λE = 0,
cE (x) = 0.

(5.3)

Alternatively, if we define new variables λI = µCI(x)−1e and consider λ =
(λI ,λE) and c(x) = (cI(x), cE (x)), we can rewrite (5.3) as a system in the
primal variables x and the dual variables λ:

∇f(x) −∇c(x)T
λ = 0,

CI(x)λI − µe = 0,
cE(x) = 0.

(5.4)

The second equation in (5.4) can be interpreted as the perturbed comple-
mentarity condition for the inequality constaints in the KKT conditions
for (5.1). The left-hand-side of (5.4) defines a function Fµ(x,λ). Instead
of minimizing (5.2) for µ → 0, we look for solutions of Fµ(x,λ) = 0 for
µ → 0. For a fixed µ (5.4) can be solved, e.g., using a Newton-type
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method, where the Newton direction (△x,△λ) is defined as the solution
of Fµ(x,λ)′(△x,△λ) = −Fµ(x,λ):





∇2f −∇cTI −∇cTE
∇cIΛI CI 0

∇cE 0 0









△x

△λI

△λE



 = −





∇f −∇cT λ

CIλI − µe
cE



 , (5.5)

where ΛI = diag(λi, i ∈ I) and all arguments in (5.5) are omitted.

5.3 Adaption of the Problem to IPOPT

We solve the problem (4.1) with IPOPT, which is a free available optimiza-
tion code realizing a primal-dual iterior-point method. IPOPT, implemented
by A. Wächter and L. T. Biegler, is able to solve problems of the following
form:

f(x) → min
x∈Rn

s.t. cE(x) = 0,

xmin ≤ x ≤ xmax.

The stopping criterion of IPOPT is defined using the primal-dual equations
(5.4):

Eµ(x,λ) := max

{‖∇f(x) −∇c(x)T
λ‖∞

sd
,
‖CI(x)λI − µe‖∞

sc
, ‖cE (x)‖∞

}

,

where sc and sd are scaling parameters. The optimization process is now
stopped if

E0(x,λ) ≤ e0 (5.6)

is fulfilled, where e0 is a given error tolerance. More information about the
implementation of IPOPT can be found in Wächter and Biegler [32].

General nonlinear programming problems with inequality constraints
cI(x) ≤ 0 can be written in the above framework using slack variables.
So we reformulate (4.1) in the above form by introducing some vector
Z = (Z1,Z2,Z3,Z4) ∈ R

12M of slack variables, leading to:

γETR +
ǫ

2
RT KR +

1

ǫ
RT (E − MR) → min

(R,U,S,Z)∈R3N+15M
(

I − LT
1 L1

)

BT S− T = 0,
−Q(1− PR) − β(CBU − S) + Z1 = 0,
β(CBU − S) − Q(1− PR) + Z2 = 0,

σ
minQPR− S + Z3 = 0,

S− σ
maxQPR + Z4 = 0,

0 ≤ R ≤ 1,
umin ≤ U ≤ umax,

0 ≤ Z.

(5.7)
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Finally we solve a programming problem with 3N + 15M − 2N1 − N2 un-
knowns, 2N+12M−2N1−N2 equality constraints and 6N+12M−4N1−2N2

bound constraints. A similar discrete programming problem for the prob-
blem with the conservative von Mises stress constraints (3.2) can be deduced
in a analogous way.

6 Numerical Results

For the numerical examples we have chosen two simple examples where
the global optimal designs are known on very coarse grids (see [30]), which
provides some reference for our solutions. For sake of simplicity the Young’s
modulus and the Poisson’s ratio of the given material are E = 1N/m2 and
ν = 0.3. We used the plain strain model for the computations and also,
for simplicity, all structures have a unit thikness of 1m and are loaded with
half of the unit load. Reasonable bounds for the displacements u and the
stresses σ are provided by the unique solutions u and σ of the corresponding
elasticity problem when the whole design domain Ω is filled with material
ρ = 1. Then the displacement bounds are e.g. set to

umax
i = −umin

i = 2max{|ui(x)| : x ∈ Ω}, i = 1, 2

and the stress bounds to

σmax
11 = σmax

22 = max{|σ11(x)|, |σ22(x)| : x ∈ Ω},
σmax

12 = σmax
21 = max{|σ12(x)|, |σ21(x)| : x ∈ Ω}

with σmin = −σmax. The von Mises stress bound is given by

Φmax = max{Φ(σ(x)) : x ∈ Ω}.

All numerical examples are performed on a pc using a 2.4 GHz Intel
CPU and 2 GB memory. For the mesh generation and the finite element
part of the computations the software package NETGEN/NGSolve was used.
The optimization part was done using the interior-point code IPOPT. As
IPOPT is used as a ’black-box’, we did not adjust its linear solver (for
systems like (5.5)) and its stopping criterion to our needs. So we stop the
optimization process per continuation level if the stopping criterion (5.6) is
fulfilled with e0 = 10−5 or a maximum number of 200 iterations is reached.
For an approximation of the Hessian of the Lagrange functional a BFGS
routine is used. We want to point out that these numerical examples just
show the potential of this solution approach. Since there was no emphasis
on efficiency so far, the computational times are far from being optimal.
A more sophisticated way to decrease ǫ, a proper stopping criterion and a
linear solver with optimal complexity for the IPOPT package would decrease
the runtimes significantly. So far most of the cpu time is spent in solving
the linear systems like (5.5).
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Figure 1: The short beam

example.

Figure 2: The long beam example.

6.1 A Short Beam Example

Figure 3: Optimal material dis-

tribution.

Figure 4: σ11 of the optimal de-

sign.

