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Abstract

We use a phase-field model to simulate displacement flow between a Newto-
nian and a viscoelastic fluid in a two-dimensional channel. The viscoelastic
fluid is described by the Oldroyd-B model and the stress singularity at the
contact line is regularized by the Cahn-Hilliard diffusion. In a small region
near the contact line, the flow field features a large shear rate that produces
a high polymer stress even at relatively low wetting speed. This polymer
stress pulls the interface toward the viscoelastic fluid. As a result, the vis-
cous bending at the contact line is enhanced when the advancing fluid is
viscoelastic and weakened when the receding fluid is viscoelastic. However,
the overall effect is limited by the small size of this strong shear region.
These results are consistent with experimental observations. By examining
the flow and stress field in the neighborhood of the contact line, we find that
viscoelastic stress growth within a finite residence time provides a plausible
explanation of the curious experimental observation that the contact line is
affected by the viscoelasticity of the oligomeric solvent rather than the high
molecular-weight polymer solute.
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1. Introduction

The contact-line dynamics plays an important role in many industrial
applications such as coating, printing, and enhanced oil recovery. At moving
contact lines, the conventional Navier-Stokes formulation runs into a non-
integrable stress singularity [1, 2]. Different models have been proposed to
relieve the stress singularity, e.g., by using a precursor film [3], slip [4], and
diffusion [5]. For Newtonian fluids, the qualitative behavior of the wedge-like
flow in the outer region does not depend on the detailed physics in the inner
region where the singularity is relaxed [4, 6]. It is therefore not surprising
that different models generate consistent results at the macroscopic length
scale when film thickness, slip length, and diffusion length are appropriately
matched [3, 7].

The liquids in the aforementioned applications are often non-Newtonian,
and their rheology is known to affect the outer flow at the contact line.
For example, Min et al. [8] compared the dynamic wetting in different flow
geometries in the sessile drop method and the Wilhelmy plate method for
measuring surface tension. They reported that the wetting dynamics, i.e., the
relationship between the apparent contact angle and the contact line speed,
is independent of flow geometry in Newtonian fluids, while it is dependent
on flow geometry in non-Newtonian fluids, including polymer solutions and
a suspension of silica nanoparticles. The explanation lies in the fact that the
macroscopic flow geometry influences the shear rate and effective viscosity
in the bulk flow, and therefore affects the whole wetting dynamics in the
non-Newtonian fluids.

Perhaps more interestingly, the structure and rheology of complex fluids
may also affect the inner region of contact line. Ramé et al. [9] found that the
length scale and microscopic contact angle that characterize the inner physics
have a detectable dependence on the spreading velocity when a polydimethyl-
siloxane (PDMS) liquid displaces air. They explained this dependence by the
additional time scale brought into the inner region by the PDMS polymer.
As the silicone oils used have very short relaxation times, one may expect
even larger effects for polymeric liquids having stronger elasticity.

Of the numerous studies on non-Newtonian effects in coating flows, most
have focused on the coated film [10, 11, 12, e.g.] and only a few have dealt
directly with the moving contact line. Frayssee and Homsy [13] studied the
fingering instability of a Boger fluid in spin coating. In their experiment, the
Weissenberg number was small and the Boger fluid behaved essentially as its

2



Newtonian solvent. Garoff and co-workers conducted a series of experiments
on dynamic wetting by immersing a cylinder into a bath of polymer liquid
at a constant speed [14, 15, 16, 6, 17]. By comparing the steady interface
shape with that from the asymptotic analysis in Newtonian fluids [18], they
observed that the non-Newtonian effect was confined to the close vicinity
of the contact line. In this inner region, the viscous bending of interface is
reduced by shear thinning and enhanced by viscoelasticity [15, 16].

A surprising discovery of these experiments is the following. The Boger
fluids used consist of high molecular-weight (HMW) polystyrene (PS) or
polyisobutylene (PIB) dissolved in their respective oligomeric base fluids [19].
When the Boger fluids are replaced by their oligomeric solvents, the same
amount of extra bending of the interface is obtained. Apparently, the effect
does not arise from the HMW polymer solute but from the lower molecular-
weight solvent. This contravenes the conventional wisdom that viscoelastic
effects are expected to first arise from the longest polymer relaxation times.
Up to now this has remained a mystery.

