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ABSTRACT 

In the international oil and gas industry multiphase annular flow in pipelines and wells is 
extremely important, but not well understood.  This thesis reports the development of an 
efficient and cheap method for measuring the phase flow rates in two phase annular and 
annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and 
conductance techniques. The method measures changes in the conductance of the liquid film 
formed during annular flow and uses these to calculate the volumetric and mass flow rates of 
the liquid film. The gas velocity in the core of the annular flow is measured using an ultrasonic 
technique. Combined with an entrainment model and the liquid film measurements described 
above, the ultrasonic technique enables the volumetric flow rate of the gas in the core and the 
volumetric and mass flow rates of entrained liquid droplets to be measured. 
 
This study was based on experimental work and the use of modelling techniques. The 
practical investigation comprised a series of experiments conducted on a purpose built flow 
loop in which the test section was a Perspex pipe of 50mm ID. The experimental work was 
limited to two-phase air-water flow. The flow loop was specifically designed to accommodate 
the different instruments and subsystems designed in this investigation including bespoke 
flow meters and a film extraction system. Most flow loop controls were automated using a 
MATLAB program. Reference measurement of the total water flow rate was made using a 
calibrated turbine flow meter and of the air flow rate using a calibrated rotameter.  
 
For the combined ultrasonic/conductance method investigated in this thesis, the velocity of 
the gas in the core was found using a novel Ultrasonic Flow Meter (USFM). The positioning 
and arrangement of the transducers have never been used previously. The flow velocity of 
the liquid film and the thickness of the film were measured using a novel Conductance Flow 
Meter (CFM). The CFM measured the liquid film thickness using novel wall conductance 
probes. By cross correlating the signals from a pair of such probes the film velocity was 
obtained. Good agreement of the experimental results obtained from the CFM and USFM with 
results published in the literature was found. 
 
Although not investigated experimentally in the work described in this thesis, annular flows 
encountered in the oil industry may contain a liquid phase comprising a mixture of oil and 
water. For such flows, the volume fractions of the oil and water can be measured using an 
automated bypass system developed during this project. The bypass system periodically 
extracts part of the liquid film, measures its density and then releases the sample back into 
the pipeline. The liquid phase volume fractions are determined from this density measurement 
which can be performed more than once per minute. 
 
An entrainment model was developed, which is required by the ultrasonic/conductance flow 
metering technique described in this thesis, in which the mass fraction of the liquid flowing as 
entrained droplets in the core can be determined from the liquid film thickness and velocity 
measurements. A mathematical model was also developed to describe the properties of the 
liquid film, such as liquid velocity profile within the film, and the model’s results were found to 
agree with the experimental results obtained during the project and also with previous work 
cited in the literature. The complexity of this latter model was reduced by making a number of 
simplifying assumptions, which are presented and discussed in the thesis, including the 
assumption that in annular flow there is a dynamic balance liquid entrainment and droplets 
being deposited back onto the film.  
 
The combination of the designed CFM and USFM with the bypass tube and the entrainment 
model offer the opportunity for a ‘wet gas’ flow meter to be developed to measure two and 
three phase annular flows at relatively low cost and with enhanced accuracy. Such a device 
would have the advantage that it would by substantially smaller than systems using 
separators and it could even be retrofitted onto off-shore platforms. The integration of the 
subsystems developed in this project into a single system capable of giving on-line 
measurements of annular flow would be a major benefit to the author’s sponsor, Petroleum 
Development of Oman.  
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ĉ   Constant given by θπ
cos

  4
2

c

df
         

c   Speed of sound  
     
D   Pipe inner diameter 
d   Length of the acoustic path in USFM  

dZdP /  Pressure gradient 
 
E   Entrainment fraction 
 
f   Frequency   

factorf   Friction factor  

 
G   Mass flux 
G   Gradient  
g   Gravity 

 

wallh   Pipe wall thickness 

h   Height 

 

oi   Incident intensity   

i   Emergent intensity 
 
K   Constant 
 

DL /   Length-diameter ration  

spl   Distance between the transducers pair in the USFM 

pl   Separation distance between the electrodes in the CFM sensors 

nl   Recess depth  

 
+

m   Non-dimensional film thickness 
 

dQ   Droplet flow rate 

fQ   Film volumetric flow rate 

critfQ ,   Critical film flow rate 

feedfQ ,   Liquid feed flow rate per unit perimeter 

gQ   Gas volumetric flow rate  

refgQ ,   Reference gas volumetric flow rate 

foQ ,   Oil flow rate in the liquid film  

doQ ,   Oil volumetric flow rate in the droplets  

wQ   Water flow rate 

cwQ ,   Water volumetric flow rate in the core 



 
LIST OF NOMENECLATURE 

 17 

 

dwQ ,   Water volumetric flow rate in the droplets 

fwQ ,   Water flow rate in the liquid film 

refwQ ,   Reference water volumetric flow rate 

 
R   Pipe radius 

fbR   Feedback resistance 

mR   Resistance of the electrodes 

oR   Contribution due to wall thickness 

refR   Distance between the point source and the white coating 

)(τxyR   Cross-correlation function 

wRe   Reynolds number 

Rx   Receiver transducer in USFM 
 
S   Conductance 

mS   Mixture conductance 

 
T   Total time period in cross-correlation  
Tx   Transmitter transducer in USFM 
t   Time       
 
U   Average velocity  
U   Flow velocity 

fU   Liquid film velocity 

reffU ,   Reference film velocity from turbine flow meter  

cgU ,   Gas core velocity 

refcgU ,,   Reference gas core velocity 

sgU ,   Gas superficial velocity  

cwU ,   Water velocity in the core 

swU ,    Water superficial velocity 

 

V   Voltage 
v   Velocity of the moving medium in USFM theory 

∗ϑ    Liquid friction velocity 

dv   Velocity of ultrasonic along the downstream path  

uv   Velocity of ultrasonic along the upstream path  

 

dW   Droplet mass flow rate  

fW   Film mass flow rate 

We   Weber number  
hw,   Width and height of electrodes in CFM theory 
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yx,   Reference to sensors in CFM device 
 
Z  Axial coordinate 

z   Pipe wall thickness 
 

 

Greek symbols 
 
α   Volume fraction 
 
β   Surface tension  
 
δ   Liquid film thickness     

 
ε   Resistivity  
 
η   Viscosity  
 
θ   Angle  
 
λ   Wavelength  
 
µ   Water viscosity  
 
ν   Water kinematic viscosity  
 
ξ   Percentage error  
 
ρ   Density      

 
ϕ   Linear absorption coefficient     
 
σ   Conductivity 
 
τ̂   Shear stress 
 
τ   Transit time in cross-correlation      
  
φ   Phase angle  
 
ω   Angular frequency      
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Subscripts  
 
a   Atmospheric air 
 

c   Gas core  

 

crit   Critical  
 

d   Droplet 
 
d   Downstream (USFM) 
 
e   Entrainment  
 
est   Estimated value 
 
f   Liquid film 

 
fric   Frictional 

 
g   Gas  
 
i   Interfacial 
 
in   Input/Inlet  
 
l   Liquid  
 
m   Mixture 
 
o   Oil 
 
out   Output/Outlet 
 
p   Peak value 

 
ref   Reference value  
 
t   Transient 
 
tot   Total value 
 
u   Upstream 
 
w   Water 
 
xcor   Cross-correlation
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CHAPTER 1 INTRODUCTION 
 

1.1 Flow measurement 
 
In the oil and gas industry, a broad knowledge of the fluids (liquids, gases, steam, 

etc.) being handled is essential. It is necessary to know if each of these fluids has well 

defined pressure, volume, temperature and density (P,V,T,ρ) relationships, has a 

predictable flow pattern based on Reynolds number and contains no foreign material 

(e.g. solids carried in a gas or liquid flow) that will adversely affect flow meter 

performance. 

 

In the field it is important to know if a fluid: (a) is flowing at a sufficiently constant 

rate such that the rate of change of flow is not more rapid than the meter system 

response time and, in particular, is non-pulsating; (b) has a non-swirling flow pattern 

entering the meter; (c) fills the circular pipe which is carrying it; (d) has had any 

trapped air (in liquid) or liquid (in gas) removed prior to the meter. Individual meters 

may have special features that can cope with some of these problems, but each meter 

must be carefully evaluated to ensure its suitability for the given fluid conditions. An 

important factor in choosing a meter is that experience has shown it is acceptable for a 

specific application. Reference to previous users within the industry, or industry 

standards, are important points to consider when choosing the best meter for a given 

application (Upp and LaNasa, 2002). 

 

Accurate measurements of fluid flow rates can be achieved only if flow conditions are 

suitable. On the other hand, the cost of preparing the fluid and/or the flow may 

sometimes outweigh the value of the flow measurement, and a lower accuracy should 

be accepted. Consider a metering station measuring the flow of a product worth $1 

million a day, here an inaccuracy of only ± 0.2% represents nearly $750,000 a year. 

For a station measuring a flow worth $1,000 a day the same inaccuracy represents less 

than $1,000 a year. The law of diminishing returns means that in the latter case there 

is little motivation to invest to improve measurement accuracy (Upp and LaNasa, 

2002). 
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Each type of flow measurement requires specific consideration, including a balance 

between the accuracy requirements, the cost of the measurement, and the usefulness 

of the flow information obtained. This poses the general question of what type of flow 

meter is best? Any answer must begin by considering the flow characteristics and the 

fundamental nature of the fluid to be measured. Care needs to be exercised in 

evaluating any measurement device because, for example, the gases and liquids 

routinely handled in the field are not clean, and this can lead to debris in the meter or 

build up of heavy oil on moving parts which means the measurements made could 

have been seriously flawed.  

 

1.2 Motivation 

1.2.1 Multiphase flow metering in the petroleum industry 
 
The need for increased cost, quality and safety control in many different branches of  

industry, including chemical processing plants, power stations (especially nuclear), 

and the petroleum industry, has meant the metering of multiphase flow has 

substantially increased in importance over the last few decades. In particular, gas-

liquid flow is encountered in a wide range of applications in different branches of 

industry, including heat transfer equipment such as steam generators, refrigeration 

equipment, evaporators and condensers. 

       

Commercial and safety considerations make the accurate measurement of multiphase 

fluid flow rates in the petroleum industry of great importance. Recent off-shore and 

on-shore discoveries, and the consequent requirement of transporting the fluids 

produced to central processing areas, has resulted in longer flow lines in which more 

than one phase is flowing. The difficulties experienced in handling gas-liquid flow in 

pipelines have emphasized the need for additional research efforts to provide more 

accurate and reliable methods for the effective prediction and operation of gas-liquid 

flow systems. 

 

Accurate multiphase measurement is essential for the successful management of a 

reservoir, because optimisation of the primary, secondary and tertiary oil recovery  
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processes requires knowledge of the distribution of production over individual wells. 

Control of production from individual wells requires metering of the production rate 

of individual fluids both to optimise production performance under changing 

conditions, and to determine whether or not any remedial work is required. In 

addition, individual flow rate measurement will be required by government agencies 

for fiscal purposes. 

 

The current practice for calculating the cumulative production of the different fluids 

produced by oil and gas wells involves well-testing to determine the flow rate of the 

various phases at a nominal choke opening, and continuous monitoring of an 

approximate production performance of each well. This is relatively complicated and 

requires manual intervention. The most reliable measurement technique for 

multiphase flow is to first separate the mixture and then use single-phase 

conventional devices for measuring the flow. Thus well-testing carried out by means 

of a test separator requires that the various phases are first separated and then 

metered in single phase flow lines. Unfortunately, high flows result in incomplete 

separation and consequent erroneous metering by single-phase flow measuring 

devices. To avoid such an occurrence, more complicated and expensive separators 

have to be installed.  

 

However, in many cases separation is just not practical from either the technical or 

economic points of view and well-testing is achieved in a less desirable way by 

observing the loss in production from the main separator when the well is closed. 

This approach to the measurement of multiphase flows in crude oil production has 

the two major disadvantages of not being accurate while incurring high costs. The 

limited results obtained from test wells do not provide sufficient information on 

which to design a separator able to cope with the wide ranges of flow rates and 

mixtures expected from wells in different fields, nor the changes with time of relative 

proportions of the different phases at one field.  

 

In petroleum operations, a separate test line is constructed from every production 

platform to the central processing platform for the purpose of flow rate measurement 

from the individual wells. Such a method results not only in an increase in field  
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development costs but it is inherently inaccurate because the flow measurements will 

change due to the difference in back pressure experienced by the well during the test 

and normal production operations. 

 

A desirable alternative solution is on-line multiphase flow metering. Such a system 

would, typically, consist of a combination of devices for measuring volume fractions 

and velocities. There is a growing interest in the development of such systems 

because of their convenience and expected economic benefits. There are already in 

existence a number of possible measurement methods including; turbine and/or 

vortex flow meters, Venturi orifice plates and ultrasonic Doppler techniques. 

Presently there is considerable research being conducted into this field to develop a 

suitable flow meter which can be used for on-site measurement in the petroleum 

industry. Many research groups are actively engaged in developing a new and more 

reliable and precise multiphase flow rate measurement system. An important 

requirement before such a multiphase flow meter can be used in oil and gas fields is 

its accuracy for well testing applications. It should provide the reservoir engineer 

with an accuracy of ±5% of reading over the required flow range of each phase. To 

meet the standards of fiscal metering the required accuracy would be ±0.5% 

(Alimonti and Bilardo, 2002) 

 

In addition to the accuracy requirements, there are a number of constraints on the 

design of any proposed multiphase flow meter: it should not occupy a footprint of 

more than 0.5m x l.0m and should be less than 2.0m high; the straight lengths of inlet 

and outlet pipes upstream and downstream of the flow meter should be the minimum 

possible; the sampling frequency of the meter should be not less than 10Hz (to get a 

meaningful response of the different flow regimes); the working pressure should be 

up to 350bar and the pressure drop should not exceed 1bar and, finally, the 

multiphase flow meter should be easily removed for servicing (Atkinson et al., 2004-

2005). 
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1.2.2 Annular flow 
 
In general, flow in pipelines can be grouped into classes commonly called flow 

regimes or flow patterns. A wide variety of classifications exist in the literature which 

are mainly due to the subjective nature of the characterisation method. A flow regime 

that has received much attention, both analytically and experimentally, is annular flow 

because of its great practical importance and the relative ease with which analytical 

treatment can be applied. Annular flow is one of the most common flow regimes 

encountered in pipelines serving natural gas well-bores. It occurs at high gas flow 

rates accompanied by low to medium liquid flow rates.  In annular flows, most of the 

liquid gathers and travels on the pipe wall as a wavy film while the gas travels in the 

centre of the pipe. However, a part of the liquid travels as drops in the centre of the 

pipe with the gas (Geraci, 2007). Vertical annular flow is similar to horizontal annular 

flow, provided allowance is made for gravity having a greater effect on more dense 

liquids, slowing them relative to less dense liquids or gases. 

 

In certain older oil wells in the Middle East, the fluid flow is predominantly natural 

gas which flows at very high rates (e.g. 50,000m3/day). Smaller quantities of crude oil 

(e.g. 50m3/day) and water (e.g. 950m3

 

/day) are also produced. Given the relatively 

much higher flow rate of the gas the flow regime is annular with most of the liquid 

flowing in a thin film on the pipe wall. 

The Author’s sponsor, Petroleum Development Oman (PDO), is an oil company in 

the Arabian Gulf which is located in the Sultanate of Oman. The company has met a 

problem measuring the liquid flow rate in very high gas rate annular flows. This study 

is aimed at developing a possible measurement technique to overcome this issue by 

using a combination of experimental and analytical investigations. For even a small 

quantity of crude oil produced per day, say 50m3

 

/day (an oil barrel is 159 litres, to an 

accuracy of better than 0.01%) then at a price of $80 dollars a barrel, the oil well will 

produce oil with a value of about $9 million in a year. It is obvious that it is 

economically important to be able to measure the oil flow rate on-line.  
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Certain annular flow applications in which excessive liquid entrainment occurs, can 

lead to “dry out”, in which the liquid film is completely removed from contact with 

the channel’s walls. In certain non-oil field applications, e.g. in the nuclear power 

industry, from a safety point of view this can be disastrous, leading to such 

catastrophic events as the breakdown of the Chernobyl nuclear reactor.  

 

Figure 1.1 shows the extensive damage to the main reactor hall caused by the 

breakdown of the reactor. It is thus very important to be able to predict and/or 

measure the onset of “dry out” to avoid its actual occurrence.  

 

 
Figure 1.1 Damage caused by the breakdown of Chernobyl nuclear reactor 

 
This accident happened during an experiment that was proposed to test a safety 

emergency core cooling feature (of a particular reactor) during the shutdown  
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procedure by testing the backup power supply in case of a power loss. A very large 

amount of cooling water is needed to maintain a safe temperature in the reactor core. 

The reactor consisted of about 1,600 individual fuel channels and each operational 

channel required a flow of 28 tons of water per hour. The experiment involved 

shutting down the coolant pumps, which caused the coolant to rapidly heat up and 

boil. The power fell too low, allowing the concentration of xenon-135 to rise and 

pockets of steam formed in the coolant lines.  
 

In order to control the rising levels of xenon-135, the control rods were pulled out. 

When the coolant expanded in this particular reactor, the power level went up. All 

control rods were ordered to be inserted. As the rods were inserted, they became 

deformed and stuck. The reaction could not be stopped. The rods melted and the 

steam pressure caused an explosion, which blew a hole in the roof. A graphite fire 

also resulted from the explosion (Nottingham Trent University, 2009). 

 

A second safety issue is corrosion of e.g. pipe work, especially when carbon dioxide 

(CO2) is present in the flow either as a product or being injected in enhanced oil 

recovery techniques. This is an issue that can result in fatalities. With annular flow, 

the CO2 concentration in the gas phase affects the corrosion rate because CO2

 

 when 

dissolved in water forms carbonic acid. The resulting acidity of the water combined 

with high flow rates, can cause high levels of corrosion in the pipe. More accurate 

measurement of the phase flow rates and a deeper understanding of annular flow will 

help control and predict the corrosion rate, and hence reduce damage to equipment, 

avoid loss in production and increase the safety of operatives. 

1.2.3 Wet gas metering 
 
World natural gas consumption grew by 3.3% in 2004, compared with a 10-year 

average of 2.3%. Gas production rose in every region except North America (BP 

Review, 2005). International trade in natural gas increased by 9% in 2004 (BP 

Review, 2005). Pipeline shipments rose by more than 10% (BP Review, 2005). 

Compared with oil fields, gas fields tend to be more environment-friendly because of 

lower CO2 emissions and cleaner combustion.  
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However, the production of gas is, in most cases, associated with the production of 

liquid hydrocarbons, free formation water and condensed vapour (that form in the 

reservoir, in the wellbore and at the surface as pressure and temperature drop). This is 

why, from a metering point of view, the techniques normally implemented for dry gas 

metering cannot be always applied. 

 

The term "wet gas" has no agreed definition, but the natural gas production industry 

accepts that the term denotes a relatively small amount of liquid in a production flow 

of natural gas, usually in the context of the production of gas from natural reservoirs. 

Wet gas metering (WGM) is becoming increasingly important to the oil and gas 

industry and part of this study deals with WGM for the measurement of the gas core 

velocity in annular flow. 

 

One of the greatest problems in wet natural gas metering is the lack of knowledge of 

the liquid content in wet natural gas flows. So far, no WGM technique for any meter 

type comes close the industry's desired standards for the simultaneous metering of 

the liquid and gas phase flow rates. The most obvious reason for this is that the 

operators are not willing to allow meter tests on actual production flows because of 

possible financial penalties that might be incurred due to consequential production 

delays. Meter manufacturers are forced to test their meters on wet gas laboratory test 

loops which have the major drawback that nowhere does the test equipment available 

replicate the real flow conditions found in wet natural gas production lines.  