As a first example we treat the problem shown in Fig. 1, there the load
condition, bearings and geometry are illustrated, with a design domain of
dimension 2m×1m. Here we consider stress constraints w.r.t. local stresses.
The corresponding bound constraints are:

umax =

(

0.51
0.51

)

m, σmax =





σmax
11

σmax
22

σmax
12



 =





0.5
0.5
0.16





N

m2
,

with umin = −umin and σmin = −σmax. A mesh with 7382 elements is used
for the optimization process, so we finally end up with 122185 unknowns.
In more details we have 3813, 7626, 22146, and 88584 dofs for the density,
displacements, stresses, and slacks respectively. The total number of equality
constraints is 96226 and 111462 for the bound constraints. The scaling
parameter γ of the mass term in the objective is set to γ = 1.5 and we start
the ǫ-continuation with ǫ0 = 1. In Fig. 5 we present a sequence of optimal
designs, corresponding to the continuation levels l = 0, . . . , L with L = 8.
Between the levels ǫ is reduced like ǫl+1 = δǫl with δ = 0.5. The overall
computational time for the 8 levels is about 11 hours and the volume of the
final optimal design is 0.34 m3 (17.2% of |Ω|).

A final design, with the same parameters as above, but after 10 levels can
be seen in Fig. 3. The used mesh has 14182 elements, so the optimization
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Level 0, ǫ = 1. Level 1, ǫ = 0.5.

Level 2, ǫ = 0.25 Level 3, ǫ = 0.125.

Level 4, ǫ = 0.0625. Level 5, ǫ = 0.03125.

Level 6, ǫ = 0.015625. Level 7, ǫ = 0.0078125.

Figure 5: ǫ-continuation over 8 levels.

consists of 234531 unknows (7260, 14520, 42546, and 170184 dofs for the
density, displacements, stresses and slacks respectively), 184725 equality
constraints, and 213744 bound constraints. For 10 levels the process takes
about 17 hours.

Figure 6: Optimal material dis-

tribution for a von Mises con-

straint.

Figure 7: Von Mises stress dis-

tribution.
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Figure 8: x- and y-displacements of the optimal design.

Figure 9: σ11, σ22, and σ12 distribution of the optimal design.

Let us again consider the same example, but now with a von Mises
stress constraint, Φmax = 0.64. On a mesh with 14182 elements we end
up with 291259 unknowns, due to the additional unknowns representing
the conservative von Mises stress approximion. Here 7260, 14520, 42546,
42546, and 184366 dofs are used for the density, displacements, stresses, von
Mises approximation, and slacks respectively. The total number of equality
constraints is 198907 and 227926 for the bound constraints. With γ = 2,
ǫ0 = 1/3 and ǫl+1 = ǫl/2 for L = 10 levels we end up with a final design
as in Fig. 6. Displacements and stresses of the optimal design are shown in
Fig. 7 - Fig. 9. In about 13.5 hours the total volume of the design is reduced
to 0.4 m3 (20% of |Ω|).

6.2 A Long Beam Example

Figure 10: Optimal material

distribution.

Figure 11: Von Mises stress dis-

tribution.

For the second example we consider the load condition, bearings and
geometry shown in Fig. 2, where the dimension of the design domain are
3m×1m. Here we choose to calculate an optimal design w.r.t. bounded von
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Mises stress and again we list the corresponding bound constraints:

umax =

(

0.5
0.5

)

m, Φmax = 0.71
N

m2
,

with umin = −umin. For the discretization and the optimization process we
use a mesh with 11058 elements, which results in 227191 unknowns, 5691,
11382, 33174, 33174 and 143754 dofs for the density, displacements, stresses,
conservative von Mises approximation and slacks, respectively. Here we end
up with a total number of 155152 equality constraints and 177900 bound
constraints. The two parameters, determining the optimization process, are
chosen as follows: γ = 2, and ǫ0 = 1/3. Again ǫ is divided by 2 between two
levels and the maximal number of levels is set to L = 8. As before we show
a sequence of optimal designs in Fig. 12. For solving 8 levels it takes about
15 hours and the volume is reduced to 0.75 m3 (23.5% of |Ω|).

Level 0, ǫ = 0.3333 Level 1, ǫ = 0.1667.

Level 2, ǫ = 0.0833 Level 3, ǫ = 0.0416.

Level 4, ǫ = 0.0208. Level 5, ǫ = 0.0104.

Level 6, ǫ = 0.0052. Level 7, ǫ = 0.0026.

Figure 12: ǫ-continuation over 8 levels.

In Fig. 10 we see the solution of the same problem, but with 17291 el-
ements and 355097 unkowns (8849, 17698, 51873, 51873, and 224783 dofs
for the density, displacements, stresses, convervative von Mises stress ap-
proximation, and slacks, respectively. The number of equalilty constraints
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is 242502 and 277877 for the bound constraints. After about 25 hours we
receive the plotted optimal design.

Figure 13: x- and y-displacements of the optimal design.

Figure 14: σ11, σ22, and σ12 distribution of the optimal design.

7 Conclusions

A new method for solving structural topology optimization problems with
stress constraints has been presented. The reformulation of the problem and
the phase-field relaxation leads to a parameter-dependent family of large-
scale optimization problems satisfying uniform constraint qualification. Us-
ing parameter continuaton it is possible to compute optima in a robust way
with reasonable effort (e.g. compared to mixed linear programming tech-
niques).

So far no particular emphasis has been laid on the efficient solution of
the discretized problems for very large number of unknowns (as appearing
e.g. in 3D applications), but there is a lot of potential to speed up the
solution techniques, which will be investigated in future research.
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