The numerical simulation of dynamic wetting in viscoelastic fluids is com-
plicated by the fact that unlike its Newtonian counterpart, the macroscopic
flow is now sensitive to the detailed physics in the inner region. For ex-
ample, Spaid and Homsy [20] simulated spin coating and reported that the
viscoelastic effect on the capillary ridge differed for the precursor film model
and the slip model. So it is natural to expect different results from dif-
ferent contact-line models. In this paper, we will study how viscoelasticity
affects the contact line dynamics in the phase-field model, and whether this
model correctly predicts experimental observations. Our results suggest an
explanation for the aforementioned mystery.

2. Formulations

We consider the displacement between an immiscible pair of fluids, one
Newtonian and the other viscoelastic (Oldroyd-B), in a two-dimensional
channel between two parallel plates (Fig. 1). We introduce a phase-field
variable φ to describe the diffuse interface, φ = 1 in the viscoelastic fluid
and φ = −1 in the Newtonian fluid. The governing equations consist of
the Cahn-Hilliard equation for the interface, the momentum equation, the
incompressible continuity equation, and the constitutive equation for the vis-
coelastic fluid:

∂φ

∂t
+ v · φ = γ∇2G, (1)
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Figure 1: Steady displacement flow of two immiscible fluids between parallel plates,
viewed in a reference frame attached to the steadily moving contact line. θS is the
static contact angle, and θ gives the slope of the interface.

ρ

(

∂v

∂t
+ v · ∇v

)

= ∇(−pI + τ ) + G∇φ, (2)

∇ · v = 0, (3)

τ p + λHτp(1) = µp

[

∇v + (∇v)T
]

, (4)

where

G = λ

[

−∇2φ +
φ(φ2 − 1)

ǫ2

]

(5)

is the chemical potential and

τ =

(

1 + φ

2
µs +

1 − φ

2
µn

)

[

∇v + (∇v)T
]

+
1 + φ

2
τ p (6)

is the total stress. Here γ is the Cahn-Hilliard mobility parameter, ǫ is
the capillary width which is proportional to the interfacial thickness, λ is
the mixing energy density which is related to interfacial tension σ by σ =
2
√

2
3

λ
ǫ

[21]. τ p is the polymer stress, λH is the polymer relaxation time, µs

and µp are the solvent and polymer viscosities of the Oldroyd-B fluid, µn

is the viscosity of the Newtonian fluid. The subscript (1) denotes the upper
convected derivative [22]. Yue et al. [7] showed that the mobility parameter
γ together with an effective viscosity µ defines a diffusion length lD =

√
γµ

that plays a similar role to the slip length in the slip models. A more detailed
discussion of the phase-field theory for contact lines can be found in [7, 23, 24].
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The following boundary conditions are imposed on the solid substrate:

v = −V ex, (7)

n · ∇G = 0, (8)

λn · ∇φ + f ′
w(φ) = 0, (9)

where V is the wall speed, n is the outward pointing normal to the boundary,
and fw is the wall energy that is related to the static contact angle θS by [7]

fw(φ) = −σ cos θS
φ(3 − φ2)

4
. (10)

Equation (7) is the no-slip condition and the Eq. (8) enforces zero mass flux
across the solid boundary. The contact angle is imposed through Eq. (9).
Here we neglect the wall energy relaxation [23] and assume that the micro-
scopic contact angle is fixed at θS. Parabolic velocity profiles are imposed at
the ends of the channel in a way such that the walls are in motion and the
interface is stationary.

