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In the presence of sufficiently strong surface energy anisotropy the equilibrium
shape of an isothermal crystal may include corners or edges. Models of edges have,
to date, involved the regularisation of the corresponding free boundary problem
resulting in equilibrium shapes with smoothed out edges. In this paper we take a new
approach and consider how a phase-field model, which provides a diffuse description
of an interface, can be extended to the consideration of edges by an appropriate
regularisation of the underlying mathematical model. Using the method of matched
asymptotic expansions we develop an approximate solution which corresponds to a
smoothed out edge from which we are able to determine the associated edge energy.

Keywords: Anisotropy, Interface, Phase-Field, Regularisation, Surface Energy

1. Introduction

The effect of anisotropic surface energy on determining the equilibrium shape of a
solid crystal in contact with its own liquid phase is a classical problem in material
science. The anisotropy of the surface energy of the interface is an expression of the
underlying symmetry of the atomic lattice in the crystal. This, in turn, affects the
macroscopic shape of the equilibrium interface. This shape is a circle (or sphere in
three dimensions) in the absence of anisotropy. The presence of anisotropy changes
the shape and, for strong anisotropy, it may be energetically favourable for the
interface to exclude a range orientations (so called ‘missing orientations’) that cor-
respond to higher surface energies, resulting in the formation of corners, edges or
facets in the interface shape.

This situation has been studied for over a century, dating back to Gibbs (1878)
and Curie (1885). The first solution was given by Wulff (1901) using the well known
Wulff construction which employs the polar plot of the surface energy. The Wulff
theory was reviewed and refined by Herring (1951) and subsequently further inter-
pretations have been developed by Burton, Cabrera & Frank (1951), Frank (1963),
Hoffmann & Cahn (1972) Cahn and Hoffmann (1974) and Andreev (1981). In two
dimensions the surface energy, γ(θ), may be expressed as dependent on the polar
angle of the normal vector to the interface, θ. The equilibrium theory shows that
interfaces includes corners when the so-called ‘surface stiffness’, γ+γθθ, is negative.

The above developments are based on macroscopic models in which the interface
is represented as a surface with no thickness, so-called ‘sharp interface’ models.
The notion that an interface has an intrinsic thickness dates back to Lord Rayleigh
(1892) and van der Waals (1893) in the context of an interface between two fluids.
Since then this notion has been generalised to a wide range of interfaces and phase
transitions, see Rowlinson and Widon (1989) for a comprehensive review. In the last
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2 A. A. Wheeler

two decades these ideas have been applied to solid-liquid interfaces using so-called
phase-field models. These models introduce an order parameter, φ, known as the
phase-field. The phase-field takes a constant prescribed value in each bulk phase.
Interfaces are represented as regions in which the value of the phase field changes
between the bulk phase values. The contours of the phase field describe the shape
and location of the solid-liquid interface. These models date back to Caginalp (1985,
1986) and Langer (1986). They can be considered as a mathematical device that
allows a reformulation of the free-boundary problems associated with the sharp
interface formulation. They have been successfully developed to describe a wide
range of phase transitions, including eutectic and peritectic alloys Karma (1994),
Wheeler et al (1996), Nestler & Wheeler (1998). They have also been used to model
numerically a wide range of microstructure including dendritic growth, Kobayashi
(1992), Wheeler et al (1993), Karma & Rappel (1997) and Ostwald ripening, Warren
and Murray (1996).

Surface energy anisotropy was first included in phase-field models by Kobayashi
(1992). Subsequently, Wheeler and McFadden (1996, 1997) made a connection with
the Cahn-Hoffman ξ-vector which provides a powerful mechanism to understand
anisotropic interfaces in the context of a phase-field model.

The dynamic evolution of an interface with anisotropic surface energy is problem
that has been extensively studied. A particularly interesting situation is the evolu-
tion of a planar interface in a direction for which the surface stiffness is negative,
and corresponds to a missing orientation. In this case the underlying mathematical
problem is a backward parabolic partial differential equation, resulting in an ill-
posed problem so that small wave length disturbances grow preferentially causing
”blow up” of the solution on the smallest length scale. This occurs in both the free
boundary formulation, Di Carlo et al (1992) and the phase-field model, Wheeler
(1999).

To date, the focus has been on the free boundary formulation which involves ap-
plying a regularisation by including higher terms to the surface energy, see Stewart
& Goldenfeld (1992), Liu & Metiu (1993), Golovin et al (1998, 1999, 2001, 2003).
This may involve adding surface diffusion or evaporation or more simply allowing
the surface energy to depend also on curvature so that γ = γ̃(θ) + βK2, where K is
the curvature of the interface and β is a constant. This can be expected to prevent
the formation of corners by making high curvature of the interface energetically
unfavourable thus smoothing out the corners in the equilibrium shape and damp-
ing the growth of short wave length disturbances in the evolution of an interface.
Recently, Spencer (2004) found asymptotic solutions that describe the shape of a
smoothed corner in the equilibrium shape in the limit β → 0.