 

However, such flows are becoming increasingly common because as a “dry” natural 

gas well ages the line pressure gradually reduces which invariably results in the flow 

containing a higher proportion of heavier hydrocarbon gases, which are more likely 

to condense in the pipe. WGM is becoming increasingly important because many gas 

wells worldwide are now reaching the later stages of their production life. In addition 

the industry is eager to maximise the return from off-shore platform investment, 

which means many natural gas producers are developing "marginal" fields which 

produce two-phase flows of natural gas with sea water and/or natural gas condensate 

from the outset. These fields have their wet natural gas production flows combined 

with that from the main wells’ dry or wet natural gas production flow upstream of the  
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separator facilities. 

 

If the flows from wells owned by different companies are mixed before reaching a 

common separator, accurate measurement of their individual flows is commercially 

vital. This is an additional reason why improvement in the accuracy of WGM is 

important to the oil and gas industry. Nederveen (1989) showed that if the need for 

bulk separators on offshore platforms was removed significant savings could be 

made. While each bulk separator costs up to $30 million during its life they are 

presently an integral part of the platform, so the likely actual savings is unknown. An 

accurate WGM could also lead to the elimination of on-shore separators at wet gas 

fields, saving at least $600,000 each. It is clear, however, that the possible saving 

could reduce the cost of developing a well sufficiently so that many wells that are 

presently unviable may become financially viable, thus increasing an important 

resource available to humanity. 

 

Presently there are two approaches to the metering of wet gas. The first is to separate 

the two phases and meter each separately. The second consists of metering the 

overall two phase flow with a dry gas flow meter for which correction factors have 

been established to take into account the presence of the liquid phase. From an 

economic point of view, this second method seems to be of growing interest.  

 

Ultrasonic flow meters are already widely used by the oil companies and much work 

has been carried out on wet gas metering using ultrasonic flow meters (Mus, et al., 

2001). Lynnworth and Liu (2006) carried out a review that showed that ultrasonic 

flow meters offer the most satisfactory results in wet gas metering. This conclusion 

has led the author to choose the ultrasonic technique for use in this project. 

 

1.2.4 Annular flow analysis 
 
Much research has been undertaken over the past forty years to gain a better 

understanding of the fundamental physics of annular flows for the purpose of 

developing a model for the design of new two-phase flow systems. Despite extensive 

study, accurate and detailed data on the liquid-gas interface and interface dynamics  
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are still lacking. These interface dynamics are essential to developing reliable laws for 

flow modelling. 

 
Experimental work is key for multiphase flow research, and provides the most direct 

and reliable way of understanding the physical mechanisms, because of the 

complexity of the problems involved. The data obtained from experiments allows 

models to be developed and tested directly. However, a deeper and fuller 

understanding of multiphase flow in pipes requires a combined approach: 

experimental and theoretical (Bilgesu, 1994). 

 

The same fundamental conservation laws of mass, momentum and energy govern the 

wide variety and combinations of phase and flow regimes occurring in multiphase 

flows. However, the complexity of the actual conditions means there is still no general 

model for predicting the behaviour of flows in even the simplest geometries. Taitel et 

al., (1995) have classified the different approaches and levels to the solution of 

engineering problems; from rigorous solution of the Navier-Stokes equations, through 

modelling techniques, to observation and derived empirical correlations.  

 

Historically, empirical correlation has been very useful in engineering, and a large 

number of such correlations appear in the literature. This approach has had success in 

predicting such parameters as heat transfer coefficients, usually where an extensive 

database of measured values exists, and a number of these empiric parameters are still 

very widely used in the oil and gas industry. However, empirical correlations are 

generally valid only for the parameter ranges for which they were generated, and they 

become very uncertain when extrapolated to conditions outside the original database. 

 

Another approach is to use Computational Fluid Dynamics (CFD), an approach which 

calls for the solution of the continuity, momentum and energy equations for e.g. two-

phase flow to determine the gas-liquid interface. However, the leading CFD codes are 

still not able to calculate the thickness of liquid films in such flows (Morud and 

Skjetne, 2005), and they struggle to evaluate the interactions between the liquid film 

and the droplets in the gas core. Such a situation is only to be expected when the 

physical mechanisms for the deposition of droplets and atomization/re-entrainment of  
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liquid from the film into the gas are not well understood. For example, when Morud 

(2005) attempted to develop a model for liquid films at walls he limited his validation 

to a bench test, and there has been no subsequent independent validation.   

 

Clearly such CFD models are difficult and time-consuming and, in any case, they tend 

to rely to a greater or lesser extent on empirical "constitutive" relations and each 

model applies only to the range of specified flow conditions. Modelling techniques lie 

between empirical correlations and numerical solutions of the Navier-Stokes 

equations. They approximate the problem by considering the most important physical 

phenomena and neglecting those effects which complicate the problem but do not 

significantly improve the accuracy of the solution.  

 

The major difficulties in experimental investigations of annular flows are the 

extremely thin films, relatively fast velocities, and random nature of the formation of 

the interface waves. Commonly available velocity measurement techniques such as 

hot wire anemometry disturb the films, and even non-intrusive techniques such as 

Laser Doppler Anemometry (LDA) cannot provide instantaneous velocity profiles 

within the film. These restrictions have limited experimental measurements to the 

time variations of film thickness and wall shear stress. This has meant that many 

analytical models have been developed not knowing the actual flow conditions that 

exist in the liquid film. 

 

In the current study a simple liquid film modelling work has been introduced, see 

Section 6.1.3, in order to characterize the liquid film velocity profile. The back flow 

phenomenon, which usually occurs when the gas flow lacks the ability to lift up the 

entire segment of the liquid film in the annular flow, was then investigated. 

 

A mathematical expression known as the “Triangular Relationship” is being used to 

predict the liquid film velocity distribution, see Section 6.1.3. The expression relates 

three variables: mean film thickness, film flow rate and wall shear stress. If any two of 

the variables are known, the triangular relationship can be used to find the third. For 

example, if a relationship between wall shear stress and mean film thickness is known  
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then the liquid film flow rate may be calculated for given values of mean film 

thickness and wall shear stress.   

 

1.3 Aims and objectives 
 
The main aim of this research program is to develop new techniques for accurate 

phase flow rate measurement of annular flow. The intention is to design novel but 

simple devices to successfully measure the liquid film thickness and velocity and the 

velocity of gas in the core, and to integrate these separate devices into a single 

multiphase measurement system (Note that if the liquid film thickness is known, the 

size of the core gas is easily determined). A further aim is to be able to determine the 

flow rate of entrained liquid in the gas core. 

 

This aim is to be achieved by the following work plan which is set up in order of its 

objectives: 

 
 To carry out a literature review regarding annular flow in general, and 

specifically about measurement techniques for this regime. This includes an 

investigation of different combinations of measurement techniques.  

 To design and build a flow loop to develop an annular flow regime which can 

be used with different diameters of test sections and pipe orientations. 

 To develop a mathematical model for the annular flow, predicting the liquid 

film velocity distribution. 

 To develop a novel automated bypass system to implement film removal to 

measure the volume fractions of different liquids present in multiphase annular 

flows. 

 To investigate the film thickness measurement by using a conductance probe.  

 To develop a correlation technique to measure the liquid film velocity. 
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 To build and implement an ultrasonic flow meter to measure the core gas 

velocity. 

 To investigate core gas flow measurement using the ultrasonic flow meter.  

 
 To integrate all of the above methods and techniques into a measurement 

system. 

 To characterise and calibrate the integrated system. 

 

1.4 Thesis outline 
 
This thesis is organised in nine chapters describing the work that was done to achieve 

the aims and objectives of this project. This thesis is laid out as follows: 

 

Chapter 2 presents a literature survey that explains the concept of multiphase and 

two-phase flow. Also, it gives an outline of different multiphase flow metering 

techniques proposed for on-line flow rate measurement. Flow regimes in horizontal 

and vertical two-phase flow are briefly described. Because it is of particular interest, 

the annular flow regime is discussed in most detail. The different techniques that 

have been previously used in measuring different features of the fluid film and 

entrainment are summarised. The core gas velocity measurement is introduced in the 

context of wet gas metering. Some related techniques to wet gas metering are also 

discussed in this chapter. 

 

Chapter 3 concentrates on preliminary work including annular flow requirements in 

term of pressure drop and critical flow rates, as it is the first time that annular flow 

has been included in the University of Huddersfield’s research programs. The chapter 

also reports the investigation of the design requirements for both a Conductance 

Flow Meter (CFM) and an Ultrasonic Flow Meter (USFM). The signal cross-talk 

phenomenon and sensor optimization are introduced prior to the design stage. Results 

of all the preliminary studies are presented.  
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Chapter 4 describes the liquid-gas experimental facility designed and built at the 

University of Huddersfield. It also introduces different device designs i.e. CFM, 

USFM and the novel film removal technique. The chapter also reports the design of 

the relevant electronic circuitry of each device. The calibration methods for each 

device are explained and illustrated in this chapter. A description of the performances  

of the different designed devices is also reported in this chapter. The main aim of the 

work in this chapter is to optimise the performance of the whole system before 

actually using it to collect the raw data. 

 

Chapter 5 introduces the flow loop experimental apparatus and the experimental 

work. The reference measurement devices and their specifications are discussed. This 

is followed by investigating the best configurations for integrating the designed 

devices (CFM, USFM and film removal system) into the test section. The chapter 

also presents the data acquisition system and control units. The chapter also describes 

the automation of the multiphase system, data acquisition system and the developed 

program codes to automate the multiphase system and collect the data. The chapter 

ends with an introduction to the experimental flow conditions that were used in this 

study and reasons are given for their selection. This includes the procedures followed 

in carrying out the experiments and collecting the data. 

 

Chapter 6 of this report presents the results obtained using the novel measurement 

techniques (CFM, USFM and film removal system). Most results are presented in a 

graphical format and interpretations are provided. It also describes how the liquid 

film was mathematically modelled and the film velocity profile was characterized. 

Errors in the predicted results are discussed and possible improvements are 

suggested. The results of the current study were compared with previous work carried 

out by different researchers. Differences and similarities between these results were 

discussed to justify the results obtained in the current study. 

 

Chapter 7 presents the final proposal a novel wet gas flow meter developed by the 

author. The different aspects of the flow meter include: hardware of the flow meter, 

electronics of the flow meter, the mathematical approaches and testing and 

calibration of the flow meter. The accuracy of the novel flow meter is assessed by  
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finding the mean percentage error in the predicted gas and water flow rates based on 

the results discussed in Chapter 6. 

 

Chapter 8 gives a comprehensive list of the main findings and conclusions of this 

project and their novel aspects. The contribution to knowledge made by the project is 

given at the end of the chapter. 

 

Chapter 9 is the final chapter of this thesis. It lists some suggestions for future work 

and further investigations. 
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CHAPTER 2 LITERATURE SURVEY 
 

2.1 Multiphase flows 
 
“Multiphase flow” is a rather imprecise term used to describe many types of flow 

occurring in industrial processes, (Martyn, 1999). As the name suggests, multiphase 

flow is a combination of one or more components (gas, liquid or solid) generally, but 

not necessarily, flowing in a pipeline. Such flow occurs when two or more immiscible 

substances flow together, and can be gas-solid (air carrying dust particles), liquid-

solid (water and sedimentation from a mining process), liquid-liquid (oil in water) or 

gas-liquid flows (natural gas and oil) (Keshock and Lin, 1996; Fukano and Furukawa, 

1998; Ariyadasa and Rezkallah, 2001). In this research project multiphase represents a 

gas-liquid flow.  

 

2.1.1 Flow regimes in multiphase gas-liquid flow 
 
A flow regime is a geometrical configuration taken up by the gas and liquid. In 

general four main flow regimes have been proposed as adequate to describe the 

different flow behaviour. These are bubble flow, slug flow, churn flow and annular 

flow, see Figure 2.1. However, the physics of multiphase flows is complex and 

traditionally subjective characterisation has been used, so a wide variety of 

classifications exist in the literature. For the purpose of illustration the liquid velocity 

is assumed constant. 

 

In fact bubble, slug and churn flow, may be considered as special cases of one type in 

which the continuous phase contains dispersed bubbles of gas, or where the gas 

phases tend to form slugs or plugs. The available literature shows that flow patterns 

in horizontal pipes have a non symmetrical distribution. As a result of gravitational 

forces, the liquid phase has the tendency to occupy the lower part of the tube 

(stratified or stratified wavy flows) while the gas phase occupies the upper part. On 

the other hand, flow patterns in vertical pipes are generally axisymmetric since the 

effect of gravitational forces is parallel to the direction of the flow.  Annular vertical  
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flow will be discussed in some detail as it’s the core of this study. 

 

Usually flow patterns are recognized by visual inspection, though other means such 

as analysis of the spectral content of the unsteady pressures or the fluctuations in the 

volume fraction have been used where visual access is difficult, (Omebere-Iyari and 

Azzopardi, 2007). For some of the simpler flows, such as those in vertical or 

horizontal pipes, a substantial number of investigations have been conducted and the 

results are often displayed in the form of flow regime maps that identify the flow 

patterns occurring in various parts of a parameter space defined by the component 

flow rates. The flow rates used may be the volume fluxes, mass fluxes, momentum 

fluxes, or other similar quantities depending on the author. Perhaps the most widely 

used of these flow pattern maps is that for vertical gas/liquid flow constructed by 

Baker (in Dziubinski and Fidos, 2004).  

 

2.1.2 Vertical Gas-liquid flow patterns 
 
The major flow regimes found in vertical gas-liquid flow in a pipe of circular cross-

section are shown in Figure 2.1, from left to right in order of increasing gas flow rate 

(Dou, 1996; Martyn, 1999). At low gas flow rates, the flow regime known as bubble 

flow predominates, where the gas flows as bubbles of approximately uniform size in 

a liquid matrix.  

 

As the gas flow rate increases, collisions between bubbles are more frequent and they 

coalesce, eventually forming large bullet shaped bubbles called slugs. The flow has 

now moved into the slug flow regime. The pipe wall is permanently wetted and a film 

of liquid is present at the wall surface as the gas slug passes. Smaller gas bubbles are 

distributed throughout the liquid phase between slugs. The flow becomes unstable 

with increasing gas flow rate and the slugs distort and eventually break up as the flow 

moves into the churn flow regime. The gas now exists predominately as large 

irregularly shaped bubbles with smaller bubbles entrained in the liquid phase. 

 

When the gas flow rate is sufficiently high as to support a liquid film on the surface 

of the pipe, the gas flows continuously through the centre of the pipe and the flow  
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enters the annular flow regime. The liquid flows along the pipe wall as an annular 

film, and is also carried along in the gas core as small liquid droplets. 

 

 
Figure 2.1 Flow regimes in vertical gas-liquid flows (Martyn, 1999) 

 
The accuracy of multiphase design and predictive tools is poor compared to single-

phase systems (Keshock and Lin, 1996). There have been many studies of various 

fluids in multiphase flows, but the effects due to varying the gas properties are not so 

well understood and often appear contradictory. By gaining a better understanding of 

the properties of the fluids involved, it may be possible to optimise a multiphase 

system by choosing the gas-liquid combination. To help gain such an understanding, 

the author has successfully designed and built a flow loop that will produce annular 

flow. 

 

2.2 Multiphase flow applications 
 
Gas-liquid multiphase flows, in particular annular flow, can occur in a variety of 

industrial situations as already mentioned in Chapter 1. Another application worth 

mentioning is phase-change heat transfer which is important where very high rates of  
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heat extraction are required, such as in supercomputers, in aerospace systems and in 

satellite cryogenic cooling systems. In phase-change heating applications, steam is 

invariably used to give up its heat of vaporisation when it condenses on e.g. tube 

walls. High-pressure steam can help extract oil from the ground, and the multiphase 

flow resulting will be a mixture of steam, water and oil. Generally, thermal transport 

systems involving multiphase flow are more expensive but are lighter, more compact 

and more efficient than single-phase systems. However, of interest to this project is 

the situation where the multiphase flow is a natural phenomenon (Lowe and 

Rezkallah, 1999; Zhao and Bi, 2001). 

 

2.2.1 Flow rate measurements in multiphase flow 
 
In 1995 the world market in flow meters was estimated to be worth $2500 million 

and was expected to grow steadily for the foreseeable future. The value of the 

product being measured by these meters is very large. For example, in the U.K. 

alone, it was estimated that in 1994 the value of crude oil produced was worth $15 

billion (Webster, 2000). 

 

Texaco appears to have pioneered the development of multiphase flow metering, but 

from the mid-1980s the oil industry generally took an interest in multiphase flow 

metering (Lyons and Plisga, 2004). As a result of this industry-wide effort, a number 

of measurement techniques are now emerging as commercially available field test 

hardware.  

 

The first series of papers on the review of the development in the field of multiphase 

flow rate measurements in crude oil production systems were published by Ashkuri 

and Hill (1985). They predicted that future developments would fall into one of two 

categories: improvements in the design of test separators, which they considered as a 

short term development, or introducing new on-line techniques which did not involve 

phase separation. A more recent review by Whitaker (1997) showed that although 

test separators have improved, on-line techniques have gained more attention. This is 

because of the promising experimental results produced from industry supported 

laboratories. However, the latest review found by the author (Yeung, 2003) shows  
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that the on-line techniques have replaced the test separators in different parts of the 

world due to their great measurement results.  

 

The available literature categorises the multiphase devices as (i) devices traditionally 

used as single phase devices (Sections 2.2.1.1 – 2.2.1.6), (ii) separation metering 

systems (Section 2.2.2) and (iii) devices designed specifically as multiphase flow 

meters and incorporating multiple measurement techniques (Section 2.2.3).  

 

Oddie and Anthony (2004) have described possible choices for single phase flow rate 

measurement devices and techniques: 

 

o Differential pressure devices (see Section 2.2.1.1) 

o Turbine flow meters (see Section 2.2.1.2) 

o Tracer techniques (see Section 2.2.1.3) 

o Coriolis-type mass flow meters (see Section 2.2.1.4) 

o Electromagnetic Meters (see Section 2.2.1.5) 

o Ultrasonic Meters (see Section 2.2.1.6) 

 

2.2.1.1 Differential pressure devices 

 
Differential pressure (DP) devices constitute one of the simplest methods of 

measuring the flow rate of gas-liquid flow in pipelines. DP devices include orifice 

plates, nozzles or Venturi meters. The use of such devices for multiphase flow 

metering has a long history and has been described by many authors including 

Murdock (1962), James (1965; 1966), Collins and Gacesa (1971), Lin (1982) and 

Pascal (1983). Provided the instruments can be properly calibrated, with reproducible 

upstream flow conditions and steady flow, a good degree of accuracy can be obtained. 

Richard (2001) stated that uncalibrated orifice meters that conform to ISO 5167-1 are 

assumed to have an uncertainty of ± 0.5%. Venturi manufacturers tend to claim 

uncertainties in the order of ± 1% after calibration (although in reality it may be 

higher).  
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One of the major advantages of DP devices is that measurement uncertainty can be 

predicted without the need for calibration, if the device has been manufactured and 

installed in accordance with one of the relevant International Standards. Sekoguchi, 

et al., (1978) have presented a new approach of utilising two orifices in series to 

meter multiphase flow systems. This technique underwent further development by 

Pascal (1984) who emphasized the observable influence of the diameter ratio of the 

two orifices and the distance between them on their performance and the accuracy of 

measurements.  

 

The Venturi flow meter has recently gained the great attention from researchers. This 

is a metering device that has a tapered inlet and outlet with a constricted straight 

middle section, see Figure 2.2. The Venturi tube is suitable for clean, dirty and 

viscous liquid and some slurry services. It’s reported that Venturi has a typical 

accuracy of 1% of full range (Thomas and Paul, 2008). 

 

 
Figure 2.2 Venturi tube (Thomas and Paul, 2008) 

 

2.2.1.2 Turbine flow meters 

 
Turbine flow meters are one of the oldest methods of flow measurement, here the 

flow drives a turbine and the speed of revolution gives an indication of the flow rate. 

The use of such devices, see Figure 2.3, has been fully described by Zheng et al, 

(2008) who discuss the many problems associated with using turbine flow meters for  
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flow metering. They are prone to mechanical failure, particularly in the bearings if 

subject to large amounts of buffeting and are sensitive to abrasive flow components.  