In this work we neglect inertia as it does not contribute to the discussions
on viscoelasticity. The problem is governed by the following dimensionless
groups:

Ca =
µV

σ
(capillary number), (11)

Cn =
ǫ

W
(Cahn number), (12)

S =
lD
W

=

√
γµ

W
, (13)

θS (static contact angle), (14)

η =
µn

µs + µp

(viscosity ratio), (15)

β =
µs

µs + µp

(retardation-relaxation time ratio), (16)

Wi =
λHV

W
(Weissenberg number), (17)

where µ is a properly defined effective viscosity, W is the macroscopic length
scale, which we take to be the half channel width. Here S is the dimensionless
diffusion length, a diffuse-interface counterpart of the slip length.
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Initially the interface is vertical at the middle of the domain, and we
abruptly impose the prescribed parabolic velocity profiles at the ends of the
channel as well as the corresponding wall velocity V . The interface deforms in
time until a steady state is achieved. The governing equations are solved by
a finite-element method on an adaptive triangular mesh that adequately re-
solves the interfacial region. The streamline upwind Petrov-Galerkin method
is used for the constitutive equation (4) to improve stability. All the time-
dependent equations are integrated using a second-order accurate, fully im-
plicit time-marching scheme. Details of the numerical algorithm and valida-
tion can be found in [25].

3. Results and discussions

We consider a channel of dimensions 6W × 2W , which is long enough
so that the fully developed velocity profiles at the ends are not affected by
the interface at the center of the channel. Due to symmetry, only the lower
half of the domain is calculated. The following parameters are chosen unless
otherwise specified: θS = 90◦, β = 0.5, η = 1, Cn = 0.005, S = 0.01. Note
that we have matched the total viscosity of the two fluids: µn = µs +µp = µ,
which is used as the effective viscosity in defining Ca and S. Besides, the
interfacial thickness is small enough to satisfy the criterion Cn < 4S, such
that the sharp interface limit is achieved [7].

The effect of viscoelasticity on the displacement flow is manifested by
the shape of the interface. Figure 2(a) shows that when the advancing fluid
is Oldroyd-B (the O/N curves), increasing Wi causes the interface to bend
more into the displacing fluid. This trend is reversed when the receding fluid
is Oldroyd-B (the N/O curves). The interface slope θ as a function of y is
plotted in Fig. 2(b) to further illustrate the bending of the interface. Judging
from the slope of the curves near y = 0, the O/N interface has the highest
curvature while the N/O interface has the lowest curvature near the contact
line. In other words, the viscoelasticity in the advancing fluid enhances vis-
cous bending while the viscoelasticity in the receding fluid reduces viscous
bending. The former is consistent with the experimental observations by
Wei et al. [16], where the advancing fluid is viscoelastic. Figure 3 shows the
variation of the interface shape when the viscoelastic parameters Wi and β
are changed. Overall, the interface only deviates mildly from the Newtonian
case, which is again consistent with the experimental observations. In the fol-
lowing, we will explore the detailed flow field and analyze how viscoelasticity
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Figure 2: Interface (a) shapes and (b) slopes at Ca = 0.02. O/N refers to the
Oldroyd-B fluid displacing the Newtonian fluid and O/N means the inverse. The
displacing fluid is to the left of the interface in (a). θ is the angle subtended by
the tangent line to the interface and the solid substrate, as illustrated in Fig. 1.

affects the bending of the interface.
The flow field, as illustrated in Fig. 4(a), has a stagnation point at B.

The incoming streamlines AB and CB collide and then depart hyperbolically,
creating a planar extensional flow at B. Note that the streamlines closely
resemble those of an advancing meniscus over a precoated thin film [26], if we
view BC as the thin film and AB as the free surface moving rightward. At B,
the polymers experience strong stretching and develop large stress gradients,
limiting the computable Wi to Wi ≤ 0.1. But the extensional stress is
spatially localized and has little effect on the interface. The region below B
and next to the solid wall is characterized by strong shearing. This flow field
is essentially the same as that in the Newtonian system. As Yue et al. [7]
demonstrated, the thickness of this region is roughly D ≈ 2.5lD, lD being the
diffusion length. Thus the local shear rate is V/D ≈ 1