In this paper we consider the regularization of the phase-field model to inves-
tigate the smoothing of corners. We confine our attention to two-dimensional in-
terfaces and build on the anistropic phase-field model that employs the generalised
ξ-vector of Wheeler and McFadden (1996, 1997). We show that in the limit of the
coefficient of the regularising term going to zero a thin edge region is established
within the interface which connects the two adjacent interfaces. Within the edge
region the interface orientation varies smoothly through the range of missing orien-
tations predicted by both the free-boundary and phase-field models in the absence
of any regularisation. We use the method of matched asymptotic expansions to find
an asymptotic solution in the five different adjacent regions comprising the two bulk
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phases, the two adjoining interfaces interfaces and the edge region. In the edge re-
gion itself we derive, at leading order, a nonlinear fourth order partial differential
equation for the interface orientation. Despite the nonlinearity we are able reduce
its solution to a single numerical quadrature. The edge problem has the character to
a phase transition of an interface and is governed by a steady Allen-Cahn equation
where the double-well nature of the associated potential is related to the form of
γ(θ). This analogy of the edge to a phase transition at an interface was first made
by Cabrera (1963) and later by Stewart and Goldenfeld (1992) in the context of the
sharp interface model. We go on to define and evaluate the edge energy associated
with the presence of the edge region. In addition, we show that there is an under-
lying stress tensor associated with the regularised phase-field equation, which is a
natural extension of the stress tensor for the the phase-field model in the absence
of regularisation, Wheeler and McFadden (1997).

In the next section we set out the basic elements of the Cahn Hoffman ξ-vector
theory developed for the sharp interface model. We also describe the phase-field
model and how it can be extended to the anisotropic case by the introduction of
a generalised ξ-vector. In section 3 we formulate the regularisation of this model
appropriate to the consideration of edges. In section 4 we employ the method of
matched asymptotic expansions to analyse corners and compute the corner energy.

2. Theory of Interfaces with Anisotropic Surface Energy

(a) Sharp Interface Theory: the ξ-vector

Here we consider the isothermal equilibrium shape of a solid in contact with its
liquid phase when the surface energy of the solid/liquid interface, γ, depends on the
local orientation of the interface. We restrict our consideration to a cylindrical solid
crystal. Specifically, the interface, I, is considered to be a cylindrical surface whose
cross-sectional shape is represented as a curve, S, in the (x, y)-plane, see Figure 1.
An edge in I is represented by a straight line parallel to the z-axis emanating from
a corner in S at which its gradient is discontinuous.

In the simple case where the surface energy is isotropic (i.e., independent of local
interface orientation) the equilibrium shape, S, is a circle, whose radius R̂ is related
to the temperature of the system, T̂ , through the Gibbs-Thomson equation

γ̂0K = ∆f̂ =
L̂(T̂M − T̂ )

T̂M

. (2.1)

Here γ̂0 is the value of the surface energy, K,= 1/R̂, is the curvature of the interface,
∆f̂ is the free energy density difference between the solid and liquid phases, L̂ is
the latent heat per unit volume, and T̂M is the equilibrium melting temperature
of the material. The Gibbs-Thomson equation results from minimising the total
free energy of the system, comprising the contributions from the two bulk phases
and the interface through its surface energy, subject to the constraint of constant
volume of solid.

When the surface energy depends on the local orientation of the interface we
represent it by

γ̂ = γ̂0Γ(~n), (2.2)
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4 A. A. Wheeler

where Γ(~n) describes the dependence of the surface energy on the orientation of the
interface through the vector ~n, the outward unit normal to the solid/liquid inter-
face. In this situation Cahn and Hoffman (1974) showed that the Gibbs-Thomson
equation (2.1) becomes

∇S · ~ξ =
L̂(T̂ − T̂M )

T̂M

. (2.3)

Here ~ξ is the so-called Cahn-Hoffman ξ-vector and ∇S · is the surface divergence
operator on the interfacial surface S. Taylor et al (1992) provided the following
convenient definition of the ξ-vector: First extend the domain of the argument of Γ
from unit to general vectors by making a homogeneous degree one extension:

Γ(~p) = |~p|Γ
(

~p

|~p|

)
, (2.4)

for all non-zero vectors ~p. With this definition the Cahn-Hoffman ξ-vector is defined
by

ξi = γ̂0
∂Γ(~p)
∂pi

, (2.5)

where subscript i represents the i’th component of a vector. It follows from this
definition that the ξ-vector has the properties

γ̂ = ~ξ · ~n, dγ̂ = ~ξ · d~p, 0 = ~p · d~ξ. (2.6)

The above definition (2.5) for ~ξ in fact holds more generally for fully three di-
mensional interfaces. However, in the cylindrical case, if we express the anisotropy
through the dependence of γ on the angle of the unit normal, ~n, to (say) the x-axis,
denoted by θ, then ~ξ can be expressed as

~ξ = γ(θ)~er + γθ(θ)~eθ, (2.7)

where ~er and ~eθ are the polar unit vectors associated with θ. It follows that the
modified Gibbs-Thomson equation (2.3) is

[γ̂ + γ̂θθ]K =
L̂(T̂ − T̂M )

T̂M

. (2.8)

There is geometrical interpretation of the ξ-vector which follows from its defin-
ition, given by equation (2.5), in which it is described as a vector perpendicular to
the inverse γ polar plot: r = 1/γ̂(θ).