 

 
Figure 2.3 Turbine flow meter (Zheng et al, 2008) 

 

The performance of turbine meters also depends on rotor design and the region of the 

normal meter operating range over which the tests were done. Finally, the results of 

turbine flow meters are flow pattern dependent. Turbine flow meters can show an 

accuracy of 0.25% of measurement (Zheng et al., 2008). 

 

2.2.1.3 Tracer techniques 

 
This must be the simplest method of determining flow velocity. A suitable tracer, 

usually small spherical pellets of much the same density as the fluid but discernible in 

the fluid flow are added to the fluid at a given point and the time they take to flow 

past two points downstream, a known distance apart, is measured. These techniques 

are widely used in metering single phase flow and were adapted for two-phase over 

thirty years ago (Mcleod et al., 1971). Some of the difficulties associated with the 

application of tracer techniques to flow metering are: 1) obtaining a uniform 

distribution of the tracer throughout the flowing liquid; 2) interphase mass transfer 

and mixing gives rise to a non-uniform modulation of the tracer; 3) changes in flow 

pattern and velocity between the point where the tracer was added and the point of  
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detection, 4) the tracer must be of a suitable density and must be clearly visible 

within the liquid.  

 

2.2.1.4 Coriolis-type mass flow meters 

 
Coriolis flow meters, see Figure 2.4, are claimed to have the greatest accuracy of any 

flow meter, typically 0.1% to 0.15% in liquids and 0.5% in gases. However, the range 

of flows over which they are applicable is small, AMI Instrumentation and 

Calibration in a press release of 09/08/2006 (AMS-Instrumentation-and-Calibration, 

2006) publicising a new high flow rate meter gave the upper limit of its range as 

2.2m3/hr. Such a device is only of use for those wells with relatively small outputs 

(about 50m3

 

/day).  

Coriolis meters have been used for two phase gas-liquid flows, but are of limited 

application because the upper limit to the void fraction is low (possibly as low as 

2%), below that found in the oil and gas industry. Coriolis flow meters have 

traditionally suffered from another drawback, that dirty and/or abrasive liquids 

clogged the U-shaped design. However, the development of a single straight tube 

design is expected to largely overcome this difficulty (efunda, [online] accessed 

10/01/2009). In general, where Coriolis-type mass flow meters have been used in the 

oil and gas industry it was for steady flow with a low gas void fraction. 

 

 
Figure 2.4 Modern industrial Coriolis meter (efunda, [online] accessed 10/01/2009) 
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2.2.1.5 Electromagnetic Meters 

 
Magnetic flow meters, see Figure 2.5, have been widely used in industry for many 

years. Unlike many other types of flow meters, they offer true non-invasive 

measurements. They are easy to install and use to the extent that existing pipes in a 

process can be turned into meters simply by adding external electrodes and suitable 

magnets. They can measure reverse flows and are insensitive to viscosity, density, 

and flow disturbances. Electromagnetic flow meters can rapidly respond to flow 

changes and they are linear devices for a wide range of measurements. As in the case 

of many electric devices, the underlying principle of the electromagnetic flow meter 

is Faraday’s law of electromagnetic induction. In multiphase flows the induced 

voltage in an electromagnetic flow meter is linearly proportional to the mean liquid 

velocity. However, the liquid phase must be continuous and must be electrically 

conducting. 

 

Magnetic flow meters do not require continuous maintenance, except for periodic 

calibrations. Nevertheless electrode coating, damage to the liners, and electronic 

failures can occur. Any modification or repair must be treated carefully because, 

when installed again, some accuracy can be lost. After each modification or repair, 

recalibration is usually necessary. For electromagnetic flow meters to operate 

accurately, the process liquid must have minimum conductivity of 1mS/cm to 

5mS/cm. Most common applications involve liquids with conductivities greater than 

5mS/cm. Nevertheless, for accurate operation, the requirement for the minimum 

conductivity of liquid can be affected by length of leads from sensing electrodes to 

transmitter electronics (Al-Yarubi, 2006). 

 

Electromagnetic flow meters cannot measure gas phase, so for electromagnetic flow 

meters to be successfully used in multiphase flow the gas must be independently 

measured.  In multiphase flow wU  the mean water velocity, is given by: 
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where: wQ  is water volumetric flow rate, gα  is gas mean volume fraction and A is 

pipe cross-sectional area. 
 
 

 
Figure 2.5 Electromagnetic flow meter (Al-Yarubi, 2006) 

 

2.2.1.6 Ultrasonic Meters 

 
The ultrasonic meter category contains a number of different designs for measuring 

an average velocity in a flowing system. They are all based on an ultrasonic signal 

being changed by stream velocity or reflected from interfaces or solids in the stream. 

Meter measurement accuracy can be in the range of 1% of flow rate, and reflects the 

ability of the system to represent the average velocity over the whole stream passing 

through the meter body’s hydraulic area - which affects installation requirements and 

accuracy of the results obtained. Meters are made in several types; one type requires 

installation of transducers into the flowing stream, the other is a strap-on model that 

can be installed without shutting down the flow stream. Whereas electromagnetic 

flow meters require a minimum electric conductivity of the liquid for operation,  
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ultrasonic flow meters can be applied in nearly any kind of flowing liquid. Ultrasonic 

flow meter is discussed in details in Section 2.4.2. 

 

2.2.2 Separation metering systems for multiphase flow 
 
This is the traditional and extensively tested method for multiphase flow 

measurement. Oil, gas and water in the incoming stream are first separated and then 

metered by volumetric flow meters in individual flow lines. Test separator design 

depends upon the type of production, oil or gas. In oil gathering stations the test 

separator is a horizontal vessel with a top crude inlet and three outlets for gas from 

top, and water and oil from bottom, each outlet line containing a single phase flow 

meter, see Figure 2.6.  

 

To get accurate results from a well-test it is necessary to control pressure levels and 

measure accurately the amount of oil, water and gas produced. Pressure is controlled 

by a Pressure Control Valve (PCV) on the gas outlet line. Pressure control is very 

important because a fluctuating pressure invalidates the test result. The gas produced 

from the well is measured by an orifice flow meter which allows the replacement of 

the orifice plate while the separator and gas line are under pressure. Using the correct 

size orifice plate is essential to obtain accurate readings.  

 

Water and oil levels are controlled by separate Level Control Valves (LCVs), 

connected to Emergency Shut Down (ESD) valves. The amounts of water and oil 

produced are measured by separate suitable single phase flow meters. The LCV for 

the oil usually works on gap control which gives sufficient residence time for the oil 

to release any trapped gas. The gas, oil and water produced over a given test period 

are measured and totalled. 

 

PDO has recently introduced a vertical three-phase gas well separator Type SM 

(V6203) in its newly discovered Kauther gas field, see Figure 2.7, as part of the 

Kauther Gas Plant (KGP) project at a cost of $160,000,000. The V6203 gas test 

separator has a cross-flow plate-pack coalescer which acts as a filter. 
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Figure 2.6  Simplified oil well separator (Al-Yarubi, 2006) 

 

 
Figure 2.7 Typical three phase separator (for gas wells) (Al-Yarubi, 2006) 



 
CHAPTER 2                                                                           LITERATURE SURVEY 

 48 

 
Generally, a three-phase separator for both oil and gas wells would be expected to 

accomplish the following: 

 

o Liquid must be separated from gas in a primary separating section. 

o Gas velocity must be lowered to allow liquids to drop out. 

o Gas must be scrubbed through an efficient mist extractor. 

o Water and oil must be diverted to a turbulence-free section of the vessel. 

o Liquids must be retained in the vessel long enough to allow separation. 

o The water-oil interface must be maintained. 

o Water and oil (referred to as condensate in Figure 2.7) must be removed from 

the vessel at their respective outlets.  

 
With the KGP project the well fluid to be tested is routed by a dedicated test header 

to the test separator. Primarily gas and liquid are separated. Then the gas flows from 

the top of the separator via a flow meter to a wet gas cooler under a pressure control 

unit. The liquid collected in the test separator is further separated into water and 

condensate (oil and hydrocarbons in general). Water is drawn from the bottom of the 

test separator by an inter-phase level/flow cascade control unit. The condensate is 

drawn from a condensate outlet nozzle, which is located in the middle of the 

hydrocarbon section of the plate pack, by a level/flow cascade control unit.   

 

Figure 2.8 shows a typical gas process plant involving a V6203 multiphase separator 

shown in Figure 2.7. Gas plant is much more complicated than oil plant. Crude enters 

the gathering plant at high pressure, so the separator must be vertical to separate 

liquid particles from the gas by means of gravity. Normally in gas plant there will be 

first, second and third stage separation. Water will be collected from the first stage 

separation while condensate (heavier hydrocarbons) is gathered from the second and 

third stage separation. Condensate will be treated and transferred to Liquefied 

Petroleum (LPG) process plant within the gathering station. Methane gas is then 

cleaned of acid and sour gases and then purified and compressed. The gas must be 

dried and free of water vapour and heavier hydrocarbons components before 

transporting it to customers.  
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Figure 2.8 A typical process gas plant separation system (PDO, 2008) 



 
CHAPTER 2                                                                           LITERATURE SURVEY 

 50 

 

Such a process requires a great attention to many different aspects as it deals with 

different phases of flow. The main disadvantage of using conventional test separators 

is that they are heavy, bulky and expensive ($750,000 approximately). Furthermore, 

they are unrepresentative because they only sample a fraction of the total production 

and do not operate continuously. The complexity of the process could be minimised 

if an online measurement device were installed. The following section will review 

some of these devices used to overcome the need for bulky separators. PDO has 

started to use multiphase flow meters to test each well production. The required 

accuracy by PDO for the well test is ±10%, which can be achieved easily by a 

multiphase flow meter with lower operational cost compared to test separators. 

 

2.2.3 Review of dedicated multiphase metering systems 
 
The first commercial dedicated multiphase flow meter appeared about ten years ago, 

as a result of several multiphase metering research projects that took place in the 

early 1980's. The driving force to develop multiphase flow meter technology was the 

forecast decline of production, accompanied by the necessity to tie future smaller 

discoveries to existing infrastructure. Increasing gas and water fractions, inherent in a 

mature producing province, would create more unstable flow conditions in existing 

production facilities and require more flexible multiphase solutions.  

 

A critical review of the multiphase flow meter solutions currently available in the 

market is far from being an easy task. Most multiphase flow meter research projects 

are now driven by the oil and gas industry and usually end up with a patented 

solution. Thus, scientific and commercial interests often tend to overlap in a sector of 

the oil and gas market where competition is intense. Multiphase flow meter 

manufacturers have to act quickly in order to secure the implementation of a 

particular technology before their rivals. This results in a very limited amount of 

published information on the performance of the various multiphase flow meters. 

Unless operators are ready to pay non-negligible sums to gain access to the results of 

independent multiphase flow meter assessments carried out at well-established labs, 

they are usually offered "black-box" packages where very little is unveiled about the 

technical principles behind the multiphase flow meters.    
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This section presents a review of multiphase metering systems which PDO has used 

or tested in its production fields. This encompasses what are believed to be all the 

most advanced and soundly based technologies. This provides a review of the state of 

the art of emerging technologies. It includes information on current capabilities and 

costs as well as describing the different measurement concepts. This type of 

information is commercially sensitive due to the high competition in the market for 

commercial multiphase flow meter. In the following review, it’s worth defining the 

terms used to avoid confusion and ambiguity: 

 

Standard terms are used in quoting accuracy or error percentages:  

 

Absolute error: an error or deviation expressed as a percentage of full scale. 

Accuracy: ability to provide a reading close to the true value of the parameter being 

measured. 

Relative error: error or deviation expressed as a percentage of actual flow rate. 

Uncertainty: the dispersion of the readings (usually the standard deviation). 

 

2.2.3.1 Positive displacement screw meter 

 
This flow meter was licensed by ISA Controls Ltd. in 1994, and is believed to be the 

most advanced in terms of flow loop and field test experience. A full range of flow 

conditions of up to 0.95 gas volume fraction (GVF) has been tested and several 

thousand run-hours experience gained. The meter measures total volumetric and total 

mass throughput of the multiphase fluid stream and uses water cut ( totalww QQC /= ) 

to measure the flow rates of oil, water and gas.  

 

The principle behind the screw meter is that the positive displacement elements 

constrain the phases to move at a single velocity. The meter housing has chambers, 

see Figure 2.9, which are continuously filled and emptied, and this process is 

transmitted through suitable gearing to a counter that reads total volume.  
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Figure 2.9 Chambers in positive displacement meter (Yeung, 2003) 

 
A densitometer beam passes through a cavity between the screws mid-way along the 

meter axis. In principle, if slip between the phases were fully eliminated between the 

screws, the densitometer reading would equate to the true mixture density relating to 

the overall proportions of oil, water and gas flowing in the pipeline. Coupled with the 

water cut reading from a second instrument, the mixture density and total swept 

volume readings can then be used to solve for the flow rates of oil, water and gas at 

line conditions (Yeung, 2003). (This assumes that the individual phase densities are 

known as a function of pressure and temperature which are also measured at the 

multiphase metering section). 

 

The test data obtained this far indicates that relative error uncertainty increases with 

GVF. The relative error of the flow rate increases from ±5% (GVF of 0.8) to ±10% 

(maximum GVF of 0.95). Cost to supply such a flow meter can only be estimated at 

present but is expected to be of order $150,000. Cost of a complete ISA multiphase 

measurement system is, of course, application dependent.  

 

2.2.3.2 Framo multiphase metering system 

 
The system, see Figure 2.10, was developed by Framo Engineering AS in Norway 

and is based on a technique which should, in principle, be insensitive to the  
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randomness in multiphase flow. The device has a novel mixer, or flow conditioner 

which, unlike conventional mixers, can mix slugs and gas pockets to produce a 

steady exit stream from intermittent regimes. Dual energy gamma ray attenuation 

measurements are used to determine the ratios of oil, water and gas. 

 

 
Figure 2.10 Framo multiphase flow meter (Olsen and Hanssen, 1994) 

 
Calibration of the Framo system would rest with the type of measurement used. For 

the Venturi meter, it is primarily a matter of subjecting the pressure sensors to 

accurately known fluid pressure. This assumes that a universal or repeatable and 

predictable Venturi discharge coefficient can be established for well-mixed 

multiphase flow. The dual energy gamma system requires calibration on fluids of 

known density and attenuation coefficient. 

 

Test results show relative measurement errors in phase flow rates and total flow of 

20% to 30% (Olsen and Hanssen, 1994). The field prototype is barrel shaped, 

approximately 1.4m long and 0.5m diameter and total cost approximately $900,000.  
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2.2.3.3 Fluenta system 

 
The Fluenta multiphase flow meter has an inline spool piece that measures flow 

without separation of phases. The meter was 0.076m in diameter and 1.5m long. The 

Fluenta multiphase flow meter combines conductance (A), capacitance (B) and γ -ray 

(C) sensing techniques to monitor vertical up-flows see Figure 2.11. If the flow is oil 

continuous then capacitative sensors are used, if the flow is water continuous 

conductance sensors are fitted, and used to measure the water content of the flowing 

liquid. The meter also includes a Venturi to be used in gas velocity measurements.  

 

 
Figure 2.11 Fluenta multiphase flow meter (AMS, [online] accessed 05/08/2009) 
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A second set of sensors placed a known distance along the pipe provide cross-

correlation measurement of the flow velocity. By using cross-correlation techniques 

on the signals, the meter measures the velocity of both the gas and the liquid, 

enabling the meter to operate in all kinds of flow regimes - bubbly, churn and slug 

flow - for water cuts of 0-1 and gas volume fractions up to about 0.95. 

 

Calibration of the system for the field trial was completed at the CMR laboratory. 

Absolute errors of ± 2% phase fraction have been demonstrated by the test 

programme for gas volume fractions of up to 0.5. In the past Fluenta have quoted 

$300,000 for one of their multiphase metering systems, but this latest development is 

likely to be significantly more expensive.  

 

2.2.3.4 The Multi Fluid International system 

 
First marketed by Multi Fluid International, this system is now known as Roxar Flow 

Measurement.  This microwave instrument measures the dielectric constant and 

gamma ray attenuation for the flow mixture to determine the in-situ volume fractions 

of oil, water and gas across the cross-section of the pipe. In one configuration, the 

instrument functions in both water continuous and oil continuous emulsions, this 

version of the instrument is known as the “full range meter”.  

 

Velocity measurements are performed by a momentum meter which can be combined 

with a microwave device. In conjunction, the two meters allow liquid and gas 

velocities to be measured more accurately over a wide range of flow regimes. The 

meter operates in water cuts of 0-1. The ‘low price’ version, which uses a similar 

microwave technology, operates only in oil continuous flow, up to a water cut of 0.4-

0.6. Phase fraction results obtained from laboratory loop tests had absolute errors 

within ± 2%. Cross-correlation of data measurements to obtain mixture velocity and 

phase flow rates, were more erratic with relative errors of ± 10% to 20% reported.  

 

The calibration of the MFI phase fraction system, in principle, should rely primarily 

on factory or laboratory set-up prior to installation. The system uses commercially 

available Cs137 gamma ray densitometers which can be calibrated on fluids such as  
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air and tap water. The microwave unit requires data including density of the dead 

crude, produced water density and conductivity. The MFI system then relies on 

application specific prediction equations of the variation of these quantities and gas 

density as a function of line pressure and temperature. 

 

The ‘low price’ oil-continuous instrument is currently quoted at an estimated price of 

$200,000. This includes the twin sensor arrangement which permits a single velocity 

measurement by cross-correlation (Purvey, 1998).  

 

2.2.3.5 Texaco Starcut meter 

 
This water content monitor has been developed by Texaco EPTD. The instrument 

measures the water content of emulsions containing little or no free gas. It uses 

measurements of the phase shift and attenuation of 10GHz microwaves caused by the 

flow stream to determine water cut.  The instrument is already developing a field 

track record ahead of other phase fraction/water cut devices, although these devices 

have, of course, already demonstrated a measurement capability on gas fractions 

significantly higher than 0.25. The sensing flow path is of rectangular cross-section 

of approximately 10mm by 5mm normal to the flow path. This limits the device to 

rely on a slip stream sample arrangement in the majority of applications since it 

clearly imposes a throughput limitation 

 

Calibration of the Starcut monitor is essentially a factory/laboratory exercise. It 

subsequently performs its own auto-calibration once installed in service. Tests 

indicated that the combination of the screw meter, see Section 2.2.3.1, with the 

Starcut system would be expected to provide the latter with a well mixed and 

representative sample from which to derive water cut. The present pricing for an off-

shelf unit is approximately $70,000. 

 

2.2.3.6 Kongsberg multiphase flow meter 

 
In 1992, Kongsberg Offshore launched a multiphase meter developed by Shell 

Exploration and Production Laboratory (KSEPL) in the Netherlands. The meter  
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measures the flow rates of oil, gas and water for slug flow. The measurement spool 

comprises two closely spaced parallel conductance plates mounted across the centre 

of the pipe. Two more capacitance electrodes are positioned one near the top and one 

close to the bottom of the pipe, see Figure 2.12. The gas-liquid interface is sensed by 

the conductance electrodes, and flow perturbations sensed at upstream and 

downstream capacitance electrodes are cross-correlated to obtain the flow velocity.  

  

 
Figure 2.12 Kongsberg type multiphase flow meter (Halto and Sorensen, 1999) 

 
Prototype units have been undergoing field trials in Oman which Shell report (Hatlo 

and Sorensen, 1999) as giving “consistent” results compared to test separator 

equipment, although with some bias error. Shell claim to have a number of such 

applications and state that the level of accuracy achievable with the unit (quoted at 

between 10% to 20% of flow rate) is acceptable. Shell compensate for the lower 

accuracy of these meters by having a relatively low cost unit, less than $100,000 

including an industrial PC. 

 

2.3 Annular flow 
 
Annular two-phase flow is the focus of this research. It is characterized by gas core 

flow in the centre of the tube, a liquid film flowing on the inner tube wall, and a wavy 

gas-liquid interface. The gas core also carries entrained liquid droplets. The interface  
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between the liquid film and the gas core is highly dynamic and constantly changing 

and the droplets are believed to be transported into the gas core as crests of the waves 

are sheared off by the gas stream (Sawanta et al., 2008). A feature of the interface is 

the presence of large disturbance waves along with smaller ripple waves. Figure 2.13 

shows a schematic plot of a typical annular flow regime.  