2.5S
(V/W ) = 40(V/W )

in this calculation with S = 0.01. This estimation is borne out by the
numerical data of Fig. 4(b), where we have drawn a box around the region of
strong shear. The strong shear produces a large first normal stress difference
in the polymer, and the polymer stress τpxx reaches a high level as shown in
Fig. 4(c). This extra stress pulls the interface toward the viscoelastic fluid
(Fig. 4(d)), which has to be balanced by the Laplace pressure generated by
additional bending of the interface. If the Oldroyd-B fluid is receding, τpxx
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Figure 3: Variation of the interfacial shape at the contact line with the viscoelastic pa-
rameters. ∆x is calculated by subtracting the x coordinate of the interface in N/N, and
Ca = 0.02. (a) Wi varies while β = 0.5 is fixed. (b) β varies while Wi = 0.02 is fixed.

will appear on the right side of the interface, and will pull toward the right
against the viscous stress and therefore reduce viscous bending. Thus, τpxx

is the cause of the effects observed in Fig. 2. However, because of the small
size of this high shear region, the overall effect on the interface is mild.

The numerical predictions above agree qualitatively with the experimen-
tal observations of Wei et al. [16, 6, 17]. To connect the simulations to reality,
we note two points about the model parameters. First, Yue et al. [7] showed
that the length D corresponds to the slip length ls in sharp-interface models.
By equating the two, the phase-field model generates the same result as the
Cox theory [27]. Second, the slip length ls in real flows tends to be much
smaller than the numerical value of lD used in our calculations. Take the
immersing tube experiments for example [9]. The macroscopic length scale
is the capillary length, on the order of 1 mm. The slip length ls ranges from
1 to 102 nm. Thus the ratio δ = ls/W falls between 10−6 and 10−4, 2 to 4
orders of magnitude smaller than the numerical S value. This means that in
the experiment, the local shear rate near the contact line may get quite high.
As to be seen below, this will be a key factor in explaining the anti-intuitive
experimental observation of viscoelastic effects due to the solvent.

In the following, we interrogate the flow and transient stress growth in
the neighborhood of the contact line in order to rationalize the observation
that the viscoelastic effect on the contact line comes not from the HMW
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Figure 4: Flow field at the contact line when an Oldroyd-B fluid (left) displaces a New-
tonian fluid (right). Ca = 0.02, Wi = 0.02. (a) The velocity field illustrated by vectors.
The two more or less vertical curves, for φ = ±0.9, roughly mark the boundaries of the
diffuse interface, and the other three solid curves indicate streamlines in the extensional
and shearing region of the flow. (b) Contours of the dimensionless shear rate ∂u

∂y
/( V

W
).

The dashed box indicates the high shear region in which the shear rate is above half of
the maximum value in most of the area. (c) Contours of the xx component of the dimen-
sionless polymer stress: τpxx/(µ V

W
). (d) A cartoon showing the extra bending of interface

due to polymer stress.

polymer solute but the oligomeric solvent [19, 28]. For this purpose, we first
note that upon inception of a simple shear flow (u, v) = (0, yγ̇), the normal
stress τpxx grows in time as [22]

τpxx =
[

λH γ̇ − γ̇(t + λH)e−t/λH

]

2µpγ̇. (18)
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In Fig. 4(b), the strong shear is limited to a narrow region centered at the
contact line, and a polymer molecule has a finite residence time inside this
region: tr ≈ αD

V
, where α is the aspect ratio of the high-shear region in

Fig. 4(b). If we define a local Weissenberg number Wi∗ = λH γ̇ ≈ λH
V
D

, it
can be shown that the polymer stress achieved within the residence time tr
is

τpxx =
[

Wi∗ − (α + Wi∗)e−α/Wi∗
]

2µpγ̇. (19)

If we fix γ̇ and vary the polymer relaxation time λH , τpxx achieves a max-
imum at an intermediate Wi∗ = Wi∗c = 0.5576α. Polymer stress τpxx is
proportional to Wi∗ when Wi∗ ≪ Wi∗c and proportional to 1/Wi∗ when
Wi∗ ≫ Wi∗c . Therefore, the high shear region of Fig. 4 only favors a certain
range of polymer relaxation times. If we take α ≈ 2 according to the shear
rate contours to the left of the interface (c.f. the dashed box in Fig. 4b), the
maximum viscoelastic effect is attained at Wi∗c ≈ 1. Note that this Wi∗c is
an order-of-magnitude estimation since the flow field near the contact line is
not exactly simple shear. In the simulations (Figs. 2 and 3a), for example,
the viscoelastic effect increases with Wi up to Wi = 0.1, which corresponds
to Wi∗ = 4. Possibly it peaks at a higher Wi, which is beyond the capability
of our numerical tool.