Equation (2.3) is satisfied by ~x ∝ ~ξ and thus the interfacial shape, S, is given
by ~ξ itself. Specifically, the ξ-vector plot, defined by the locus of ~ξ as a function
of θ, describes S. Edges form in the interface shape when the inverse gamma plot
becomes non-convex. This corresponds to γ̂ + γ̂θθ becoming negative for a range of
interfacial orientations, θ. In this situation the ξ-vector plot becomes multi-valued,
developing ”wings”. This is shown in Figure 2 for the case Γ(θ) = 1+0.2 cos(θ). The
equilibrium shape comprises the inner envelope with the orientations corresponding
to a wing absent resulting in a point of discontinuity of the gradient and hence a
corner in S. At the corner the ξ-vector (and hence S) is nevertheless continuous. We
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Phase-field Theory of Edges in an Anisotropic Crystal 5

will denote ~ξ at the corner by ~ξ?, it is determined by a common tangent construction
on the inverse gamma plot.

For an isotropic surface energy the minimisation of the total energy associated
with the interface is accomplished by reducing its overall length, which results in
a surface tension force acting within the local tangent plane of the interface. The
presence of surface energy anisotropy means that the minimisation of the surface
energy of an interfacial element can be achieved by rotation as well as length con-
traction. Thus the surface tension force no longer remains confined locally to the
tangent plane of the interface. Cahn and Hoffman showed that the surface tension
force, ~dF , acting on an interfacial element is given by

~dF = ~ξ × d~l, (2.9)

where d~l represents a line element in I. At an edge the balance of forces from the
two adjoining portions of the interface results in

(~ξ1 − ~ξ2)× ~k = 0, (2.10)

where ~ξ1 and ~ξ2 are the ξ-vectors of each interface evaluated at the corner and
~k is the tangent vector to the edge, being the unit vector in the z-direction. The
continuity of ~ξ at an edge is an expression of the local force balance there. In Figure
3 we show the configuration of an edge. Using (2.7) we can express the common
value of the ξ-vector, ~ξ?, in terms of ~ξ at each of the two adjacent interfaces in
terms of the basis unit vectors ~N and ~M shown in Figure 3. Thus

~ξ? = ~ξ1 = [Γ(θ1) cos(θ1)− sin(θ1)Γ′(θ1)] ~N + [Γ(θ1) sin(θ1) + cos(θ1)Γ′(θ1)] ~M,(2.11)
~ξ? = ~ξ2 = [Γ(θ2) cos(θ2)− sin(θ2)Γ′(θ2)] ~N − [Γ(θ2) sin(θ2) + cos(θ2)Γ′(θ2)] ~M.(2.12)

Considering the orientation of ~N and ~M we have that ~ξ1 · ~M = ~ξ2 · ~M = 0 which
gives that

Γ(θ1) sin(θ1) + cos(θ1)Γ′(θ1) = 0 (2.13)
Γ(θ2) sin(θ2) + cos(θ2)Γ′(θ2) = 0 (2.14)

The force balance (2.10) may then be expressed as

Γ(θ1) cos(θ1)− sin(θ1)Γ′(θ1) = Γ(θ2) cos(θ2)− sin(θ2)Γ′(θ2) (2.15)

Eliminating Γ′(θ1) and Γ′(θ2) between (2.13), (2.14) and (2.15) gives the identity

ξ? =
Γ(θ1)

cos(θ1)
=

Γ(θ2)
cos(θ2)

, (2.16)

where ξ? = |~ξ?|. This provides a relation between θ1 and θ2 as a result of the force
balance at the edge.

(b) Phase-field Model

(i) Isotropic Surface Energy

We introduce a continuous phase-field function whose value denotes the state
of the system at each point in space: φ = 1 is liquid, φ = 0 solid and intermediate
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6 A. A. Wheeler

values occur through interfaces. The dimensional Helmholtz free energy functional
is assumed to be given by

F =
∫
L(φ,∇φ)dV, (2.17)

where the free energy density, L(φ,∇φ), is defined by

1
2
η̂2[Γ(∇φ)]2 + f̂(φ, T̂ ). (2.18)

Here η̂ is a constant, Γ(∇φ) is defined by (2.4) and f̂(φ, T̂ ) is the bulk free energy
density. The governing equation is then given by a simple rate equation which
ensures that Helmholtz free energy of the system decreases with time

1
m̂(∇φ)

∂φ

∂t̂
= −δF

δφ
, (2.19)

where m̂(∇φ)(> 0) is a homogeneous degree one function that is related to the
kinetic anisotropy of the interface. The dimensionless phase-field equation may
then be expressed as

ε2

M

Γ(∇φ)
m(∇φ)

∂φ

∂t
= ε272γ2∇ · [Γ(∇φ)~ξ(∇φ)]−G′(φ) + εH ′(φ)u, (2.20)

where f(φ, T̂ ) = G(φ)− εH(φ)u, G(φ) = φ2(1−φ)2/4, H(φ) = φ2(3− 2φ). The di-
mensionless constants can be determined by the physical properties of the interface
by relating the one dimensional travelling wave solution of (2.20) to the physical
properties of the interface, see Wheeler & McFadden (1996):

γ =
γ̂0

L̂R̂
, µ =

τ̂ T̂M µ̂0

R̂
, M =

µ

72γ
, ε =

d̂L̂

24γ̂0
,

where a hat denotes a dimensional quantity. Here the surface energy is given by
γ̂ = γ̂0Γ(~n), the kinetic parameter by µ̂ = µ̂0m(~n), where ~n is the outward unit
normal to the interface, the interface thickness by d̂, the macroscopic length scale
of the interface by R̂, the timescale by τ̂ and the latent heat per unit volume by L̂.
The precise choice of time scale is not important to the discussion, provided that
the dimensionless kinetic coefficient, M , is order one. The dimensionless interfacial
temperature is given by

u =
T̂ − T̂M

T̂M

.