 

 
Figure 2.13 Typical two-phase annular flow regime 

 
Annular flow can occur at all pipe orientations. In vertical flow the time averaged 

film properties are uniform around the pipe circumference, but for inclined and 

horizontal pipes, gravity causes a significant asymmetry of the film, much higher 

mass flow rates and film thicknesses are found at the lower side than at the upper side 

of the pipe. The importance of liquid films has led to extensive experimental 

investigations.  

 

In this study, the four major features of the annular flow regime that were studied are: 

(i) the liquid film thickness δ , (ii) the liquid film velocity Uf

cgU ,

, (iii) the entrainment 

fraction E and (iv) the gas core velocity . This study is concerned with 

measurement of the flow rate of the phases rather than the behaviour of the liquid  
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film, but the study of latter is necessary when considering the flow behaviour in more 

detail.  

 

2.3.1 Film thickness 
 
In many situations concerning annular flow, determining the flow characteristics is 

important for improving system performance or ensuring safety. As explained earlier 

(see Section 1.2.2) a good understanding of liquid film behaviour is critical to prevent 

dry-out situations and subsequent catastrophic events. The general trend is for the 

mean film thickness to decrease to some minimum value as the gas flow rate 

increases or with a decrease in the liquid flow rate (Ariyadasa, 2002; Fukano and 

Furukawa, 1998). For upward vertical, co-current flow, this behaviour of the mean 

film thickness is due to the film becoming smoother as the gas flow rate increases 

(Ariyadasa, 2002). 

 

MacGillivray (2004), has reported an empirical relationship for calculating the film 

thickness, based on the interfacial shear or the entrainment, as follows: 

 

( ) ( )[ ] 4.02.50.92.50.5   0.03379Re 0.707Re m ww +=+      2.2 

 
where: +

m  is non-dimensional film thickness and wRe  is the Reynolds number 

defined by:   

 

µ
PGl

w

 4
Re =           2.3 

 
where: P  is the perimeter wetted by the film (m), μ  is the liquid viscosity (kg/ms) 

and lG  is the liquid film mass flux (kg/m2

 

s), calculated from the mass flow rate (kg/s) 

of the liquid film: 

2 D

W
G l

l π
=           2.4 

 
where: Wl  is the liquid mass flow rate (kg/s) and D is the pipe diameter (m). 
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The dimensionless film thickness, m+

 

, is given as: 

ν
ϑδ ∗

+ =
 

m           2.5 

 
where: δ  is the film thickness (m), ν  is the liquid kinematic viscosity (m2 ∗ϑ/s), and  

is the liquid friction velocity (m/s), calculated from: 

 
5.0
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ρ
τ

ϑ           2.6 

 

where: iτ  is the interfacial shear stress and lρ  is the liquid density (kg/m3

 

). 

Ambrosini et al., (1991) recommend using a slightly different relationship; 

 
B

wAm Re=+           2.7 

 
where: A = 0.34, and B = 0.6 for wRe  < 1000  

and A = 0.0512, and B = 0.875 for wRe  > 1000.  

 

Fukano and Furukawa (1998) were amongst the first to develop a relation that 

included the effect of the gas flow rate on the mean film thickness, and an estimate for 

the film thickness within 15% of the data was claimed. They conducted their 

experiments on annular flow using air-water and air-glycerine solutions. This 

relationship is given as: 

 

( )6.019.025.0 Re34.0exp0594.0 xFr
D

wg−=
δ

      2.8 

 
where: δ  is the film thickness (m), D is the pipe diameter (m), x  is the gas quality 

(ratio of the mass flow rate of the gas divided by the total mass flow rates of gas and 

liquid) and gFr  is the gas Froude number is calculated from:  
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( ) 5.0

,

 Dg

U
Fr

sg

g =          2.9 

 
where: g = 9.81m/s2, Ug,s

 

 is the gas superficial velocity (m/s) and here the Reynolds 

number is defined by: 

ν
DU sw

w

 
Re ,=                    2.10 

 
where: Uw,s νis the water superficial velocity (m/s), D is the pipe diameter (m) and  is 

the liquid kinematic viscosity (m2

 

/s). 

These relations are not very useful for practical design purposes since they require 

either knowledge or calculation of such quantities as the interfacial shear stress, which 

is not readily available. In addition, these relations do not identify the influence of the 

gas mass flow rate on the average film thickness. Also, of course, other flow 

parameters affect the mean film thickness. Hori et al., (1979) reported that an increase 

in the viscosity of the liquid resulted in an increase in the film thickness. Bousman 

(1995) has shown that an increase in either the viscosity or the surface tension 

resulted in a thicker liquid film and larger amplitude waves. The observation was also 

noted by Han and Gabriel, (2006) in their study of the effect of the gas on the wave 

characteristics in two-phase gas-liquid annular flow. 

 

Kwon et al., (2001) suggest that for constant mass flow rate (both gas and liquid), as 

the gas density increased so the film thickness increased. This might have been 

expected since for a constant mass flow rate the gas volumetric flow rate will decrease 

as the gas density increases. In a sense these findings confirmed those of Ariyadasa 

(2002) and Fukano and Furukawa (1998). For the same gas velocity, the film 

thickness increased with decreasing gas density. These results were based on 

comparison of data obtained by researchers for tests made at different absolute 

pressures, test section lengths and tube diameters.  

 

Typical film thicknesses in two-phase flows are often less than a few millimetres, so 

accurate measurement is difficult, and this has led to a wide range of measurement  
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techniques (Clark, 2002). An initial review of the literature found some twenty film 

thickness measurement techniques, and these have been divided into three groups:  

 

o Film average methods (see Section 2.3.2.1) 

o Localised methods (see Section 2.3.2.2) 

o Point methods (see Section 2.3.2.3) 

 

2.3.2 Measurement techniques for film thickness 
 

2.3.2.1 Film average methods 

 
These techniques belong to a larger group of “liquid hold-up” techniques that have 

been widely reported in the literature. To obtain an average film thickness value 

measured over a considerable length of film using these methods is possible only 

through the assumption that all the liquid present is in the form of a uniform 

symmetrical film. There has been little study using film average methods due 

predominantly to their inability to provide information on local interface phenomena 

i.e. waves. 

 

The Weighing Method (Aragaki et al., 1987), involves an arrangement that allows the 

weighing of the experimental test section during operation, see Figure 2.14. The 

Hold-up measurement, (Burns et al., 2003), simply consists of isolating a section of 

film and measuring the liquid volume within this isolated section. The Conductance 

method (Kang and Kim, 1992), involves the measurement of the conductance of a 

length of film and then relating the measured conductance value to the thickness of 

the film. In many instances, it is necessary to make the film conducting by adding 

appropriate electrolytes.  
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Figure 2.14 Weighing Method, (Aragaki, et al, 1987) 

 

2.3.2.2 Localised methods  

 
This group of methods includes techniques that give localised measurements of the 

thickness of the film (of the order of a few millimetres to a few centimetres averaged 

over a given area), from which it is not possible to obtain an instantaneous point 

value. This group includes the most common techniques used for film thickness 

measurement, probably because of their relative ease of use and general applicability 

to most flow systems. The Capacitance probe (Huang et al., 2005), comes into this 

category and it works on the principle that a pair of electrodes will give a 

measurement of the local capacitance which be function of the thickness of the film 

between them. The Conductance probe (Geraci et al., 2007), is probably the single 

most widely used device for measuring the time varying film thickness. Essentially, 

the conductance is measured using a circuit containing a pre-determined electrode 

configuration and the readings are amplified and displayed by some output device. 

Film thickness can be determined from such conductance measurements if a  
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calibrated linear relationship can be established between the two parameters within 

the range of measurements.  

 

A large number of measurement techniques are based on the Absorption of 

Electromagnetic Radiation, (Tibiriçá et al., 2009), for which Beer’s law applies: 

 









−=

oi

i
ln

1

ϕ
δ                    2.11 

 
where: δ  is the thickness of the material, ϕ  the linear absorption coefficient of the 

material, i  the emergent intensity, and oi  the incident intensity of the monochromatic 

collimated beam.  

 

 
Figure 2.15 Absorption of Electromagnetic Radiation, (Jackson, 1955) 
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First the system is calibrated. Then a collimated beam of radiation is passed through 

the liquid film, and the intensity of emergent radiation is measured by a suitable 

detector. This can be used to determine the thickness δ . An old, rarely used and 

somewhat dangerous technique is Radioactive Emission, (Jackson, 1955), where a 

radioactive substance is dissolved in the flowing liquid and radiation emission 

measured by a Geiger-counter or other suitable detector, see Figure 2.15. The local 

volume of liquid (i.e. the film thickness) will be proportional to the radiation detected. 

This is an averaging technique which gave reasonable results but was largely 

abandoned for health and safety reasons. 

 

A measurement method with considerable advantages in industrial applications is the 

Ultrasonic Pulse-Echo Method (Wada, et al., 2006). This involves the measurement 

of the transit time of a sound wave transmitted and received by a single ultrasonic 

transducer. The transit time can be combined with knowledge of the speed of sound in 

the liquid to determine the film thickness.  

 

2.3.2.3 Point methods 

 
This group includes all methods in which continuous or statistical information is 

obtained at a point in a liquid film where film thickness can be measured over small 

areas i.e. up to 1mm2 or 1µm2

 

, (Franco, 2007). These methods have not been as 

extensively used as localised methods because, generally, they are harder to 

implement and the results more difficult to analyse. Because of its relative simplicity 

of operation and its wide applicability to most types and thicknesses of conducting 

liquid films, the Needle Contact Probe (Fossa, 1998) is the most popular film 

thickness measurement device. The probe consists of a needle, the body of which is 

electrically insulated, mounted on a moveable rod. An electrode is inserted flush into 

the wall over which the film flows.  

The needle and moveable rod are placed directly opposite the electrode. The rod is 

gradually moved forward until the conducting tip of the needle just makes contact 

with the surface of the film. A conduction path now exists between the needle and the 

electrode and a current flows. The distance moved by the rod will, by subtraction,  
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give the thickness of the film. A similar technique to the needle contact probe is the 

Hot-wire Method (Franco, 2007), where the simple needle probe is replaced with a 

hot-wire probe. However, this technique suffers from inaccuracy when waves are 

present in the film surface. 

 

The Fibre-Optic Techniques (Addlesee and Cornwell, 1997; Ohba et al., 1984) uses a 

sensor pick-up head mounted flush in the wall surface over which the liquid film 

flows. This sensor consists of a central optic fibre carrying a beam from a laser, and 

six receiving fibres surround the transmitting fibre and are joined tightly to it. Light 

from the laser travels along the transmitting fibre into the liquid where some of it is 

reflected at the surface of the liquid film at the gas core interface. Some of this 

reflected light enters the six receiving fibres, each of which has a photo-detector at its 

end. The intensity of the reflected laser light will have a different value depending on 

film thickness, the angle made by the film surface with respect to the wall, and the 

position of the individual fibre. By suitably processing the output from all six photo-

detectors film thickness can be found, (Yu and Tso, 1995).   

 

The Interfacial Reflection Techniques (Hurlburt and Newell, 1996), has the laser 

outside the pipe carrying the multiphase flow, aimed at a translucent white coating on 

the outer surface of the pipe, see Figure 2.16.  

 

 
Figure 2.16 Interfacial Reflection Techniques (Hurlburt and Newell, 1996) 
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This generates a single wavelength hemispherical light wave travelling outwards from 

the point where the laser met the coating. The wave front will follow the laws of 

reflection and refraction and will be symmetrically reflected from the liquid surface at 

the critical angle. By detecting the reflected beam and knowing the optical properties 

of the liquid the film thickness can be found. Of course, the liquid and the pipe must 

be transparent to the wavelength of light used.  

 

The reflected light images were recorded using a video camera with approximately 16 

sample frames processed at each operating condition. The distance between the point 

source and the point where the light reflected from the film surface reaches the white 

coating ( refR  - shown as Rright and Rleft

δ

) can be geometrically related to the film 

thickness ( ) by the following expression: 

 

critoref RR θδ tan2+=                               2.12 

 
where: critθ  is the critical angle, and Ro

 

 is the contribution due to wall thickness given 

by: 

θtan2 wallo hR =                               2.13 

 
where: wallh  is pipe wall thickness. 

 

The wide range of film thickness measurement methods available makes a single 

recommendation difficult. It is more appropriate to consider a technique’s suitability 

depending on the type of film and the thickness measurements required (Clark, 2002). 

However, for information on local film thickness, conductance/capacitance probes are 

probably the best unless such factors as measurement location or fluid properties 

prevent their use. These devices are relatively easy to use, not too expensive and 

reasonably accurate.  

 

In this present work the flows used are vertical, i.e. axisymmetric film properties can 

be assumed, hence either point of localised methods are suitable to give the averaged 

film thickness and velocity. The conductance method (localised technique) was  
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chosen to measure the film thickness and the film velocity (with the aid of the cross-

correlation technique), see Sections 3.3.3, 4.2 and 6.1. 

 

2.3.3 Cross-correlation technique  
 
Consider two pairs of identical sensors separated by a known distance L along a pipe 

axis. As a disturbance passes the upstream sensor there is a momentary change in its 

output signal. The disturbance is carried with the flow with minor changes (due for 

example to turbulence) to the downstream sensor where it causes a similar but not 

identical change in the output signal. The time delay between these changes in output 

signal at the two sensors is equal to the time taken for the particle to travel the 

distance between the sensors. This is inversely proportional to the mean flow velocity. 

To determine the mean flow velocity, the time lag between the changes in output 

signal is found by using statistical methods known as cross-correlation, (Ferrari et. al, 

2005).  

 
This method can be summarised by:  

 

( ) dttytx
T

R

T

T
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1
lim)(
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∫ −=
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ττ                  2.14 

                 

where: )(τxyR  is defined as the cross-correlation function between the output from the 

two sensors which are referred to as x(t) (from the upstream sensor) and y(t) (from the 

downstream sensor). T is the total time period for which data was acquired.  

 

)(τxyR  reaches a maximum value when τ  is equal to the mean time for the 

perturbations in the relevant property of the flow to travel from upstream sensor X to 

downstream sensor Y. This maximum value occurs when pττ = . Hence, pτ  can be 

found by determining the value of τ  at which )(τxyR  

 

is a maximum, see Figure 2.17.  
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Figure 2.17 A representation of the cross-correlation function Ferrari et al, 2005) 

 
The average flow velocity U  can be calculated, as: 

 

p

L
U

τ
=                     2.15 

 
where: L  is the separation distance between the two pairs of identical sensors. 

 

Since Beck, Beck and Plaskowski (1987), successfully used cross-correlation for flow 

measurement this technique has been increasingly used. The outstanding advantages 

of cross-correlation flow measurement systems make them particularly suitable for 

industrial applications where they provide flexibility for measuring multiphase fluid 

flow in hostile environments. Importantly, a large number of different types of 

transducer can be used with this technique which enables the probes to be designed so 

that they do not present an obstruction to the flow. Many practitioners believe that 

cross-correlation is superior to other existing methods for gas-liquid two phase 

measurement. 

 

The cross-correlation technique has been developed extensively by different 

researchers, including Lucas, et al., 1987. Other researchers have built sensor systems 

including capacitance sensors, conductivity sensors, and electrodynamics sensors, 

(Beck and Plaskowski, 1987). All of these systems have been successfully operated in 

the laboratory and a wealth of accumulated experience is available. Cross-correlation 

has been adopted in this research to measure the liquid film velocity.  
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In this study a conductance cross-correlation technique has been used. Sensors which 

are sensitive to the disturbances in the properties of the liquid film in annular flow 

were constructed. It was possible to build a film velocity measurement system using 

two of these conductance sensors to measure the actual speed with which disturbances 

in the film propagate downstream.  

 

2.3.4 Entrainment  
 
The liquid forming the film is continuously entrained drawn into the gas core as 

droplets and, simultaneously, the droplets in the gas core are continuously deposited 

onto the film in a process called droplet deposition. A fully developed annular flow 

means that the two processes are in dynamic balance and the mass flow rate of liquid 

droplets in the gas core remains constant. The liquid entrainment fraction (or liquid 

entrained fraction or liquid atomisation) is the ratio of the: mass flow rate of the liquid 

droplets in the gas core to the total mass flow rate of the liquid phase, both core and 

film (Pan and Hanratty, 2002). 

 

fd

d

WW

W
E

+
=                     2.16 

 
where: Wd  is the mass flow rate of the liquid droplets (kg/s) and Wf

 

  is the mass flow 

rate of the liquid in the film (kg/s).  

In this study, liquid entrainment is limited to the process where part of the liquid 

phase is entrained into the gas core as a result of gas flow “shearing off” the wave 

crests and carrying them in the form of droplets. Knowledge of the entrainment 

fraction and the amount of the liquid flowing as a liquid film is needed to develop 

better design procedures for vertical annular gas-liquid flows but the entrainment rate 

of the droplets from the liquid film is the greatest uncertainty in the mass balance of 

the liquid film (de Bertodano, et al., 1997). 
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A number of regimes of film behaviour have been identified in upwards annular two-

phase flow (Pu et al., 2006). At low film flow rates it has been found that there is little 

or no entrainment of drops because the film experiences only small ripples. The 

critical value below which no entrainment occurs has been given by Owen and 

Hewitt, (1987) in terms of a film Reynolds number:  
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4249.08504.5expRe ,                 2.17 

 
where: gµ  and lµ  are the gas and liquid dynamic viscosities (kg/ms) respectively and 

gρ  and lρ  are the gas and liquid densities (kg/m3

 

) respectively. 

In a number of reported investigations (Drosos, et al., 2006; Rodríguez and Shedd, 

2004; Nigmatulin, et al., 1996), the critical liquid flow rate increased with increasing 

gas flow rate.  

 

2.3.4.1 Entrainment mechanisms 

 
There are three well-known mechanisms by which the liquid film is entrained into the 

gas core in vertical upward annular flow: (a) wave entrainment, (b) entrainment by 

bubble bursts, and (c) entrainment by droplet impingement. It is widely accepted that 

after waves have been generated in the flow, wave entrainment is the dominant 

entrainment mechanism, and the other two mechanisms may be neglected. This is 

supported by the findings of William, et al., (1996, 2007), Azzopardi and Sanaullah 

(2002) and de Bertodano, et al., (2001). Two different mechanisms were identified for 

the wave entrainment. The first, termed bag break-up, occurs at lower gas and liquid 

flow rates, see Figure 2.18.  

 

At higher flow rates Azzopardi (1983) has reported that a second mechanism occurs 

in which the crests of roll waves were elongated and thin ligaments were torn from the 

film, see Figure 2.19. These ligaments immediately broke down into drops. These 

mechanisms are similar to those which occur when large drops are distorted and 

broken up by a gas stream (Azzopardi, 1997), see Figure 2.20. 
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The bag break-up mechanism, Figure 2.18, occurs at lower gas velocities (those that 

are easier to observe) and is considered to be the more important. However, the 

ligament mechanism, Figure 2.19, is relevant over greater ranges of flow rates.  

 

It was observed that when two waves within the liquid film collided, a number of 

drops were ejected from the film and entrained into the gas core. This effect is 

described as the wave coalescence entrainment mechanism. Hewitt and Govan, (1990) 

studied the mechanism of bubble impact. With annular flow some liquid drops in the 

gas core will be re-deposited onto the liquid film and their impact will cause some 

smaller droplets to be ejected from the film and entrained into the gas core, see Figure 

2.21.   