For typical experimental parameters V = 5 × 10−6 m/s and D = 10−8

m, this Wi∗c corresponds to a critical relaxation time λHc ≈ 0.002 s, which
is of the same order as the relaxation times of the oligomeric PIB and PS
solvents. On the other hand, the relaxation time of the HMW polymers
in the Boger fluids ranges roughly from 0.02 s to 3 s, much larger than λHc.
Therefore, in the low speed experiments by Garoff and co-workers, the strong
shear in the inner region only excites the elastic modes in the solvent while
still keeping the HMW polymers coiled. This explains why the contact line
is affected by the non-Newtonian rheology of the oligomeric solvent, not the
HMW polymeric solute.

We should point out that most experiments are done with Boger fluids
in air, and the contact angles are very close to 0◦. The phase-field model
imposes the contact angle through the normal gradient of φ, whose value is
also affected by the φ profile across the diffuse interface if θS 6= 90◦. If θS

is very close to 0◦ or 180◦, the interface is nearly parallel to the wall and
the normal gradient of φ is subject to large numerical errors. The results
become unreliable in such cases. In general, we can handle the contact angles
θS ∈ [15◦, 165◦] with confidence. Another source of numerical error is the
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vanishingly small air-liquid viscosity ratio. These errors may contaminate the
already minute viscoelastic effects and make the analysis unreliable. Figure
5 shows a simulation using parameters closer to the experimental ones. We
can see that the viscoelastic curves almost coincide with the Newtonian one,
and it is difficult to tell whether this is physical or due to numerical errors
associated with the small η and the relatively small θS. Fortunately, these
deficiencies do not affect the qualitative conclusions made with θS = 90◦ and
η = 1.
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Figure 5: Interface shapes at a small contact angle and a small viscosity ratio. θS = 30◦,

β = 0.5, η = 0.02, S = lD/W = 0.01, Ca =
(µs+µp)V

W
= 0.1. Note that lD is defined as

lD =
√

γµ =
√

γ
√

µn(µs + µp) for unmatched viscosities [7].

Finally, we note that Cahn-Hilliard diffusion is a phenomenological mech-
anism used to explain the transport of fluids near the contact line. As such,
it does not necessarily reflect molecular-scale physics in reality. For exam-
ple, in the inner region, the fluid particles go across the diffuse interface
by convection and then come back by diffusion. In simulating liquid-vapor
flows, this constitutes a reasonable representation of evaporation and con-
densation [29, 30]. For the polymer solution in the present study, however,
such mass transport does not have a physical basis. Then where do the
polymers go in reality after crossing the interface? One possible scenario is
for the polymers to be simply left on the solid substrate, similar to what
happens to DNA molecules during molecular combing, spin-stretching, and
air-blowing [31, 32].
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4. Summary

In this paper, we studied the viscoelastic effects on moving contact lines
in the context of phase-field modeling. Unlike slip models, the phase-field
model reveals detailed flow patterns in the inner region of the contact line,
which feature strong shearing below a stagnation point. This enables us
to capture qualitatively the viscoelastic effects observed in the experiments.
First, the polymer stress generated in the inner region tends to enhance
bending if polymers are on the advancing side of the interface, and reduce
bending if the polymers are on the receding side. However, due to the small
size of the inner region, the effect on the macroscopic flow is small. Second,
due to the limited residence time in the inner region, the strong shear flow
only highlights the relaxation modes with effective Weissenberg number close
to one. As a result, the observed viscoelastic effects actually come from the
weakly elastic oligomeric solvent of the Boger fluids rather than the HMW
polymers. Finally, we emphasize the phenomenological nature of the phase-
field model. The microscopic physics in the inner region of the contact line is
unknown, and maybe unknowable. The model prediction is not intended as
a true picture of that. Rather, it is used to construct a plausible explanation
of the experimentally observed viscoelastic effects on moving contact lines.
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