The parameter ε may be re-expressed as ε = 1/(24γ)[d̂/R̂] and represents the
ratio of the interface thickness to the macroscopic length scale and is therefore
a small quantity. We observe from equation (2.20) that the length scale of the
interface where φ varies between 0 and 1 scales with ε, i.e, on the short length
scale associated with the interface thickness. Thus we introduce a further rescaling
of length so that the governing equation is appropriate to the description of the
interfacial region. We also take the opportunity to scale time so that the resulting
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equation is independent of γ and M . We put ~x = 6
√

2εγ~x? and t = [1/M ]t?, in
which case the phase-field equation may be expressed as

ε2
Γ(∇φ)
m(∇φ)

∂φ

∂t
= ∇ · [Γ(∇φ)~ξ(∇φ)]−G′(φ) + εH ′(φ)u, (2.21)

where the subscript stars have been omitted.
In (2.21) the ξ-vector, ~ξ, naturally appears being again given by the definition

(2.5), but with an argument of ∇φ. This is the so-called generalised ξ-vector and,
unlike in the sharp interface theory, it is defined throughout the whole domain and
not confined to the surface of the interface, I. It may be shown that providing the
inverse γ-polar plot is convex the equation (2.21) is a forward parabolic partial
differential equation. However, should it be non-convex then for those orientations
of ∇φ that correspond to non-convexity of the surface the equation locally becomes
a backward parabolic partial differential equation. This corresponds to negative
surface stiffness.

There is a one dimensional travelling wave solution of (2.21) which represents a
planar interface moving with speed V in a direction ~n is given by

φ(x, t) = G0

(
x− V t

Γ(~n)

)
, (2.22)

G0(r) =
1
2

[
1 + tanh

(
r

2
√

2

)]
, (2.23)

when u = −V/[µm(~n)].
Using the above solution Wheeler and McFadden (1996) showed that in the

sharp interface limit, ε → 0, in which the thickness of the interface, compared
to the macroscopic length scale, goes to zero the anisotropic form of the Gibbs-
Thomson equation (2.3) is recovered. Wheeler and McFadden (1997) subsequently
investigated the structure of edges. As has been noted above in the sharp interface
theory, at an edge the ξ-vector is continuous, denoted here by ~ξ?. They showed
that in the phase-field theory edges are represented as weak shocks at a straight
line aligned with the direction of ~ξ?, across which the phase field is continuous but
its gradient is not. They also showed that Γ(∇φ) is continuous across the shock.
This, along with continuity of φ, implies that the free energy density, L, is also
continuous across the shock.

Wheeler and McFadden also demonstrated that there existed a so-called ξ-tensor
defined by

Ξ = γ(∇φ)∇φ⊗ ~ξ − LI, (2.24)

which satisfies ∇ · Ξ = 0. Using this they were able to recover the classical force
balance (2.10) across the edge.

3. Diffuse Edge Theory

(a) Governing Equation

As described above an edge in the phase-field theory is represented by a weak
shock involving a discontinuity in ∇φ. Here we seek to regularise this discontinuity
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8 A. A. Wheeler

by introducing a generalised free energy of the form

F =
∫ [

1
2
δ̂2[∆φ]2 +

1
2
η̂[Γ2(∇φ)]2 + f̂(φ, T̂ )

]
dV, (3.1)

where we have extended the original functional associated with the phase-field
model (2.17) by adding a term involving the square of the Laplacian of the phase
field. Here δ̂ is a phenomenological constant. We will show that in this model an
edge region is present through which the interfacial orientation continuously varies
through the range of missing orientations, thus smoothing out the corner in S. The
parameter, δ̂, characterises the thickness of the edge region and is also related to
the so-called ‘edge energy’ which is the excess free energy that, in this new model,
is associated with the presence of the edge.

We assume that the dynamics are given by (2.19). Thus the dimensionless phase-
field equation associated with this generalised model is an extension of (2.21). It is
given by

ε2
Γ(∇φ)
m(∇φ)

∂φ

∂t
= −δ2∆2φ +∇ · [Γ(∇φ)~ξ]−G′(φ) + εH ′(φ)u, (3.2)

where δ is a non-dimensional representation of the coefficient of the new square
Laplacian contribution to the free energy density. It is related to the dimensional
parameters by

δ = δ̂
1

432
√

2
d̂1/2L̂2

γ̂5/2
. (3.3)

(b) Equilibrium Edge Structure: Limit ε → 0, δ → 0

We now consider the internal structure of an isothermal edge, at equilibrium and
at a temperature below the freezing temperature (u is a negative constant) in the
limit, ε → 0, followed by the limit δ → 0. We consider the situation for a cylindrical
interface. In the conventional sharp interface representation the edge resides at the
corner formed from the intersection of the two adjoining interfaces represented as
curved portions of the cross section S. However, in the generalised diffuse edge
model the interfaces and corner will all have a small thickness with a corresponding
internal structure. We assume that the system is stationary and the interface regions
meet in the inner edge region, at a contact angle given by the equilibrium value of
the classical force balance at the edge. The detailed configuration in the vicinity of
the edge is shown in Figure 4.