 

 
Figure 2.18 Bag break-up mechanism (wave) (Azzopardi, 1997) 
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Figure 2.19 Ligament break-up mechanism (wave) (Azzopardi, 1997) 

 
 

 
Figure 2.20 Bag break-up and ligament break-up mechanisms (of large drops in the 

core) (Azzopardi, 1997) 
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Figure 2.21 Schematic representation of film disturbance causing entrainment 

(Azzopardi, 1997)  

 
While the detailed exact mechanism as to how the liquid droplets are generated out of 

a disturbance wave is still controversial, there is fundamental recognition that liquid 

entrainment is due to the wave crest being sheared-off into the gas core. Several wave 

entrainment mechanisms have been proposed to fully or partially explain this 

shearing-off process but so far there is no solid and direct evidence to favour any 

particular one. 

 

2.3.4.2 Correlations for Entrainment 

 
So far no simple scheme has been developed for measuring entrainment rates and it is 

not yet possible to remove drops from the gas core without causing substantial 

disturbance to the flow. Unfortunately, while initial rates of entrainment immediately 

after the creation of the liquid film may be found, it is not possible to use these values 

as the steady state entrainment rate because the flow is developing and some time and 

development length is required before equilibrium is established. Equally, it is not 

possible to get close to the disturbance waves from which the drops are created 

because they are moving along the tube.  
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In annular two-phase flow, the droplet entrainment usually coexists with the droplet 

deposition. Thus, the measurement of entrainment rate is difficult and few results of 

direct measurement were reported in literature. Consequently, many correlations for 

the entrainment rate were developed from experimental data. The literature review 

indicated that a number of experimental and theoretical works have been conducted 

for the droplet transfer in annular two-phase flow but further improvements of the 

correlations for the deposition and entrainment rates are still required because of their 

significant importance in many practical applications. 

 

Basing their ideas on the experimental observation that the disturbance waves 

traversing the liquid film surface are the main source of droplet entrainment, 

Nigmatulin, et al., (1996) developed the following equation for the prediction of the 

entrainment fraction  E  in quasi-equilibrium annular flow:  

 

)Re 1025.7tanh( 25.025.17
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−=                  2.18 

 
where: wWe  and wRe  are liquid Weber number and Reynolds number, respectively. 

They are defined as: 
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where: gWe  is the gas Weber number, gρ  is the gas density (kg/m3), Ug,s is the gas 

superficial velocity (m/s), D is the pipe diameter (m), Δρ is the difference between the 

water and gas densities (kg/m3 β) and  is the surface tension (N/m). 

 
and 
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where: wρ  is the water density (kg/m3), Uw,s

wµ

 is the water superficial velocity (m/s), D 

is the pipe diameter (m) and  is the water dynamic viscosity (kg/ms). 
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Pan and Hanratty (2002) extended an idea first developed by Kataoka et al. (1983), 

that the entrainment mechanism was only present when the film mass flow rate was 

above a critical film flow rate critfW ,  (kg/s) and gave an entrainment relation based on 

the atomization of the film due to the Kelvin–Helmholtz mechanism:  
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                 2.21 

 
where: AK  is approximately 3×10−6 s2/kg, Ug,s is the gas superficial velocity (m/s), Uf  

βis the liquid film velocity (m/s),  is surface tension (N/m), and gρ  and fρ  

 

the gas 

and film densities respectively (kg/m3). 

Recently, Sawanta, et al., (2008) published a new and simpler entrainment correlation 

derived from non-dimensional analysis which successfully collapsed trends in 

experimental entrainment data. They correlated their entrainment fraction E to the 

standard Weber number We  as: 

 

) tanh( 25.1
gm WeaEE =                              2.22 

 
where: Weg 

 

 is the gas Webber number: 
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1 ,−=                    2.24 

 
where: critw,Re  is the limiting Reynolds number under which no entrainment occurs 

and is defined in Equation 2.17. 

 
35.04 Re1031.2 −−= wxa  , β = 0.00719 N/m                 2.25 
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The relationships representing the entrainment rate available in literature have been 

reviewed by Patruno (2009), Azzopardi and Wren (2004), Matsuura (1995) and 

Schadel, et al., (1990) amongst others. They carried out experimental investigations to 

find a relationship for the deposition rate and have reported that the relationship they 

deduced predicted the experimental data well. However, this is somewhat circular 

since the relationships were based primarily on the respective experimental data. It 

means, however, that the validity of the expressions over wider ranges of flow and 

thermal conditions is clear.  

 

Okawa, et al., (2000), Govan and Hewitt, (1990) and Sugawara (1990) have all 

attempted to use available experimental databases to develop expressions for the 

entrainment rate which would be useful to the better understanding of the relative 

influence of different parameters such as gas velocity, fluid properties and droplet 

concentration. Unfortunately, good agreement with the accumulated experimental 

data was not obtained. Recently Peng (2008) gathered experimental data on 

deposition rates measured in dilute particle concentrations. It was found that the 

particle relaxation time (droplet responsiveness to a change in fluid velocity, Barbosa, 

et al., 2002) correlated well with the deposition mass transfer coefficient (the ratio 

between the rate of droplet deposition and droplet concentration in gas core, Okawa, 

et al., 2000).  

 

2.3.4.3 Measurement techniques for entrainment  

 
Most experimental studies have concentrated on measurements of the liquid film 

attached to the wall or the entrained liquid droplets dispersed in the gas core in order 

to obtain an entrainment fraction. The most common methods reported in the 

literature for entrainment fraction measurements can be categorized into two main 

groups: (a) the sampling probe method, and (b) the liquid film removal method. The 

former method is used to sample the entrained liquid droplets in the gas core while the 

latter is used to collect the liquid film flowing on the inner tube wall. In addition, a 

tracer measurement method was also reported.  
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The sampling probe method, also called the isokinetic probe method, involves 

droplet flux measurements at different positions across the diameter of the tube. The 

average is obtained from the integral of the droplet flux over the tube cross-section. 

Figure 2.22 shows the main parts of the isokinetic probe for flow sampling used by 

Tayebi et al., (2000). It consists of a spool piece; a sampling tube with an L shape 

sampling probe inserted in the pipe core to collect the liquid droplets; a traverse 

mechanism; a manual valve to control rate of withdrawal to assure isokinetic 

conditions i.e. the superficial velocity of air flowing through the sampling probe is 

equal to that in the test section; a small separator and a glass measuring cylinder.   

 

The isokinetic probe method requires removing some of the flowing mixture from the 

pipe. The simplest way is to insert a small sampling probe into the flow at a relevant 

position in the gas core. Those small droplets in the gas stream which impact the 

mouth of the probe will flow more or less unobstructed into the probe and are 

collected downstream. In this way, the droplet flux and the gas velocity at the location 

of the probe mouth can be found, and the total liquid entrainment can be determined 

from the integration of the droplet flux over the cross-sectional area of the tube.  

 

A differential pressure-cell, Dp, is used to achieve the pressure measurement required 

to establish the isokinetic conditions. One side of the Dp can be connected to the tip of 

the probe and the other side is connected to the probe body. Usually, there is a 

connection to high pressure gas which is used to clean the pressure tappings when a 

new sampling is prepared. The channels used to measure the pressure difference are 

usually filled with some liquid after sampling for some time. There is, therefore, a 

limited time available to adjust the flow to isokinetic conditions. 

 

Barbosa et al, (2002) amongst others have developed this method (i.e. isokinetic probe 

method) but one remaining limitation is its inability to take measurements near the 

core/film interface due to the sampling of part of the liquid in the waves.  
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Figure 2.22 Sampling technique by an isokinetic probe, (Tayebi, et al, 2000) 

 
The liquid film removal (also known “liquid film withdrawal” or “liquid film 

extraction”) is a technique for liquid film extraction through a porous wall or a small 

opening on the tube wall, see Figure 2.23. Gamisans et al., (2004), Wadekar (2002) 

and Richardson and Rubin (2001) have all used this method. The advantage of this 

method is that the liquid entrainment fraction can be directly measured by collecting 

the liquid droplets after a separation process has been performed. Also, the 

entrainment fraction can be calculated from the difference between the total liquid 

flow rate and the liquid film flow rate which is measured by collecting the liquid film 

through the porous wall. 

 
For low entrainment there are two serious disadvantages with this technique. First, it 

is difficult to completely separate the droplets from the gas stream. Second, the liquid 

entrainment fraction is calculated from the difference between total liquid and film 

flow rates, but if the entrainment is low enough, the difference between film flow rate 

and total liquid flow rate will be within the practical measurement error. Finally, this  
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method relies heavily on a subjective judgement on the basis of unaided eye 

observations, to judge the point of complete removal of the liquid film which can 

result in large measurement error.  

 

 
Figure 2.23 Liquid film removal method 

 

However, this technique is widely used and it is generally believed that it is a 

technique that produces some of the more accurate results. 

 

The tracer measurement technique involves the injection of a tracer, a dye or some 

other solution, into the liquid film and the measurement of its concentration at 

different locations downstream. Quandt (1965) was the first to report this method 

followed by Schadel, et al, (1990) who used it to determine the entrainment and 

deposition rates for vertical annular flows in various diameter tubes. Jonathan (2002) 

developed this technique into a novel method for measuring shear-stress. More 

recently Oriol, et al, (2008) used this technique to characterize two-phase flow 

regimes and liquid dispersion in horizontal and vertical tubes by using coloured tracer 

and a non-intrusive optical detector. Because it is a cumbersome technique with little 

accuracy it is not often used today. 
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2.4 Gas velocity measurements in annular flow 
 
In gas extraction from high pressure natural reservoirs, a liquid phase appears as 

hydrocarbon condensates and water. In many applications the gas volume fraction is 

so high that the flow can be regarded as a wet gas. Presently there are two methods for 

the metering of this wet gas which have been described above - separating the two 

phases and metering each separately, and metering the overall two phase flow with a 

dry gas flow meter for which correction factors have been established. The latter is of 

growing interest these days.  

 

In the laboratory there are a number of techniques used to measure the velocity or 

flow rate of a gas; including orifice plates, nozzles, Venturi tubes, Pitot tubes, vane 

anemometers and rate-of-cooling anemometer, etc. The difficulty in measuring the 

velocity of the gas in the core of annular flow arises from the presence of the liquid 

film. Below is list of some of the methods presently being used to measure the gas 

velocity in the gas core in annular flow. 

 

A Pitot tube, see Figure 2.24, is a simple and convenient device for measuring local 

velocity in fluid flow.  

 

 
Figure 2.24 Pitot-static principle (Richard, 2001) 
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The Pitot tube, along with a differential pressure measuring device, generates a signal 

which represents the difference between the total or Pitot pressure H and the static 

pressure p. Static pressure, p, is the pressure measured at right angles to local flow 

velocity. The legs of the static pressure and total pressure tubes are connected to the 

legs of a manometer or to another appropriate device to measure the pressure 

difference (H-p). If the Pitot tube is properly designed and the density of the gas gρ   

passing over the Pitot tube is known, the velocity v of the gas over the Pitot tube can 

be calculated using a standard formula:  

 

)( 
2

1 2
pHvg −=ρ                    2.26 

 
Hot-film anemometry is based on the cooling of a high temperature metal film by a 

fluid flowing over it. The film is usually very thin (~0.05mm) and its electrical 

resistance will be proportional to its temperature. If the relationship between 

resistance and temperature of the film is known for static conditions, the difference in 

heat loss to the surrounding fluid can be measured and the local fluid velocity 

determined. Hot-film anemometry uses King’s Law: 

 
n

wire uBAV  2 +=                    2.27 

 
where: Vwire is the voltage across the wire (V), u is the velocity of the flow normal to 

the wire (m/s) and A, B and n are constants. n = 0.45 is a common value for hot-wire 

probes (although in a research setting, it should be determined experimentally along 

with A and B). A and B can be found by measuring the voltage, Vwire

 

, obtained for a 

number of known flow velocities and performing a least squares fit for the values of A 

and B which best fit the data.  

These types of sensors have proven very efficient in turbulent flows. Velocity 

measurement using hot-film anemometer has some advantages in the direct 

continuous measurement of the gas-phase velocity field. It is also possible to measure 

the turbulence energy spectrum relatively easily. The uncertainty of this method is 

about 0.07% at 10 m/s velocity or less (Yoshida, 2005). 
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Laser Doppler anemometry uses the Doppler effect whereby the frequency of a wave 

is changed if it is reflected from a moving object. The Doppler shift in frequency 

occurs as light is dispersed from the surface of moving particles. The shift in the 

frequency of the light source (laser beam) is proportional to the velocity of the 

particles. The frequency shift is very different (from 1kHz up 100kHz) from the 

frequency of the light in the laser beam and thus it can be directly measured. 

Therefore, the arrangement using a prism to split the laser beam into two is usually 

used, see Figure 2.25. 

 

The two beams from the laser source intersect each other in the measurement zone, 

because the path difference between the two beams is small where they meet a set of 

interference fringes are formed, provided that the liquid is transparent to the laser 

light. Particles in the fluid flow will not only disrupt the interference pattern then they 

pass through they will also reflect some light whose frequency is changed because of 

the Doppler effect. The system thus defines the position and speed of the particle, and 

these are obtained by analysis of the signals from the photo multiplier (Lioumbas, 

2005).  

 

 
Figure 2.25 Laser-Doppler technique (Lioumbas, 2005) 
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These techniques, i.e. Laser Doppler anemometry, Pitot tube and Hot-film 

anemometry, are local gas velocity measurement (not global) which are used mainly 

in laboratories (not field applications). If the gas flow rate Qg

 

 is required then the 

following expression is used: 

∫=
A

gg dAUQ                      2.28 

 
where: Qg is the gas volume flow rate (m3/s), Ug is the gas velocity (m/s) and A is the 

pipe cross-sectional area (m2

 

). 

Tracer techniques used by e.g. Van’t Westende, et al., (2007) measured the gas-

velocity using ‘tracer’-droplets. Because the relaxation-time of the tracer–droplets 

(the time taken by the tracer droplets to attain equilibrium with the other droplets in 

the gas core of the annular flow) is less than, or of the same order as, the time-scale of 

the large-scale turbulence structures, the tracer–droplets are expected to follow the 

mean gas-velocity. An advantage of using droplets as tracers is that they are often 

already present in the flow. 

 

The tracer technique is a measurement technique that offers little or no obstruction to 

the fluid flow and is capable of operating over a wide range of conditions including 

unsteady flow and both single and two phase flow (Hans and Windorfer, 2003). The 

ultrasonic flow meter will be introduced and discussed later in this chapter (see 

Section 2.4.2), and will also be used in this study. 

 

These two techniques i.e. Tracer techniques and Ultrasonic Flow Meters are global 

techniques and can be used in laboratories or in the fields. 

 

Baker (2000) has reported numerous other methods also exist. For example: positive 

displacement flow meters, vortex flow meters, thermal flow meters, etc., but these are 

not sufficiently relevant to this thesis for a review of them to be included here. 
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2.4.1 Wet gas metering systems in industry 
 
The meters currently being used in the oil and gas industry to measure unprocessed 

natural gas flows are orifice plates, Venturi meters and (more recently) ultrasonic 

meters. Until quite recently, the vast majority of two-phase metering used orifice plate 

meters and only in the last few years have Venturi meters become the meter of choice. 

Industry now favours the Venturi meter despite it being more expensive, probably 

because orifice plates are more susceptible to damage by intermittent "slugs" in the 

pipeline or pressure pulses. However, the Venturi does offer a smaller total head loss 

than the orifice plate (Richard, 2001).  

 

Of the four types of differential pressure (DP) meters available only the orifice plate 

and Venturi meters are in widespread use for unprocessed natural gas metering. The 

V-Cone (a patented device designed and manufactured by McCrometer Ltd.) is not in 

general use because it is relatively new and largely untested, and so not yet trusted by 

many industries (Svedeman, 1997).  

 

The V-Cone, see Figure 2.26, is a differential pressure type flow meter with a design 

that conditions the flow prior to measurement. The V-Cone creates an annular 

opening, forcing the fluid to flow around a cone positioned in the centre of the pipe 

which creates a differential pressure.  

 

The cone is shaped so that it “flattens” the fluid velocity profile in the pipe, creating a 

more stable signal across wide flow downturns ratios (downturn ratio is the ratio of 

the maximum water flow to minimum water flow). Flow rate is calculated by 

measuring the difference between the pressure upstream of the cone at the meter wall 

and the pressure downstream of the cone through its centre.  

 

The original DP meter is the orifice plate. It has a tradition of use in all industries and 

an enormous amount of research has been carried out on it. Hence the simple orifice 

plate is cheap and is still in use. However, dry or wet natural gas wells invariably 

contain periodic slugs and pressure pulses both of which can cause substantial damage 

to the orifice plate. These slugs and pressure pulses are also why turbine meters are  
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not used in unprocessed natural gas production lines. As Ting and Jones (1996) said 

"the damage to turbine meters in this service would be unacceptable".  

 

 
Figure 2.26 A typical V-Cone flow meter design (Svedeman, 1997) 

 
 

2.4.2 Ultrasonic flow meters 
 
Ultrasonic waves are sound waves which have frequencies higher than those to which 

the human ear can respond. The engineering applications of ultrasonic waves can be 

divided into two categories: low-amplitude vibrations and high energies. In the former 

the effect of the medium on the incident waves is important, but in the latter the 

changes brought about on the medium by the waves is important. For measurement 

systems only low-amplitude ultrasonic waves alone are used.  

 

The basic principle is that the required information about the measured medium can 

be obtained by using the reflection, absorption, and scattering effects of the medium 

on the incident ultrasonic waves. The first ultrasonic meters were available over half a 

century ago and manufacturers are now producing fourth or fifth generation products 

which have shown promise in both single-phase and two-phase flow metering tests 

(Lynnworth and Liu, 2006).  
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The ultrasonic signals required for flow measurement are transmitted and received by 

ultrasonic transducers so these are most important parts of any ultrasonic sensor. The 

transducers convert an electrical signal (e.g. a voltage pulse) into an acoustic signal 

(e.g. a sound pressure pulse), and vice versa. The temporal and spatial radiation 

characteristics of these components are the prime determinants of sensor performance. 

It is necessary to match the characteristics of any pair of sensors for use in an USFM, 

to avoid zero drift problems. 

 

Real transducers must have a finite size in order to generate ultrasonic beams at 

adequate sound levels. The ultrasonic beam generated will have a definite 

directionality, the shape of the beam, its width, the number of side lobes, etc., are 

determined by the ratio of the acoustic wavelength to the effective size of the 

transducer. The smaller this ratio the more directional the transducer, that is the 

narrower the ultrasound beam. All acoustic beams spread so the sound pressure level 

gradually decreases along the beam.  

 

For gas flow meters, the ultrasonic transducers are usually directly exposed to the 

inside of the pipe and have to endure corrosive gases, traces of liquids and particles, 

and large variations in pressure, temperature and humidity without compromising 

their acoustic performance to any significant degree. Thus in the real world many 

aspects of the functioning of ultrasonic transducers need to be taken into account to 

ensure an accurate, operationally safe and reliable metering system.  

 

Piezoelectric transducers are generally used in such meters. Usually the surface of the 

transducer is a plane circle. However, the acoustic impedance of the piezoelectric 

element is much higher than that of the fluid and a matching layer or layers of suitable 

materials can be used between the fluid and the transducer to maximize the acoustic 

efficiency. The acoustic impedance of the matching layer will be between that of the 

fluid and that of the piezoelectric crystal.  

 

Ultrasonic flow meters with piezo-electric transducers are commonplace for single 

phase liquids. However, difficulties arise when attempts are made to measure gas flow 

because of the big difference in acoustic impedance between the transducer and the  
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gas. Ultrasonic techniques as a new measuring method in multiphase systems have 

now been introduced by several teams of researchers (Lynnworth and Liu, 2006). The 

results show the possibility of simultaneously measuring both solids and gas volume 

fractions in a three-phase system.  

 

There are strict limits on the applicability of ultrasonic flow meters to multiphase 

mixtures. Users who select an ultrasonic flow meter often do so for one (or more) of 

the following reasons: ultrasonic equipment provides a useful measurement whether 

or not the fluid is single-phase; the equipment is relatively easy to use; the flow 

regime can be laminar, transitional or turbulent; transducers are minimally invasive; 

there is no extra pressure drop; the instrument has a fast response; the instrument is 

generally reliable except at extreme temperatures; the capital and running costs are 

reasonable. 