The edge has a five region structure: two outer regions representing the bulk
phases, where φ is zero or unity; two intermediate regions representing the interfacial
layers away from the edge in which φ makes a transition between its bulk values;
the inner edge region which represents the confluence of the intermediate region
and within which φ and ∇φ vary continuously between their values in the four
adjoining regions.

The two intermediate solutions will be denoted regions I and II, exterior to each
side of the inner edge region itself. In each intermediate region we set up cartesian
coordinate systems (rI , sI) and (rII , sII) which are aligned to the orientation of the
interfaces. Given the equivalence of the two outer regions we will only discuss inter-
mediate region I in detail. In the inner edge region we establish another cartesian
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Phase-field Theory of Edges in an Anisotropic Crystal 9

coordinate system (r, s) which is aligned to the common value of the ξ-vector at the
edge, ~ξ?. We locate the common origin of the coordinate systems to correspond to
φ = 1/2 in the inner edge region. Simple trigonometry gives the relation between
the two coordinate systems as

rI = r cos θ1 + s sin θ1, sI = −r sin θ1 + s cos θ1,

where θ1 represents the orientation of the interface as shown in figure 4.
The dimensionless governing equation (3.2) is represented on the length scale

associated with the intermediate regions. The inner edge region connects the two
intermediate regions within which the gradient of the phase-field variable varies
rapidly, rather than undergoing a discontinuity as in the diffuse interface model.

We now go on to consider the intermediate and inner edge regions in turn.
We develop the solution in each region using the method of matched asymptotic
expansion to match them together.

(c) Intermediate Region I

We first take the limit ε → 0. At leading order the governing equation (3.2) is

−δ2∆2φ +∇ · [Γ(∇φ)~ξ]−G′(φ) = 0, (3.4)

We develop its solution as a regular perturbation series in δ. It is straight forward
to show that this is given by

φI(rI , sI) = G0

(
rI

Γ(θ1)
+ B1δ

)
+O(δ2),

where B1 is an undetermined constant which represents a translation of the inter-
face.

Consideration of the development of the solution at first order in ε involves a
similar secondary expansion as a regular perturbation series in δ as the leading
order problem above. The solution of the leading order problem in this δ expansion
at O(ε) is identical to the analysis of Wheeler & McFadden (1996) and we deduce
that the temperature is related to the curvature of the interface by

u = γ[Γ(θ1) + Γθθ(θ1)]K1 +O(δ), (3.5)

where K1 is the curvature of interface I at the edge (non-dimensionalised with
respect to R).

(d) Inner Edge Region

Again we first take the limit ε → 0. At leading order in ε we recover the governing
equation (3.4) and consider its solution in the subsequent limit δ → 0. In this case
we are unable to find a solution as a simple regular perturbation series, as was
the case in the interfacial layers. Thus we seek a singular perturbation solution
in which the biharmonic terms play a role at leading order and allow the inner
edge region to support a continuous transition of the gradient of the phase field,
and hence interface orientation, between its values in the interfacial regions, with
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10 A. A. Wheeler

interface orientations of θ1 and θ2. In order to accomplish this we introduce a thin
inner edge region. To achieve an appropriate balance of terms in (3.4) where the
biharmonic terms balance the interfacial gradient energy terms it is necessary to
scale the lateral coordinate s by δ. We put

s = δσ. (3.6)

The inner edge region is therefore of lateral thickness δ. We will confine our attention
to the solution of the leading order problem in ε, given by (3.4), as δ → 0. We denote
the phase field in the inner edge region by Φ(σ, r) and express it in the form

Φ(r, σ) = Φ(0)(σ, r) + δΦ(1)(σ, r) +O(δ2) +O(ε). (3.7)

The expansion of (3.4) in terms of the representation (3.7) is given in Appendix A.
The inner expansion, appropriate to the edge region, of the intermediate solution

is found from expressing it in terms of the inner edge region coordinates r and σ
and taking the limit δ → 0. This gives

φ ∼ G0

(
r cos θ1

Γ(θ1)

)
+ δG′0

(
r cos θ1

Γ(θ1)

)[
σ sin θ1

Γ(θ1)
+ B1

]
+O(δ2) +O(ε). (3.8)

(e) Leading Order Edge Solution

The leading order problem, at O(δ−2), is

∂4Φ(0)

∂σ4
= 0.

The matching condition is derived from the leading order representation of the
intermediate solution given by (3.8). Thus

lim
σ→+∞

Φ(0)(σ, r) = G0

(
r cos θ1

Γ(θ1)

)
and lim

σ→−∞
Φ(0)(σ, r) = G0

(
r cos θ2

Γ(θ2)

)
.

We deduce that
Φ(0)(σ, r) = G(r), (3.9)

where matching it with Intermediate Region I requires

G(r) = G0

(
r cos θ1

Γ(θ1)

)
. (3.10)

Matching the phase-field with the Intermediate Region II requires that

G0

(
r cos θ1

Γ(θ1)

)
= G0

(
r cos θ2

Γ(θ2)

)
,

and hence
cos θ1

Γ(θ1)
=

cos θ2

Γ(θ2)
. (3.11)

However, this relationship is automatically satisfied as we have assumed the system
is in equilibrium and therefore subject to the classical force balance at the edge
which requires the same relation (2.16) to hold. We note that we may conveniently
write equation (3.10) as

G(r) = G0

(
r

ξ?

)
. (3.12)
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(f ) First Order Edge Solution

From equation(3.4) at O(δ−1)

−∂4Φ(1)

∂σ4
+

∂

∂σ

[
Γ(∇(0)Φ)

∂Γ(∇(0)Φ)

∂Φ(0)
1,σ

]
= 0, (3.13)

where

∇(0)Φ =
∂Φ(1)

∂σ
~M +

∂Φ(0)

∂r
~N =

∂Φ(1)

∂σ
~M + G′(r) ~N. (3.14)

To simplify the notation we write

u =
∂Φ(1)

∂σ
,

and hence (3.13) may be written as

−∂3u

∂σ3
+

∂

∂σ

[
Γ(∇(0)Φ)

∂Γ(∇(0)Φ)
∂u

]
= 0, (3.15)

where
∇(0)Φ = u ~M + G′(r) ~N. (3.16)

This may be integrated once to give

−∂2u

∂σ2
+ Γ(∇(0)Φ)

∂Γ(∇(0)Φ)
∂u

= constant. (3.17)

Now
∂Γ(∇(0)Φ)

∂u
= ~ξ · ~M → 0 as σ → ±∞, (3.18)

as ~ξ · ~M = 0 in the interfacial layers. Thus the constant above is zero and we may
integrate again to obtain

−1
2
[uσ]2 +

1
2
[Γ(∇(0)Φ)]2 =

1
2
Γ2
∞ (3.19)

and hence
uσ =

√
[Γ(∇(0)Φ)]2 − Γ2

∞, (3.20)

where Γ∞ is the common value of Γ(∇φ) required by the matching across the edge
region.

We define Θ as the angle that ∇(0)Φ makes with ~N which is given by

u =
∂Φ(1)

∂σ
= G′(r) tan Θ. (3.21)

Thus u = G′(r) tan Θ and hence uσ = ΘσG′(r) sec2 Θ = Θσ[u2 + (G′(r))2]/G′(r)
and we find that

Θσ =
G′(r)√

u2 + (G′(r))2

√
[Γ(Θ)]2 − cos2 Θ

[
Γ(θ1)
cos θ1

]2
, (3.22)
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where we have have used the property that Γ(∇φ) is a first order homogeneous
function and written Γ(∇Φ(0)) = |∇Φ(0)|Γ(Θ). Hence

Θσ = cos(Θ)
√

[Γ(Θ)]2 − cos2 Θ[ξ?]2. (3.23)

Integrating equation (3.21) with respect to σ gives the first order correction to the
phase field in the edge region as

Φ(1) = G′(r)H(σ) + A(r), (3.24)

where A(r) is a, as yet undetermined, function of r, and

H(σ) =
∫ σ

0

tanΘ dσ = int
Θ(σ)
0

tanΘ′

cos(Θ′)
√

[Γ(Θ′)]2 − cos2 Θ′[ξ?]2
dΘ′. (3.25)

To determine A(r) we match the inner and intermediate solution to O(δ). The
intermediate expansion of Φ is given by

Φ ∼ G0

(
r cos θ1

Γ(θ1)

)
+ δ

cos θ1

Γ(θ1)
G′0

(
r cos θ1

Γ(θ1)

)
[σ tan θ1 + T (∞) + A(r)] +O(δ2),

(3.26)
We have re-expressed H, given by (3.27), as

H(σ) = σ tan θ1 + T (σ) (3.27)

for σ > 0, where

T (σ) =
∫ σ

0

(tanΘ− tan θ1) dσ. (3.28)

A comparison of the O(δ) terms in (3.8) and (3.26) shows that the terms propor-
tional to σ automatically match and that

B1 =
cos θ1

Γ(θ1)
[A(r) + T (∞)] . (3.29)

We deduce that A(r) is a constant. However, we have co-located the common origin
of the coordinate systems with φ = 1/2 in the inner edge region and thus we require
that A(r) = 0 and

B1 = T (∞)
cos(θ1)
Γ(θ1)

=
T (∞)

ξ?
. (3.30)

Thus the interfaces adjoining the edge are translated by an extent O(δ) with respect
to the edge itself.

From equations (3.9) and (3.24) the phase field in the inner edge region is given
as

Φ(σ, r) = G(r + δH(s/δ)) +O(δ2) +O(ε). (3.31)

The contours of Φ, and hence the shape of the interface in the inner edge region,
are approximated by

r + δH(s/δ) = constant.

We have integrated (3.23) and (3.27) numerically for the case Γ(θ) = 1 +
0.2 cos(4θ) to determine Θ(σ) and H(σ) and hence the phase field in the inner edge
region. In Figure 5 we show the interface shape given by the contour Φ(s, r) = 1/2
and in Figure 6 we plot Φ(s, r).