 

The most accurate ultrasonic flow meters recently available are quadrature or other 

special-path or multi-path configurations, with laboratory calibration accuracies 

typically 0.5% of reading, or better, over most of the meter’s flow range (Lynnworth 

and Liu, 2006). Flow conditioners and straight piping contribute to achieving such 

accuracy despite flow disturbances in the upstream pipeline. With the meters ideally 

installed, the ultrasonic meter manufacturers claim an uncertainty of ± 0.5% for their 

products in dry natural gas flows, and as the meter uses a velocity based measurement 

it does not have the restrictions at high Reynolds number that DP meters do.  

 

In this study, the Massa Model E-152/40, see Figure 2.27, was used in the designed 

USFM. This type is a miniature air ultrasonic transducer having many applications in 

short range sensing and remote control where non-contact is desired.  

 

The transducer operates at 40kHz, its fundamental resonant frequency, thereby 

producing a relatively broad directional response, free of minor lobes. The 

corresponding wavelength at 25°C is 8.6mm. The housing and diaphragm are one 

piece and made from stainless steel to provide high resistance to corrosive 

atmospheres. Each transducer is provided with about 500mm of twisted pair cable 

potted in at the back of the housing. The same model was used all through the project  
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either as transmitter or receiver. One of the benefits of this model is that it operates at 

a fundamental resonant frequency which means other signals less or greater than 

40kHz will not be detected.   

 

 
Figure 2.27 Massa transducer, model E-152/40 

 
There is a wide range of ultrasonic flow meters available because the basic principles 

of these meters allow flexibility in design. Today, ultrasonic flow meters use contra-

propagating transmission, single and multiple transducers, single and multiple paths, 

passive and active principles for liquid level sensing, for determination of flow rates 

in open channels or partially-full conduits, or pipes, and other interactions 

(Murakawa, et al., 2005). Ultrasonic meters measure the velocity of the gas flowing 

through the meter body. By knowing the velocity and the cross-sectional area, 

uncorrected volume flow rates can be found. The diagram below, Figure 2.28, shows 

a schematic of a commonly used configuration for an USFM. 

 

 
Figure 2.28 USFM common configuration 
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In Figure 2.28 D  is the inner pipe diameter (m), lsp

θ

 is the axial separation (m) 

between the transmitters (Tx1 and Tx2) and receivers (Rx1 and Rx2), d  is the length 

(m) of the acoustic path,  is the angle (in degrees) between the acoustic path and a 

vector representing the direction in which the medium moves and v  is the velocity of 

the moving medium (m/s). 

 

To determine average velocity in a flow using the ultrasonic method, several 

assumptions are made, including constant path length d, constant speed of sound c  

and a mean velocity profile for a coordinate system. The distance which is travelled 

by the ultrasonic beam is given by: 

 

θsin

D
d =                     2.29 

 
The velocity of ultrasonic beam along the downstream path from Tx1 to Rx1 dv  is 

given by: 

θcos*vcvd +=                    2.30 

 
The velocity of ultrasonic along the upstream path from Tx2 to Rx2 uv  is given by: 

θcos*vcvu −=                    2.31 

 
where: v is the fluid velocity as shown in Figure 2.28. 
 

We can see that the local propagation velocity of an acoustic signal in a moving 

medium is a function of both the velocity of sound in the fluid at rest and the velocity 

of the fluid. Since the value of c  depends on the nature of the medium and on its 

thermodynamic state, it is opportune to use two different wave trains that have the 

same directions but opposite propagation modes. This gives rise to a difference 

between the downstream propagation velocity dv  and the upstream one uv  (see 

Equations 2.30 and 2.31). 
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Spendel (1985) stated three basic modes of operation used for the measurement of the 

time difference between upstream and downstream times of flight. The modes of 

operation are: 

 

o the leading edge system 

o the phase comparison system 

o the frequency (sing-around) system 

 
These systems and the one chosen for research project will be discussed later in detail 

in Chapter 3.  

 

Ultrasonic meters appear to be giving good results for dry natural gas production 

flows (they appear to give similar accuracy to the Venturi meter, Hans and Windorfer, 

(2003) provided they are installed in the pipe work far enough from any disturbance 

to the flow. The system has no moving parts, does not create an additional pressure 

drop and is insensitive to fluctuations in gas composition. Its fast response allows 

measurement in transient or pulsating flows and it provides bi-directional flow 

measurement. Finally, this system can greatly reduce installation and maintenance 

costs. 

 

However, these significant advantages of ultrasonic meters in dry natural gas are 

offset by some significant problems when they are used to meter natural gas in the 

production environment. Poor meter location seriously affects the ultrasonic meter. If 

the meter is too close to bends, valves or other obstructions, the resulting swirl and/or 

turbulence can seriously affect the velocity profile and hence the accuracy of the flow 

rate measurement. In addition, the bonding material used in the manufacture of the 

ultrasonic transducers tends to fail at temperatures in excess of 150°C and when there 

is a sudden pressure fluctuation (Richard, 2001). 
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CHAPTER 3 PRELIMINARY WORK AND   

THEORETICAL ANALYSIS 
 
This Chapter presents a number of important preliminary tasks that were carried out 

concerning the experimental procedures and design work. These tasks were a 

necessary prerequisite for making decisions about certain aspects of the design and 

modelling of the wet gas metering technique. Additional information on each system 

will be given in Chapter 4 when describing their design and calibration.  

 

3.1 Conditions for establishing annular flow 
 

3.1.1 Flow rates and superficial velocities 
 
The conditions for air-water annular flow were obtained from the Govier and Aziz 

(1972), flow pattern map, see Figure 3.1. For a 1 inch (25mm) pipe we get annular 

flow when the gas superficial velocity is about 100 times the water superficial 

velocity:  

 

swsg UU ,,  100≅           3.1 

 
where: Ug,s is the gas superficial velocity (m/s) and Uw,s

 

 is the water superficial 

velocity (m/s).  

The superficial velocity is defined as the equivalent velocity that each phase would 

have, when passing though the pipe on its own. In terms of the volumetric flow rates: 

 

A

Q

A

Q
wg 100≅            3.2 

 
where: Qg and Qw are the volumetric gas and water flow rates (m3/s) respectively and 

A is the pipe cross-sectional area of the pipe (m2

 

). 
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Han (2005), found that at 1bar the minimum gas superficial velocity and water 

superficial velocity for annular flow were 25.8m/s and 0.25m/s, respectively, for a 

pipe of diameter 9.52mm (cross-sectional area, A = 7.12x10-5 m2), which is about Qg 

= 100xQw

  

 and confirms the results of Govier and Aziz. 

 
Figure 3.1 Flow patterns based after Govier and Aziz (1972)  

 

 (The volumetric flow rate is considered throughout this thesis unless stated 

otherwise. The unit will vary to serve the particular discussion or analysis.)  
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To find the mean flow velocities for each phase for the onset of annular flow we must 

know the gas volume fraction. For a 50mm ID pipe (A=1.963x10-3 m2

95.0≅gα

), the values for 

gas and water superficial velocities (25.8m/s and 0.25m/s, respectively) of Han are 

assumed to give achieve annular flow. Since we are dealing with high gas flow rate 

and volume fraction, the gas volume fraction was taken as :  

 

 2.27, ==∴
g

sg

g

U
U

α
m/s                    3.3                                                                                          

 
The water volume fraction is assumed (to be consistent with the gas volume fraction 

assumption of 0.95) 05.0≅wα  then: 

 

 5, ==
w

sw

w

U
U

α
m/s                    3.4 

 
To predict the approximate volume flow rates of gas and water to establish an annular 

flow rate in a pipe of 50mm internal diameter (cross-sectional area A=1.963x10-3 m2

 

), 

will be (from Equations 3.3 and 3.4):  

 105  4−×== AUQ www α m3

                

/s    

29≅∴ wQ  litre/min       3.5 

 
 

049.0  == AUQ ggg α m3

               

/s    

3034≅∴ gQ litre/min       3.6 

 
This step is essential in the selection of the right monitoring instruments for the flow 

loop, see Chapter 5 and indicates that to establish an annular flow in the 50mm pipe, it 

will require values of water and gas volumetric flow rates of at least 29 litre/min and 

3034 litre/min, respectively. Thus an air supply of at least 3034 litre/min (178m3

 

/hr) is 

required and so it was ensured that the available laboratory air supply, from a 

compressor, could maintain that flow rate.  
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3.1.2 Pressure drops 
 
Pressure drop or head loss, occurs in all piping systems because of elevation changes, 

turbulence losses caused by abrupt changes in direction, and friction within the pipes 

and fittings. The following calculation was carried out in order to obtain the pressure 

drop over the 2m length test section in the annular flow rig i.e. the minimum required 

pressure into the test section. The total pressure drop TotalP∆  is a combination of the 

hydrostatic pressure drop chydrostatiP∆  and the frictional pressure drop fricP∆ ,:  

 

fricchydrostatiTotal PPP ∆+∆=∆          3.7 

 

R

Ufh
P

africtsa

fric

2   ρ
=∆ (Darcy’s Law)                                                                       3.8 

 
where: ∆Pfric is the pressure drop due to frictional losses, hts

aρ

 is the is the length of 

pipe forming the test section of the flow loop (m),  is the air density (1.25kg/m3),   

ffric is the friction factor of the pipe = 0.007 (MacGillivray, 2004), Ua

In a 50mm diameter pipe and 2m long, considering U

 is the mean flow 

velocity of the air (m/s). R is the pipe radius (m). 

g = 27.2m/s is a good 

approximation of the gas velocity because water friction is low then using Equation 

3.8 ∆Pfric 

 

yields: 

9.465
1025

)2.27(007.0225.1
3

2

. =
×

×××
=∆ −fricP Pa                                                             3.9  

 

If the water volume fraction is, say, 5% water then to a first approximation the density 

of the air/water mixture is ρm =1.25*0.95 +0.05*1000 = 51.2kg/m3

 

. For a vertical 

pipe of length 2m, the hydrostatic pressure drop will be:  

( ) hgP chydrostati   ρ=∆∴  = 51.2 x 9.81 x 2 = 1004.5Pa                  3.10 
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For a 2m vertical pipe carrying 5% water in an air-water mixture at 2.27=gU m/s, 

the total pressure drop will be about:  

 
ΔPTotal 

 

= 1470.4Pa = 0.015bar 

The pressure drop across the test section for the wet gas flow rate of 3034 litre/min air 

and 29 litre/min is about 0.015bar. Hence, pressure required at test section is about 

1.015 bar (atmospheric pressure + 0.015). 

Dry air at a pressure of 1bar has a density of 29.1=aρ kg/m3

cρ

, so at 6 bar gauge, 

compressor delivery pressure, it will have a density  of: 

 

03.9
1

16
=






 +

×= ac ρρ kg/m3

 

                 3.11 

If the requirement is 178m3/hr at 0.985bar (1-0.015) then at a pressure of 6 bar gauge 

a volume flow rate of 25m3/hr will be required = 6.94x10-3m3

 

/s =0.064kg/s           3.12 

The airline from the main compressor house is connected to the high pressure flow 

regulator, see Section 5.1.1, in the lab via a ¾ inch (19mm) diameter pipe which was 

installed many years ago. From the high flow regulator to the test section a 2 inch 

(50mm) diameter pipe is used. Using the Darcy equation, see Equation 3.8, the 

pressure drop in the initial length of pipe of ¾ inch (
Pipe

P ″∆
4

3
) and the pressure drop 

in the 2 inch pipe ( PipeP2 ′′∆ ) can be calculated: 

 

Pipe
Pipe PPP ″′′ ∆+∆=∆

4
32                    3.13 
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kPa
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 ×
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−

−

             3.14 

 
So, delivering air from the university compressor house to the test section will result 

in a pressure loss of 1bar upstream of the regulator used to control the air flow into the 

annular flow rig. Therefore, we can expect the pressure at this regulator to be at least 

5bar (gauge). With this inlet pressure of 5bar to the regulator, gas flow of 178m3

 

/hr 

can be generated at 1.015bar in the test section. 

3.2 Investigation of conductance flow meter 
 
In a recent comprehensive review of measurement methods for film thickness, Clark 

(2002) identified that the most widely used techniques are based on the difference in 

impedances. Conductance probes are two electrodes a short distance apart where the 

gap is closed by the liquid film bridging between them. As stated earlier, Section 

2.3.2, the conductance probe is proposed for use in this current investigation. Section 

4.2 will further describe this technique and its mechanisms. 

 

For an item of resistivity ψ (ohm-meter - mΩ ), cross-sectional area A (m2) and length 

lp (m), the reciprocal of the resistance Rp (ohms) is the conductance Sm

 

: 

pp

m
l

A

R
S

 

1

ψ
==                    3.15 

 
The resistivity, ψ, is the reciprocal of the conductivity σ and so Sm

 

 could also be 
written as: 

σ
p

m
l

A
S =                     3.16 

 
The designed CFM, see Section 4.2.1, has two conductance probes and each probe has 

two electrodes. The two electrodes are separated by a distance lp. The dimensions of  
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the electrode, Figure 3.2, within the fluid are width (w) and height (hel

elhwA  =

) so that 

.                                                                                                                   3.17 

 

Therefore, from Equations 3.16 and 3.17, we may write the conductance Sm

 

 between 

the electrodes as: 

w

p

el

m
l

hw
S σ

 
=                                3.18 

 
However, the purpose of this technique is to measure the height of the liquid so hel 

can be replaced by hs

 

 to represent the height of the liquid. Hence: 

w

p

s

m
l

hw
S σ

 
=                                                                                                             3.19 

 

where: 143=wσ µS/cm, is the conductivity of water used in laboratory and monitored 

using a commercial conductivity meter. Equation 3.19 suggests that for fixed w, lp

wσ

 

and  then Sm is proportional to hs

 

.  

 
Figure 3.2 Electrode dimensions 

 

Electronically, the mixture conductance, Sm, is measured using a circuit containing a 

pre-determined electrode configuration and the readings are displayed by the output  
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voltage, Vout, from an output device, see Section 4.2. Since Sm is linearly related to hs 

(Equation 3.19) and Vout is linearly related to Sm (Equation 3.20a), film thickness can 

be determined from this measurement by obtaining a calibrated linear relationship 

between Vout and hs

 

 within the range of measurements in the form of: 

w

p

s

out
l

hw
KV σ 

 
 =                                             3.20 

 

where: 

 

mout SKV  =                               3.20a 

 
Re-arranging Equation 3.20 we can obtain the height hs

 

 of the fluid around the 

electrode which is a representative of the thickness δ of the liquid film in the annular 

flow:  

δ=′= KVh outs                     3.21  

 
where:   

 

w

p

Kw

l
K

σ 
=′                   3.21a 

 
In a bench test, a reference value δref

outV

  for the liquid film height can be measured 

directly using a ruler or travelling microscope, where the output voltage  is read 

on a digital voltmeter. A graph can be obtained for outV  vs. δref

G

. This relationship was 

expected to be a straight line, and can be expressed in terms of Gradient  where: 

 

ref

outV
G

δ
=                               3.22 
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From Equations 3.21 and 3.22: 

 

K
G

′
=

1
                              3.23 

 

where: K ′ is given by Equation 3.21a. 

 
Thus, by measuring the gradient G  of the calibration curve the value of K ′  can be 

obtained from Equation 3.21. Subsequently, a measured value for the liquid film 

thickness δest

 

 can be deduced from a voltage measurement using Equation 3.24:  

KVoutest
′=  δ                     3.24 

 

3.2.1 Spacing between the conductance probes when using only water 
 
The aim of carrying out this part of investigation is to minimise the meniscus effect. 

This section will investigate the effect of meniscus when the liquid is water. The next 

section will investigate the effect of meniscus when introducing oil-water mixture.  

 

 
Figure 3.3 Meniscus effect on overestimating the film thickness 

 

The meniscus usually is attributed to surface tension forces. In our case, the liquid 

film is expected to form a meniscus around the electrodes of the conductance flow 

meter (CFM). As can be seen, Figure 3.3, the presence of the meniscus will appear as 

extra height and so will cause inaccuracy in the flow meter readings. To attempt to 

reduce this effect, an experimental investigation examined the separation between the  
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probes maximise the accuracy of the relationship between liquid height and voltage 

output. 

 
The electrode spacing distance lp was varied in steps of 5mm from 5mm to 30mm, 

and the chosen spacing was that one that gave the most linear voltage output from the 

electronic circuit. The excitation signal of the electronic circuit was set with AC 

frequency of 50kHz and Vp-p

 

 of 2.2volts, see Section 4.2.2. Figure 3.4 shows the 

electronic circuit voltage output variation when the liquid film thickness was varied 

from 0-20mm at a spacing distance between the electrodes of 20mm.   

 
Figure 3.4 Results for 20 mm spacing between electrodes (water only) 

 
The result of the experiment shows that an electrode spacing lp of 20mm gives an 

almost perfectly linear relationship between the voltage output Vout and the height of 

the film δref, see Figure 3.4. This result also validates the theoretical analysis in which 

a linear relationship between the voltage output of the electronic circuit and the liquid 

film thickness δref

 

  was predicted. 
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At this stage, a percentage error can be calculated:  

 

% 100
   

      
 est

, ×
−

=
ref

ref

measured
heightfilmreference

heightfilmreferenceheightfilmmeasured

δ
δδ

ξδ             3.25 

  
Where the reference film height is the height measured by the ruler. 

 

The errors were obtained by using the measured values of Vout

K ′

, Equation 3.24 (where 

 is obtained from G =0.066 V/mm, Figure 3.4), to get δest and simultaneously for 

each Vout reading the film thickness was measured using a ruler to an accuracy of 

about 0.5mm, neglecting the dispersion effect of the pipe. The equation of the 

calibration curve shows a very small offset of 0.004 which can be ignored. Figure 3.5 

shows the percentage error in the measured film height δest. This probe configuration, 

lp =20mm, shows a good accuracy with a mean percentage error in δest

 

 of 1.68% 

when the measured heights were compared with the reference heights. The maximum 

error was 4%.  Error decreased with film thickness. 

 
Figure 3.5 Mean error between estimated water level and the measured values (water 

only) 
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3.2.2 Effect of oil phase in the liquid on film measurements (water-oil 
mixture) 

 
Electrical impedance techniques have proven attractive for many applications because 

of their generally fast response and relative simplicity of operation. Measurements 

obtained from these devices rely upon the variation of the capacitance (permittivity) 

or the conductance of a two phase mixture with the volume fraction of the disperse 

phase. Non-conducting liquid mixtures (such as oil continuous mixtures) are 

amenable to capacitance measurement, whereas conducting liquids (such as water 

continuous mixtures) require conductance measurements. In conducting mixtures, the 

conductance decreases with increasing gas or oil volume fractions, and increases with 

increasing water volume fraction.  

 

The experiment, described in Section 3.2.1, was repeated but with oil introduced into 

the water. A constant volume fraction of the oil ( oα =0.07) was used. The aim of this 

investigation was to evaluate the effect of the oil phase in the liquid film height 

measurement. This was aimed at providing a better understanding of the proposed 

technique and gives an initial step for any proposed further work when including an 

oil phase into the system. The oil-water mixture was assumed well-mixed after being 

shaken by hand. Since the oil volume fraction is constant ( oα =0.07), all the oil does is 

change the effective conductivity of the mixture that is used. The electronic settings, 

see Section 4.2, were kept the same as in the previous experiment using the same 

mathematical theory used in the previous section, see Section 3.2.1. However, the 

signal wave frequency was increased to 80kHz as the circuit struggled to respond with 

a 50kHz signal. Figure 3.6 shows the variations in the voltage output when the film 

height of the oil-water mixture was increased from 0-20mm.  

 

Equation 3.25 was used once again to calculate the percentage error in the measured 

film height of the oil-water mixture. In comparison with the results in Section 3.2.1, 

there is slightly more variation in the reading but the linear relationship can be clearly 

seen in Figure 3.6. The probe configuration showed a mean percentage error in the 

measured film height of -0.5%.The error range is from a maximum negative value of  

-17% to a maximum positive error of 15%, see Figure 3.7.  
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Figure 3.6 Results for 20 mm spacing distance between the electrodes (oil-water 

(αo
 

=0.07)) 

 
Figure 3.7 Mean error between estimated water level and the reference value (oil-

water (αo=0.07)) 
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The gradient value G showed a change from 0.066 (water only) to 0.036 (oil-water 

mixture). The author attributes this change to the effect of the presence of the 7% of 

oil. Also, this change in the gradient value could also influenced by the change in the 

excitation frequency which was increased from 50kHz (water only) to 80kHz (oil-

water mixture).  In both experiments the total error is an accumulation of different 

physical error sources that could affect the measurement. These physical errors are (i) 

presence of the meniscus, (ii) accuracy of the conductance measurement, (iii) 

accuracy of δref  measurement, (iv) accuracy of Vout measurement and (v) accuracy of 

separation of the electrodes lp

 

 measurement. However, in real applications, the error 

for the oil-water mixture experiment can be reduced by compensating for the presence 

of oil by calculating the oil-water mixture conductivity. 

3.3 Preliminary Investigation of ultrasonic technique 
 
Sections 1.2.3 and 2.4 have introduced the reasons behind proposing an ultrasonic 

technique for use in this investigation. A detailed description of the proposed 

technique is presented in Section 4.2. Prior to considering the design of the proposed 

ultrasonic flow meter (USFM), some basic fundamentals of the ultrasonic wave 

properties are reviewed in this section. 

 

In this section, Pulse Wave (PW) ultrasound is being used here by the author (for 

preliminary work only) to investigate the cross-talk and the beam deflection 

phenomenon. However, the final design of the system is based on a Continuous Wave 

(CW) ultrasound. The reason behind considering the PW in the preliminary 

investigation is because they have a wider range of wave spread (i.e. wider beam 

angle) in the travelling medium (Pavlović, 1997), resulting in a greater possibility of 

interacting with neighbouring PW transmitters and receivers which gives a greater 

possibility for beam reflection. In comparison to the PW, the CW has a defined 

effective beam deflection which can be avoided, see Section 3.3.3. On the other hand, 

the CW was favoured for the final design because the CW has the possibility of 

detecting all the various velocities encountered by the ultrasound beams in a flowing 

fluid. Also, a PW system is very poor in detecting small phase shifts in gas metering 

because of its pulsating nature, Pavlović (1997).  
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3.3.1 Signal cross-talk between transducers 
 
Figure 3.8 shows a selection of the wide range of ultrasonic flow metering techniques 

found in the literature and in industry. Here they are classified depending on whether 

they use of one or more pairs of transducers. The basic types of beam path are axial, 

diametral and chordal (Figure 3.8(a-c)). The transmission of the acoustic signal 

between two transducers can be direct or reflected (Figure 3.8(d)). The transmission 

path of the acoustic signal between two transducers need not be direct, it can be 

reflected from the inner wall of the pipe. In commercially available devices up to four 

such reflections are possible. 

In order to minimise the influence of the fluid velocity distribution in multi-path 

meters, the different acoustic paths can be associated in different ways by using (i) 

various parallel paths on the same plane (plane arrangement), (ii) paths that are 

symmetrically or asymmetrically crossed over compared to the axis (criss-cross 

arrangement), or (iii) by forming a network arrangement more complex arrangements 

(Figure 3.8(e-g)). 

 

 
Figure 3.8  Different acoustic paths in Ultrasonic Flow Meters, Dell’Isola et al. 

(1997) 



 
CHAPTER 3                                                                            PRELIMINARY WORK 

 107 

 
As the number of acoustic transducers and paths increases, measurement uncertainty 

decreases because the presence of swirl and lack of symmetry in the velocity 

distribution does not have such an important effect on the measurement. However, 

multiple transducers invariably experience a degree of unwanted inter-element cross-

coupling or cross-talk. Cross-talk is usually overcome by either additional electronic 

circuitry or by design manipulation (Ferrari et al., 2005).  

 

Introducing another stage into the electronic circuitry will introduce additional delay 

in the system, which may cause inaccuracy in the measurement. The author of this 

thesis decided to concentrate on a design configuration which ensures minimum or 

zero cross-talk between the transmitter of one pair of transmitter-receiver and the 

receiver of another pair of transmitter-receiver, taking into account a minimum size of 

the device. A novel transducer configuration was investigated which is described 

below.  

 

Cross-talk takes the form of a system error which is a function of the strength of the 

unwanted cross-talk relative to a signal and the flow velocity which fluctuates with 

the flow profile. In the worst case the acoustic signal is lost. Usually the closer the 

receiver of one pair is positioned to the transmitter of another pair the stronger the 

cross-talk between the channels. It is therefore often desirable to position the receiver 

of one pair and the transmitter of another pair as far apart as possible. An 

investigation was carried out to define a suitable separation distance between the 

transmitters and the receivers for this research.  

 

Four different ultrasonic transducers configurations were set up to investigate the 

cross-talk between a transmitter and a receiver that is not intended to receive the 

signal from that transmitter. The transducers were placed on a table and held down by 

re-usable adhesive. The table and transducers were positioned to avoid reflecting 

objects.  

 

The cross-talk phenomenon can be traced back to the transducer’s characteristics. For 

example, the -3dB angle in the conical beam from the transmitter that was used is 60°. 

If there is any reflecting object within this angle (but not between the receiver and  
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transmitter) the receiving transducer will detect a strong signal. By making a simple 

scale sketch for the 50mm pipe that was used, see Figure 3.9, it can be concluded that 

to “avoid” cross-talk between the receiving transducers Receiver 2, Rx2 (not intended 

to receive the signal), has to be located at an axial distance greater than 134mm from 

Receiver 1, Rx1 (intended to receive the signal). To situate the transducers so that 

they made the necessary angle to the pipe, the transducers were placed on plastic 

wedges, see Figure 3.9 and Section 4.3.4. These wedges are shown as blue in Figures 

3.9, 3.11, 3.13, 3.15, 3.17, 3.19, 3.20 and 3.22. 

 
Figure 3.9  Critical separation between receivers (50mm pipe) 

 

 
Figure 3.10 Transducers placed in plastic wedges 
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The following four general statements apply to all of the configurations presented in 

this section, Figures 3.11, 3.13, 3.15 and 3.17: 

 

o Each configuration has two transmitter-receiver pairs; Transmitter Tx1 and 

Receiver Rx1, and Transmitter Tx2 and Receiver Rx2.  

 

o Tx1 is on the opposite side of the pipe to Rx1, and Tx2 is on the opposite side 

of the pipe to Rx2. 

 

o During the bench tests of this particular investigation, a signal was only 

transmitted from one transmitter, Tx1, and received by its pair receiver Rx1 

(Yellow signal in the plotting graphs). The cross-talk signal is the signal 

picked up by receiver Rx2 from the signal transmitted by transmitter Tx1 

(Blue signal in the plotting graphs). Transmitter Tx2 was disconnected to 

avoid any ambiguity and complexity in the analysis of the received signal by 

receiver Rx2.  

 

o Ideally, in all of the configurations, the transmitted signal from Tx1 should be 

received only by receiver Rx1 and not be picked up by receiver Rx2.  

 

• Configuration A 

 

In configuration A the transducers have been set up in such a way that the transmitter 

pairs are parallel to each other and each pair is at an angle of 45° to the pipe axis, see 

Figure 3.11. Each receiver is positioned upstream of its corresponding transmitter and 

the pair Tx1 and Rx1 is positioned upstream of Tx2 and Rx2. With the pipe vertical 

and upward flow, Tx2 is vertically above Tx1 and Rx2 is vertically above Rx1. 

 

It can be seen from Figure 3.11 that the direction of propagation of the acoustic signal 

is against the flow. 
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Figure 3.11  Configuration A 

 
 
While maintaining Tx1-Rx1 parallel to Tx2-Rx2, the separation distance between Tx1 

and Tx2, ZA, was varied in 50mm steps from 100mm to 200mm. Figure 3.12 shows 

that as the axial separation of the receiving transducers increases, the cross-talk effect 

(blue signal picked by Rx2) reduces. In this case at ZA=50mm and ZA=100mm, the 

cross-talk signal is very noticeable. When ZA starts to get bigger than 150mm the 

cross-talk signal received by Rx2 fades away. A further separation (ZA

 

=200mm) 

showed no significant traces of a received signal by Rx2, hence no significant cross-

talk.  

Obviously, this configuration is not practical since both transmitted waves are against 

the flow which means a zero phase shift will be always recorded, see Section 3.3.4. 

However, the purpose of introducing this configuration was to confirm the critical 

separation distance between the receivers, as previously illustrated in Figure 3.9. 
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Figure 3.12  Results for configuration A –Yellow signal is received signal at Rx1 and 

blue signal is cross-talk signal received at Rx2 

 
• Configuration B 

 

In configuration B, see Figure 3.13, Tx1, Rx1, Tx2 and Rx2 form the four corners of a 

rectangle, with the pipe diameter making up two sides of the rectangle. Tx1 and Rx1 

are on opposite sides of the pipe at 45° to the pipe axis. Tx1 is downstream of Rx1 so 

the acoustic signal travels against the flow. Tx2 and Rx2 are on opposite sides of the 

pipe at 45° to the pipe axis, Tx2 is upstream of Rx2 so that this signal travels with the 

flow.    

 

In this case the separation distance between Tx1 and Tx2, ZB, is fixed because any 

movement of either pair brings the transmitters or receivers closer. When the angle is 

set to 45° for a 50mm internal diameter pipe, the separation distance is ZB = 50mm. 

Cross-talk signal received at Rx2 is present, see Figure 3.14, and this is in agreement 

with the previous analysis because the axial separation between the receivers was less 

than 134mm, see Figure 3.9.   
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Figure 3.13  Configuration B  

 

 
Figure 3.14  Results for configuration B – Yellow signal is received signal at Rx1 and 

blue signal is cross-talk signal received at Rx2  

 

For a vertical pipe with upflow, Tx1 is vertically above Tx2 and Rx2 is vertically 

above Rx1. The signal from Tx1 to Rx1 is against the flow while the signal from Tx2 

to Rx2 is with the flow. 
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• Configuration C: 

 

This configuration is essentially the same as configuration B but the transducer pair 

Tx2,Rx2 has been moved parallel to itself, down the pipe to a position below the pair 

Tx1 and Rx1, see Figure 3.15. The transmitters have the same directionalities as in 

configuration B. All transducers are in the same axial plane. 

 

 
Figure 3.15   Configuration C 

 
ZC is the separation of the two receivers Rx1 and Rx2. At ZC = 50mm, the cross-talk 

effect is obvious in Figure 3.16, it has started to fade away at ZC = 100mm, but at ZC 

= 150mm it has almost disappeared. There was no practical need to proceed to ZC = 

200mm since it’s obvious the result of ZC

 

 = 150mm already gives a sufficiently small 

level of cross-talk.   
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Figure 3.16  Results for configuration C – Yellow signal is received signal at Rx1 and 

blue signal is cross-talk signal received at Rx2 

 

 
• Configuration D: 

 

This configuration is basically the same as configuration A except that the positions of 

receiver Rx2 and transmitter Tx2 have been reversed, see Figure 3.17. The fact that 

the receiver in one pair of transducers is positioned on the same side of the pipe as the 

transmitter in the other pair of transducers means only a weak possibility of cross-talk 

in this configuration.  
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Figure 3.17  Configuration D 

 

 
Figure 3.18   Results for configuration D - Yellow signal is received signal at Rx1 and 

blue signal is cross-talk signal received at Rx2 
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At axial separations of less than 50mm cross-talk is barely seen, see Figure 3.18. As 

the separation is increased above 50mm the cross-talk disappears completely. The 

reason for this is the directionality pattern of the transmitters. With this arrangement 

virtually no intensity is radiated from the transmitter of one pair in the direction of the 

receiver of the other pair. Configuration D was chosen to be used in this study. A 

complete set of details on its design and related electronics control circuit will be 

presented in Section 4.3.3. The researcher was unable to find a report of this 

transducer configuration in the literature, and believes this means it’s the first time it 

has been implemented. 

 

As it has been stated earlier, see Section 3.3, that the PW system was only used to 

investigate the cross-talk phenomenon in term of mechanical design. These results 

have no effect on the calculation technique associated with CW system which will be 

discussed in Section 3.3.3. From this stage all the discussion related to the Ultrasonic 

Flow Meter (USFM) will be about the CW system unless otherwise stated. 

 

3.3.2 Recesses or “dead zones” effect 
 
The accuracy with which USFMs measure flow rates in pipes is strongly affected by 

the profile of the flow velocity, particularly at or near the internal wall of the pipe and 

sometimes when flow takes place in the recesses of the transducers themselves. Dead 

zones can occur. The size and geometry of these dead zones are defined by such 

factors as whether the transducers have been positioned in a recess, size of the gap 

between the transducer and the housing wall, etc. Recesses are particularly important 

because of the flow turbulence that can be generated in the region of the recess, and 

which can disturb the measurements. Kažys (2002) has given the following 

expressing for the recess depth: 

 

θtan 2

2wD
l

p

n

+
=                     3.26 

 

where: nl  is the recess depth, pD  is the transducer diameter (m), w  is the distance 

between the edge of the transducer and the nearest point on its holder (m) and θ  is the  
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angle (degrees) between the acoustic path and a vector representing the direction in 

which the medium moves. 

 

Kažys stated that the depth of recesses strongly depends on angle in the range θ=20°-

40° and is less dependent on the diameter of the transducer. In our design, the 

angle =θ 45°, 0=w  and Dp nl = 11.1mm, so the recess depth  was 5.55mm.  

However, if the “dead zones”, see Figure 3.19, are geometrically the same for (Tx1, 

Rx1) and (Tx2, Rx2) then this will make no contribution to )( t∆ , see Equation 3.32. 

So, providing the “dead zones” are very similar for both pairs of transducers we can 

make them whatever shape we want. This means that we can actually put transducers 

as we want in the transducer holder – with no effect on )( t∆ .  

 

 
Figure 3.19  Dead zones or recesses 

 

3.3.3 Beam reflection 
 
When designing the USFM it was observed that for ideal reflections the ultrasound 

beam will reflect from the pipe wall at axial distances of (n x 50 x tan45o)mm away  
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from its initial transmission point. When n is odd, the reflection point (shown as red 

circles in Figure 3.20)  is on the same side of the pipe as the receiver, when n is even 

the reflection point (shown as green circles in Figure 3.20) will be on the opposite 

side of the pipe to the receiver. Again, Rx1 is the receiver that we wish to receiver the 

signal from Tx1. We do not wish to receive signal from Tx1 at Rx2 i.e. avoid cross-

talk. 

 

 
Figure 3.20  Beam reflection analysis (50mm pipe) 

 
According to this, the receiver Rx2 of the other pair of transducers should not be 

positioned in a reflection zone, i.e. avoid 150mm, 250mm, etc on the same side of the 

pipe as the receiver Rx1. Rather the second receiver Rx2 should be positioned at 

200mm, 300mm, etc on the same side of the receiver Rx1.  

 

The investigations reported in Sections 3.3.1, 3.3.2 and 3.3.3 lead to the following 

conclusions on the final geometry of the designed USFM in the current study: 

 

o Configuration D, see Figure 3.17, was chosen since it showed no cross-talk 

effect provided geometrical dimensions are kept at minimum.  

 

o The receivers should be located/positioned in such a way that reflection zone 

is avoided, see Figure 3.20.  
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o The Pulse Wave (PW) system was used in this preliminary work only to 

determine the geometry of the USFM design. The PW will not be used in the 

final design.  

3.3.4 Calculation methods 
 
There are three basic modes of operation used for the measurement of the difference 

in transit time between the upstream and downstream signals ( t∆ ) and numerous 

variations of each mode. The modes of operation are: 

 

o the leading edge mode, 

o the frequency (sing-around) mode, and 

o the phase comparison mode 

 
All of the above modes are essentially time interval (∆t) measuring systems and can 

work for either pulse or continuous waves. There would appear to be no significant 

advantage in choosing one system over the other particularly when one considers that 

turbulence spreads the time delay, and averaging is required to reduce this effect. The 

overall accuracy is therefore a function of statistical methods and must be traded off 

against the response time required (Blackstock, 2000). A number of researchers 

(Lynnworth and Liu, 2006; Eckert and Gerbeth, 2002; Blackstock, 2000; Papadakis, 

1999) have discussed these methods in some detail and concluded that there is no 

significant advantage in choosing one mode over the other.   However, with the 

availiability of the electronic multipliers, e.g. the MC1496 Analogue Multiplier, there 

was an obvious opportunity for the author to implement the Phase Comparison 

System, see Chapter 4.   

 

• The leading edge mode 

 
In this mode, the transducers are used as both transmitters/receivers. One transducer is 

used as the transmitter and another as the receiver, and the time taken for the wave to 

travel from the one to the other is measured. Then the roles are reversed, another wave 

transmitted and received and a second time measured.  The transit time ∆t between the 

two measured times is found by a simple averaging process. Because there is always a  
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defined leading phase which is the transmitted signal, hence the name leading edge 

mode. This system has the advantage that only one electronic path is used to measure 

∆t and so differential delay can be eliminated. This method is not good for measuring 

relatively long times accurately.  

 

In this mode, the equation governing the velocity is obtained through this equation: 

 

( )
2

 cot2  2

c

zDv
t

θ−
=∆                              3.27 

 
where: D is pipe diameter (m), z is the pipe wall thickness (m), c is sound velocity 

(m/s), θ  is the orientation angle (degrees) of the transducer and v is the flow velocity 

(m/s). 

 

• The frequency system 

 
Here one transducer acts transmitter and the other as receiver. A wave is transmitted 

and the moment it is received a second is triggered from the transmitter, and a 

frequency train is set up. Then the transmitter and receiver are reversed and the 

procedure is carried out in the opposite direction. The difference in frequency f∆  of 

the frequency trains is a measure of the velocity.  

 
This method, which includes all the measuring electronics in one feedback loop has 

the problem that f∆  is of the order of 1000 times smaller than the transmitted 

frequency and hence a long response time is required (Murakawa et al., 2005). 

 
( )( )

( )[ ] ( )[ ]θθ
θθ

cos  cos 

coscos   2 222

vdvcd

vcvd
f

+−+
−+

=∆                             3.28 

 
where: d is the length of the acoustic path (m), c is sound velocity (m/s), θ  is the 

angle (degrees) between the acoustic path and a vector representing the direction in 

which the medium moves and v  is the velocity of the moving medium (m/s). 
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• The phase comparison system 

 
If the transducers are used in a continuous or quasi-continuous system then the phase 

difference between upstream and downstream signals is given by: 

 

  2 πφ
T

t∆
=                     3.29 

 
where:  φ  is the phase difference (degrees), T is the time period of the signal and t∆  

is the difference in transit time between the upstream and downstream signals (s). 

 

The advantage of this system is that increasing f  increases the phase difference to be 

measured and this eases the electronic measurement. Various techniques have been 

used to improve this method, the chief one being heterodyning (mixing) of the 

received signals with a local oscillator. Because mixing of signals maintains phase 

relationships the problem of timing is eased by mixing at a frequency very near to that 

of the signal itself. 

 

As mentioned at the beginning of this section, with the availiability the electronic 

multipliers, e.g. the MC1496 Analogue Multiplier, there was an obvious opportunity 

for the author to implement the Phase Comparison System using continous wave 

(CW). To understand the concept of this technique, assume we have a sine wave 

transmitted from two identical transducers and received by two receivers. Each point 

on the transmitted ultrasound wave from Tx1 received at Rx1 takes longer to arrive 

than the equivalent point on sine wave from Tx2 takes to arrive at Rx2. Since Tx1 and 

Tx2 are excited by the same source, the measured sine wave at Rx1 lags that at Rx2 

by phase difference  φ , see Equation 3.29. 