Article submitted to Royal Society



Phase-field Theory of Edges in an Anisotropic Crystal 13

4. Edge Energy

In this section we consider the excess energy associated with the edge in this gener-
alised phase-field model. We define the edge ‘edge energy’, FX , in an analogous way
to the surface energy in the phase-field model, i.e., the difference between the free
energy of the system with and without the square Laplacian terms in the underlying
free energy functional:

FX =
∫ ∞

−∞

∫ ∞

−∞

{
1
2
δ2[∆Φ]2 +

1
2
Γ(∇Φ)2 + f(Φ)

}
drds−

∫ ∞

−∞

∫ ∞

−∞

{
1
2
Γ(∇φ)2 + f(φ)

}
drds

(4.1)
Using the asymptotic expressions for φ and Φ in the inner edge region, derived
above, it can be shown that

1
2
δ2(∆Φ)2 =

1
2
G′(r)2 sec4 Θ[Θσ]2 +O(δ), (4.2)

Γ(∇Φ)2 − Γ(∇φ)2 = G′(r)2
[
sec2 ΘΓ(Θ)2 − (ξ?)2

]
+O(δ) (4.3)

and
f(Φ)− f(φ) = δfφ(G(ρ))G′(ρ) [H(σ)− σ tanΘ−B1] +O(δ)2. (4.4)

Inserting these forms into (4.1) gives that

FX = δ

∫ ∞

−∞
G′(r)2dr ×

∫ ∞

−∞

{
Γ(Θ)2

cos2 Θ
− (ξ?)2

}
dσ +O(δ2). (4.5)

The first integral evaluates to 1/ξ? and so the edge energy, at leading order, is given
by

FX =
δ

ξ?

∫ ∞

−∞

{
Γ(Θ)2

cos2 Θ
− (ξ?)2

}
dσ. (4.6)

We may express this integral in terms of a quadrature with respect to Θ as

FX = δ

∫ θ1

−θ2

sec2 Θ

√
Γ(Θ)2

(ξ?)2 cos2 Θ
− 1 dΘ. (4.7)

For the case Γ(θ) = 1 + α cos(4θ) we have computed the edge energy, FX , as
a function of α which represents the strength of the anisotropy. For this four fold
symmetry an edge is present only when the surface stiffness is negative, which
corresponds to α > 1/15.

5. The Ξ-tensor

In this section we show that there is a Ξ-tensor for the time independent eneralised
phase-field model. The corresponding Euler-Lagrange equation is

∆
(

∂L
∂∆φ

)
−∇ ·

(
∂L

∂∇φ

)
+

∂L
∂φ

= 0. (5.1)

We consider
dL
dxk

=
∂L

∂∆φ

∂∆φ

∂xk
+

∂L
∂φ,j

φ,jk +
∂L
∂φ

φ,k +
∂L
∂xk

, (5.2)
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which, using the Euler-Lagrange equation (5.1), may be expressed as

dL
dxk

=
∂L

∂∆φ

∂∆φ

∂xk
+

∂L
∂φ,j

φ,jk + φ,k

{
∂

∂xj

(
∂L
∂φ,j

)
− ∂2

∂xj∂xj

(
∂L

∂∆φ

)}
+

∂L
∂xk
(5.3)

=
∂L

∂∆φ
∇k∆φ−∆

(
∂L

∂∆φ

)
∇kφ +

∂L
∂φ,j

φ,jk + φ,k
∂

∂xj

(
∂L
∂φ,j

)
(5.4)

=
∂L

∂∆φ
∇k∆φ−∆

(
∂L

∂∆φ

)
∇kφ +

d

dxj

[
φ,k

∂L
∂φ,j

]
+

∂L
∂xk

(5.5)

Using the identity

∇ ·
(
~β ⊗∇α

)
−∇ ·

(
α∇~β

)
= ~β∆α− α∆~β (5.6)

equation (5.5) may be expressed as

dL
dxk

− ∂L
∂xk

−∇ ·
(
∇φ⊗ ∂L

∂∇φ

)
= ∇ ·

(
∇φ⊗∇

(
∂L

∂∆φ

)
− ∂L

∆φ
∇∇φ

)
(5.7)

As L is independent of position we can write this as the divergence of a tensor
Ξ:

∇ ·Ξ = 0, (5.8)

where

Ξ = LI −∇φ⊗ ∂L
∂∇φ

+∇φ⊗∇ ∂L
∂∆φ

− ∂L
∂∆φ

∇∇φ, (5.9)

where I is the unit tensor. Evaluating the various terms gives the following (dimen-
siomless) form for the Ξ tensor:

Ξ = [f(φ, u)+
1
2
Γ2(∇φ)]I −Γ(∇φ)∇φ⊗ ~ξ + δ2 {∇φ⊗∇(∆φ)−∆φ∇∇φ} . (5.10)

The last terms with coefficient δ2 represent the new contributions that are specific
to the generalised phase-field model.

6. Discussion

In this paper we have investigated the internal structure of edges in a generalised
phase-field model. It can be shown that the leading equation in the inner edge
region governing the orientation of the interface (3.17) may be expressed as

d2q

ds2
=

∂[F (q)]2

∂q
, (6.1)

where q = tan θ and F (q) = Γ(θ)/ cos θ. This is an Allen-Cahn equation. The
potential F (q) has a double-well form when the surface stiffness is negative for some
orientations, i.e., corresponding to the formation of edges. Thus we may interpret
the leading order inner edge solution as satisfying a common tangent construction
on (F (q), spanning the values of q at the minima of each well, denoted q1 and q2.
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The edge energy can be expressed as

FX =
δ

F (q1)

∫ ∞

−∞

{
[F (q)]2 − [F (q1)]2

}
dσ, (6.2)

and is therefore proportional to the area bounded by the common tangent construc-
tion and the double-well in [F (q)]2 as well as the thickness of the edge region.

The common tangent construction on F (q) was established by Cabrera (1964)
who made the analogy with a phase transition. The theory presented here provides
a diffuse edge version of Cabrera’s ideas, by developing a governing equation for
the interface orientation that satisfies the same common tangent construction. Thus
the generalised phase-field model (3.2) contains within it a diffuse description of
two types of phase transition involving φ and ∇φ:

• The solid-liquid phase transition across a planar interface in which the value
of φ varies continuously and automatically satisfies a common tangent con-
struction on the bulk free energy function f(φ, T ).

• The edge phase transition in which the orientation of ∇φ, and hence the inter-
face, represented by q, automatically satisfies a common tangent construction
on F (q).

We have developed a model based on a diffuse interface description of an inter-
face and have shown that it describes smoothed edges, albeit in the limit δ → 0.
We can reasonably expect that smooth edges will also be present when δ is an
order one quantity. In this case the thicknesses of the edge region and the adjoining
interfaces would by comparable and this regime may well be useful in the numerical
phase-field simulations in which edges form.

In this work we have not included the effect of stress. However, we have derived
a ’stress tensor’ which is a natural generalisation of that for the standard phase-
field model. In that situation it may be shown that Ξ constitutes the reversible
part of the stress tensor in a treatment that allows for motion of the two phases
Anderson et al (1998). This requires further work but may suggest that the effect
of the regularisation may affect the force balance and hence the equilibrium angle
between the adjoining interfaces at an edge once bulk stress effects are explicitly
included.

7. Summary

To date investigations of corners and edges in interfaces in the presence of sur-
face anisotropy have focussed on the regularisation of sharp interface models. In
this paper we have considered this from the different perspective of a diffuse in-
terface description of the interface. Specifically, we have extended the anisotropic
phase-field equation, based on a generalised ξ-vector, by introducing a natural reg-
ularisation. This model provides a diffuse description of edges as well as interfaces.
We considered the model in the singular limit, δ → 0, and were able to determine
the interior structure of the edge region in which the edge is smoothed out and the
interface orientations transition through the span of missing orientations associated
with the edge in the Wullf shape. We are able to develop the analogy of the edge
region as representing a phase transition first identified by Cabrera.
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We have determined the associated edge energy and shown that it scales with
the regularisation coefficient, δ. Lastly, we have derived a stress tensor associated
with the generalised phase-field equation.
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Appendix A. Representation of the Governing Equation in
the Inner Edge Region

Here we use the inner edge representation of the phase field given by (3.7 to expand
the governing equation (3.4) (at leading order in ε). We consider each operator in
the equation in turn:

The biharmonic operator is written as

δ2∆2Φ = δ2

(
∂2

∂r2
+

1
δ2

∂2

∂σ2

)2

Φ =
1
δ2

∂4Φ(0)

∂σ4
+

1
δ

(
∂4Φ(1)

∂σ4
+ 2

∂4Φ(0)

∂σ2∂r2

)
+O(1).

(A 1)
The ξ-vector is given by

~ξ =
∂Γ(∇Φ)

∂φ,s

~M +
∂Γ(∇Φ)

∂φ,r

~N (A 2)

= δ
∂Γ(∇Φ)

∂φ,σ

~M +
∂Γ(∇Φ)

∂φ,r

~N (A 3)

=
∂Γ(∇Φ)

∂Φ(0)
1,σ

~M +
∂Γ(∇Φ)

∂Φ(0)
0,r

~N (A 4)

and

∇Φ =
∂Φ
∂s

~M +
∂Φ
∂r

~N(δ) (A 5)

=
∂Φ(0)

1

∂σ
~M +

∂Φ(0)
0

∂r
~N +O(δ). (A 6)

Thus

∇ · (Γ(∇φ)~ξ) =
1
δ

∂

∂σ

[
Γ(∇Φ)

∂Γ(∇Φ)

∂Φ(0)
1,σ

]
+O(1). (A 7)

Hence the governing equation is expressed as

− 1
δ2

(
∂4Φ(0)

∂σ4

)
+

1
δ

(
−∂4Φ(1)

∂σ4
− 2

∂4Φ(0)

∂σ2∂r2
+

∂

∂σ

[
Γ(∇(0)Φ)

∂Γ(∇(0)Φ)

∂Φ(0)
1,σ

])
+O(1) = 0,

(A 8)
where

∇(0)Φ =
∂Φ(0)

1

∂σ
~M + G′(r) ~N. (A 9)
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Figure 1. Configuration diagram of the general sharp interface situation.
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Figure 2. The shape of the interface computed using the ξ-vector for a model four-fold
anisotropy given by Γ)(θ) = 1 + 0.2 cos(4θ). The solid curve represents the equilibrium
shape of the solid, the dashed wings are parts of the ξ-vector plot corresponding to missing
orientations.
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Figure 3. Configuration of the interface near an edge.
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Figure 4. The relationship of the different regions.
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Figure 5. The shape of the interface in the inner edge region, as defined by the contour
Φ(r, s) = 1/2, for model four-fold anisotropy given by Γ(θ) = 1 + 0.2 cos(4θ).
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Figure 6. The phase field in the inner region given by Φ(r, s), for the model four-fold
anisotropy given by Γ(θ) = 1+0.2cos(4θ). The solid black lines correspond to the contours
φ = 0.24, 0.5, 0.75.
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Figure 7. The dimensionless edge energy, FX , for the model four-fold anisotropy given by
Γ(θ) = 1 + αcos(4θ) as a function of α. The parameter α represents the strength of the
anisotropy and an edge is present in the equilibrium shape for α > 1/15
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