 

With reference to Figure 3.21 (the novel configuration D which was presented earlier 

in Section 3.3.1), the time for an ultrasonic wave to travel in the downstream direction 

( dt ) is given by: 
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The time for an ultrasonic wave to travel in the upstream direction ( ut ) is given by: 

 

)cos 1( 
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1
 θ
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v

c

d
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−
=                             3.31  

 
 

 
Figure 3.21  Ultrasonic wave directions 

 
The time difference t∆ between the durations of travel can be shown to be: 

 







 +−+=−=∆ θθττ cos 1cos 1 

c

v

c

v

c

d
t du                 3.32 

 

θcos
  2
2

c

dv
t =∆                    3.33 

 
The phase relationship as a function of time delay is given by: 

 

  2 πφ
T

t∆
=                     3.34 
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= θπφ                  3.34a 

 
or 

 

gUc ˆ=φ                     3.35 

 
where: Ug ĉ is the gas velocity (m/s) and  is a constant. 

 
Equation 3.35 implies a linear relationship between the phase and the gas velocity, see 

Figure 3.22, since the value of the terms in brackets in Equation 3.34a can be assumed 

constant ( ĉ ) if c in Equation 3.34a is assumed constant. Taking the following 

values: smc /43.329= , md 07.0= , 45=θ , kHzf 40=  then 26.13ˆ =c . Table 3.2, 

shows the corresponding calculated phase shifts  φ  for different gas velocities, and 

Figure 3.22 shows the same information in a graphical form.   

 
Velocity  

v  m/s 

Phase shift 

φ  

1 13.26 

5 66.33 

10 132.71 

15 199.18 

20 265.78 

25 332.58 

Table 3.1 Phase shift calculation 

 

The mean volumetric gas flow rate is usually the quantity required:  

 

gg UAQ  =                     3.36 

 
where: gQ  is the gas volumetric flow rate (m3

gU/s),  is the gas velocity (m/s) and A 

is the pipe cross-sectional area of the pipe (m2

 

).  
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Figure 3.22 Relation between change in phase and the velocity 

 

A similar technique has been used by Pavlović, et al., (1997) but with only one 

acoustic path with transducers that can both receive and transmit a signal. Also, the 

application was measurement of liquid flow rate. The design included a complicated 

electronic circuit whereas a simplified electronics technique is being used in this 

study.   

 
The idea is for an electronic system to multiply the signals from the two recievers Rx1 

and Rx2 (see Figure 3.22) with a suitable, locally generated reference: 

 

( ) ( ) ( )[ ] ( )[ ]{ }212121212211 coscos
2

1
sinsin θθωωθθωωθωθω +++−−+−=++ tttt       3.37 

 
If the two frequencies are the same (ω1 = ω2 

 

= ω) the result is a DC component and an 

AC component of frequency 2ω. A low pass filter allows the DC component through, 

while the AC “ripple” (2ω) is reduced. 

However, without taking any calibration constant into account, Figure 3.22 shows the 

theoretically calculated output of the circuit at different phase angles. 
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Figure 3.23  Theoretical output of the USFM electronic circuit 

 

Figure 3.23 shows that Vout φagainst  is symmetrical about φ =180º. This will 

introduce a possible ambiguity into the system when taking a reading of different 

phase angles which give a similar outV . For example: 

 

outV  (at 200=φ  and correspond to sgU ,  = 15.12 m/s) = -0.47 volts 

outV  (at 160=φ and correspond to sgU ,  = 12.12 m/s) = -0.47 volts 

 

So, realistically, we use the designed USFM for changes in phase in the range 

180 <φ < 360 which corresponds to a range gas velocity of 13.6m/s< sgU , < 27.23m/s. 

This range is practical since high gas flow rates are required in this study. 

 
The electronic circuit output when calibrated is given by: 

 

baVout
ˆ)cos( ˆ += φ                    3.38 
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where: â  and b̂  are to be found from the calibration curve and φ  is the phase-shift 

angle.  

 
Substituting Equation 3.35 into Equation 3.38 gives: 

 

bUcaV gout
ˆ) ˆcos( ˆ +=                               3.39 

 

This idea can be used to improve the calibration curve of the USFM and that will be 

discussed later in the next chapter, see Section 4.3.4. 
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CHAPTER 4 DESIGN AND CALIBRATION OF 

SENSOR TUBE, CFM AND USFM 
 

Parallel with the challenge of developing a measurement technique, there was the 

challenge of designing the measurement devices.  A system containing three major 

devices (Sensor tube, Conductance Flow Meter (CFM) and Ultrasonic Flow Meter 

(USFM)) to take the required measurements, was successfully designed and 

implemented. 

 

4.1 Film extraction by sensor tube 
 
This section describes the film extraction method with which the volume fractions of 

oil and water in the liquid film could be determined if required. It comprised, see 

Figures 4.1 and 4.2, a 15mm inner diameter Perspex tube, 1.2m long, four Burkert 

solenoid valves, and two pressure taps connected to a Honeywell ST-3000 differential 

pressure transducer (DP cell). Despite the fact that the sensor tube was not used 

extensively in the present study, the set up was used to demonstrate the feasibility of 

extracting the liquid film into the sensor tube that could be used to determine the oil 

volume fraction oα  and water volume fraction wα  in the liquid film. 

 

4.1.1 Principle of operation of sensor tube 
 
Part of the liquid film was periodically extracted into the sensor tube, its density 

measured off-line and then the liquid was released back into the system. With an oil-

water mixture, the oil and water volume fractions could be calculated from this 

density measurement. From the P∆  measured by the DP cell and assuming that the 

lines between the pressure tappings and the DP cell are water filled, see Figure 4.2, 

the density mρ of the oil-water mixture can be calculated from: 

 
 STmSTw hghgP        ρρ −=∆         4.1 
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∴ 






 ∆
−=

ST

wm
hg

P

 
  ρρ         4.2 

 
where: ∆P is the measured differential pressure, wρ  is water density, mρ  is mixture 

density, g  is 9.81m/s2
STh and  is the separation of the pressure tapping in the sensor 

tube (1m). Pressure sensor lines are filled with water during the oil-water mixture 

density measurement to avoid having air in the pressure lines. 

 

 

Figure 4.1 Sensor tube, to the left and outside the red line   
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Figure 4.2 Liquid film extraction and DP measurement set up 
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It is known that: 

 

wlwolom ραραρ ,,    +=                                            4.3 

 
where: lo,α  is the oil volume fraction in the liquid film, oρ  is the oil density, lw,α  is 

the water volume fraction in the liquid film and wρ  is the density of the water. 

 
Also, we have: 

 
1 ,, =+ lwlo αα           4.4 

 
So, from Equations 4.2, 4.3 and 4.4, knowing mρ , oρ  and wρ , the oil and water 

volume fractions in the liquid film can be found. These values for oil and water 

volume fractions are likely to also be the correct values for the oil and water volume 

fractions for the liquid droplets in the core. However, for the annular flow, the oil 

volume fraction lo,α  and the water volume fraction lw,α  in the liquid film do not 

represent the overall oil and water volume fractions of the flow. The overall oil and 

water volume fractions oα  and wα  respectively, are given by Equation 4.5: 

 
1  =++ gwo ααα                            4.5 

 
Where the overall oil volume fraction is ollo ααα = ,  and the overall water volume 

fraction is wlwo ααα = , , and gα  is the gas volume fraction. 

 

4.1.2 Liquid film extraction procedure 
 
The sensor tube system is shown in Figure 4.1. To the left of the test section is a 

15mm internal diameter Perspex tube (sensor tube), where hST (1m) represents the 

distance between the taps situated at the top and bottom of the sensor tube. Nylon 

tubes of 6mm internal diameter were used to connect the solenoid valves to the sensor 

tube. The sensor tube was operated in the following manner: to fill both sensor and 

nylon tubes, solenoids A and C were both opened while B and D were closed. In this 

case, solenoid A allowed liquid to fill the tube and solenoid C allowed the air in the 

tube to escape. Once the liquid reached the downstream pressure point (a tap at the  
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top of the nylon tube) both solenoids were closed. At this moment the P∆  

measurement was taken.  

 
To release the liquid back into the test section, solenoids B and D were opened and A 

and C closed. Now, solenoid B allowed the liquid to return back to the test section. 

However, the pressure in both the sensor tube and the test section was equal at some 

point and that prevented a full discharge of the liquid into the test section. In this case, 

solenoid D allowed air from the air line to flow into the sensor tube and push the 

liquid out. This process was undertaken automatically using a simple m-file in 

MATLAB via LABJACK.   

 

4.2 Conductance flow meter  
 
From the literature survey, see Section 2.3.2, and the preliminary work, see Section 

3.2; the conductance technique was chosen to measure the liquid film thickness. This 

technique is considered a method that will give a measurement of the local thickness 

of the film. The designed CFM has two conductance probes and each probe has two 

electrodes. 

 

4.2.1 Principle of operation of CFM 
 
Liquid film thickness can be determined from these conductance measurements by a 

calibrated linear relationship for the range of measurements, see Section 3.2. In this 

study, the electrodes are two parallel thin stainless steel needles (the probes). These 

protrude from the pipe wall supported only at the end outside the pipe. As the film 

thickness increases, the measured resistance between the electrodes decreases. The 

voltage output Va, see Figure 4.3, depends on the geometry of the probes, their 

dimensions and on the conductivity of the liquid. The film thickness/voltage output 

Vout

 

 relationship was obtained by prior calibration.  
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4.2.2 Electronic circuitry 
 
The electronic circuitry involved the application of a high frequency, constant 

amplitude AC signal. The designed circuit consisted of, see Figure. 4.4: (A) an 

inverting amplifier, (B) a non-inverting amplifier, (C) a half wave rectifier, (D) a low-

pass filter, (E) a non-inverting amplifier, (F) a zero offset adjust and (G) a low-pass 

filter as RC ripple filter.  

 

The first stage of the circuit was the inverting amplifier whose output Va

m

m
R

S
1

=

 was 

proportional to the conductance, , between the electrodes of the CFM, see 

Figure 4.4.   

 

The output of this stage is given by: 

 

i

m

fb

a V
R

R
V   








−=          4.6 

 
where: fbR  is the reference feedback resistance, aV  is the output voltage, and iV  is the 

AC input voltage. 

 

 
Figure 4.3  First stage of the electronic circuit showing the principle of the initial 

conductivity measurement  
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Because the reciprocal of electrical resistance is conductance mS   the above equation 

can be rewritten as: 

 

imfba VSRV   −=           4.7 

 

ma SKV  =            4.8 

 
where: K  is a constant = ifb VR  − . 

 
Thus any change in the water level between the electrodes which changes the 

conductance mS  will (as shown previously by Equations 3.15-3.24) result in a change 

in the circuit output voltage aV . 

 
The choice of excitation frequency was critical to the successful operation of the 

probe. At low frequencies, the conductance between the electrodes was affected by a 

number of capacitive and resistive elements that arose at the electrode-electrolyte 

interface commonly referred to as ‘double layer’ effects (Conte, 2003). Therefore, an 

excitation frequency high enough to negate the double layer effect was chosen. Kvurt, 

et al., (1981) extensively studied the influence of frequency of the signal on the 

measured results and concluded that frequencies of at least 50kHz should be used. In 

the present study, the designed circuit used a 50kHz sine wave signal and AC voltage 

amplitude of 2.2 volts peak-to-peak.  

 

Part (B) of the circuit is a non-inverting voltage amplifier. The op-amp gain can be 

controlled by the variable resistor VR1. The input signal can be amplified 

theoretically from 1.6 to infinity. So the variable resistor VR1 is used as system gain 

control. 

 

Part (C) of the circuit is an inverting full-wave voltage rectifier. For the positive half 

cycle input, the op-amp output goes negative and current flows through the output 

resistor (100kΩ). It acts like an inverting amplifier except for a diode in a series with 

the op-amp output. For the negative half cycle input, the op-amp output goes positive. 

Now no current is flowing in the output resistor (100kΩ) because the upper diode is  
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shut. The rectified voltage is DC; however, it is not a steady DC but a fluctuating DC 

and needs to be smoothed before it is useful.  

 

Part (D) of the circuit is a low pass filter. The DC output produced in the previous 

stage will be smoothed here and the low pass filter output will be a useful DC signal. 

The gain of the DC output signal will vary between -2 and -2.5 depending on the 

variable resistance VR2. In this circuit design the variable resistance VR2 is used as a 

span adjuster.  

 

Part (E) of the circuit is a differential amplifier that amplifies the difference between 

two inputs. One input (the output of part D) has a positive effect on the output signal; 

the other input (the output of part F) has a negative effect on the output.  

 

Part (F) of the circuit is a non-inverting op-amp with a unity gain. The non-inverting 

side of the op-amp connected to a ±15V power supply via variable resistor VR3 and 

two 2.5kΩ buffer resistors. This part of the design works as a zero adjustment with a 

buffer. So the variable resistor RV3 is used as a zero adjuster. 

Part (G) is the final DC output voltage Vout

 

. 

Two electronic circuits were designed and built to serve the two conductance probes 

of the CFM. One of the conductance probes was used to measure liquid film 

thickness. However, the two probes together were used to measure the liquid film 

velocity as described earlier in Section 2.3.3. 
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Figure 4.4  Conductance monitoring circuit  
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4.2.3 Design and calibration of CFM 
 
The CFM flow meter consisted of Perspex pipe of 50mm internal diameter to match 

the test section. Two conductance probes separated by an axial distance of 70mm 

were mounted in the Perspex pipe. The electrode diameter was 1.3mm. The choice of 

electrode diameter was critical to the successful operation of the CFM, it had to be 

small enough to have negligible effect on the flow and yet be large enough to be 

sensitive to changes in the electrical resistance over the entire range of liquid film 

height (Koskie et al., 1989). Figure 4.5 shows the final design of the CFM being 

installed in the flow loop. 

 

 
Figure 4.5  Conductance flow meter installed in the flow loop 

 
 
 
 
 
 
 
 

Downstream 

conductance 

probe 

Upstream 

conductance 

probe 
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Two boss connections were fitted in a symmetrical position and separated by an axial 

distance of 70mm in the direction of the flow. The bosses were machined to match the 

shape of the inner surface of the main tube, see Figure 4.6. In each boss, a pair of 

holes was drilled to fit the needle electrodes, with the needle electrodes 20mm apart, 

centre to centre, so that the plane containing the electrodes was perpendicular to the 

flow direction. The electrodes protruded 20mm into the 50mm inner diameter pipe. In 

the middle of each electrode path, a threaded M3 hole was drilled to take a grub screw 

to hold the electrode tight, see Figure. 4.7.  

 

 
Figure 4.6  Sketch of a side view of the CFM (not to scale) 
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Figure 4.7  Top view showing the boss connection (not to scale) 

 
 

The aim of having two sets of measurement points (one upstream and one 

downstream) was: 

 

o To determine the local mean film thickness at two points, one upstream of the 

other. 

 

o To allow cross-correlation of the two film thickness signals to determine the 

liquid film velocity. 

 
This technique was less reliable for thin films because of its intrusive nature, and the 

formation of a meniscus due to surface tension effects. A bench test, see Section 3.2.1, 

showed that the best separation of the two electrodes to minimise the effect of the 

meniscus, was 20mm.  

 

Calibration of the probes was performed on a laboratory bench. It was done by 

placing different sizes of solid cylindrical non-conducting plugs concentrically in the 

main body of the flow meter, see Figure 4.8. The gap between the pipe inner diameter 

and the outer diameter of a particular solid core represents an annular film when the 

gap is filled with water. The cores were made of dry foam material and could be  
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machined with a sufficient precision to give film thicknesses of 1mm, to 20mm in 

steps of 1mm. Conte, (2003) reported a similar calibration method.  

 

 
Figure 4.8  CFM calibration process using non-conducting plugs 

 
During the calibration process, voltage readings were acquired from both probes at 

two stages (Vout,us: upstream probe output voltage and Vout,ds

 

: downstream probe 

output voltage). In the first stage, voltage readings were taken from each probe 

separately and compared. In the second stage, readings were taken from both sensors 

simultaneously and compared to the first stage readings. This was done to investigate 

if there was any presence of signal cross-talk (defined in Section 3.3.1) between the 

two probes. Big variations between the readings from both sensors would indicate that 

sensors are influencing the operation of each other. This investigation also ensured 

that the electronic circuits for both probes were operating simultaneously and matched 

output responses were produced.  
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Figure 4.9  Output responses of both sensors; simultaneously 

 
Figure 4.9 shows that both sensors operated similarly in a defined characteristic 

correspondence to film thickness variations. This gives the option of using either 

probe to measure the film thickness. However, in this current investigation the 

downstream probe was used to measure the film thickness. There are some negligible 

variations which can be attributed to the tolerance of the electronic components. A 

least squares fit showed that the trend lines for both data sets were the same to within 

experimental error: 

 
0017.0 067.0, −= δusoutV  (Upstream probe)                  4.9 

0053.0 067.0, −= δdsoutV  (Downstream probe)               4.10 

 
This allowed the production of an average trend line by combining both sets of data, 

see Figure 4.10: 
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0074.0 067.0 −= δoutV                   4.11 

 
where: δ  is the film thickness in mm.  

 

 
Figure 4.10  Calibration curve for probe separation 20mm 

 

The response of this system was linear and could be used for both thin and thick films. 

Once again the result in Figure 4.10 confirms the analysis of Section 3.2 which 

suggested a linear relationship between the voltage output of the CFM and the 

measured liquid film thickness, see Equations 3.15-3.24.  

 

The output voltages from both probes were found to drift very slightly so they were 

calibrated once a week. Full tube and empty tube voltages were taken before and after 

every flow loop run to ensure that there had been no calibration drift during that 

particular experimental run. 

 
Using a similar argument to Section 3.2.1, estimated values for film thickness could 

be obtained using the probes and a percentage error in this measured liquid film  
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thickness could be calculated thicknessf ,ξ , see Figure 4.11. The error calculation showed 

a mean error of 1.52% in the measured value of the film thickness δ , though larger 

errors appeared at smaller film thicknesses.  

 

 
Figure 4.11  Percentage error in liquid film thickness measurement 

 

4.2.4 Signal optimization of the CFM device   
 
With a water flow rate of 4.17x10-4m3/s and gas flow rate of 140m3/hr the output 

voltages from the CFM probes were monitored and investigated. Figure 4.12 shows 

the response of the CFM to the liquid film thickness from one of the probes for 60 

seconds at the normal sampling frequency, 50Hz, of the LABJACK U12. This 

response is very noisy and it was difficult to achieve cross-correlation results from 

both probes with such signals. In this case the sampling frequency was suspected of 

being too low and, as will be explained in Section 5.3.3, the sampling frequency was 

increased to 1kHz. This action improved the signal enormously, see Figure 4.13.  
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Figure 4.12  CFM output voltage at 50Hz sampling frequency 

 
However, because of the limited memory with the LABJACK U12 there was a major 

disadvantage with the faster sampling rate, data for only for about 4.5 seconds could 

be stored, whereas for the 50Hz sampling rate over 1 minute of data could be stored. 

To reduce random errors data for each flow condition was collected 10 times and then 

averaged. Figure 4.13 shows that outputs from the two probes, upstream (blue) and 

downstream (green), of the CFM device correspond very well to each other and thus, 

to the liquid film thickness. The downstream signal is delayed with respect the 

upstream signal. 

 
The signal obtained using the faster sampling frequency (1kHz) was processed using a 

digital filter to eliminate the very high frequencies which gave rise to the spikes on the 

signal and which may have been introduced by the pulsating movement of the liquid 

film. A 3rd order digital filter was tuned by trial and error to obtain the right order of 

the filter to produce a signal without the unwanted spikes. The mean values of the 

filtered and non-filtered data were taken separately in order to examine the effect of 

using the filter. For, both probes, the non-filtered data the mean value was 1.141volts 

and for the filtered data was 1.136 volts. This indicates that the filter did impose a  



 
CHAPTER 4                                                              DESIGNS AND CALIBRATION 

 144 

 

small effect on the data when compared to the sensitivity of the device voltage output, 

about 0.067volts/mm, see Equation 4.11, which was considered acceptable.  

 

 
Figure 4.13  CFM film thickness reading at 1 kHz sampling frequency (Upstream 

sensor blue, downstream sensor green) 

 

4.2.5 Cross-correlating the CFM probe signals 
 
The reason for acquiring signals from the two axially separated probes is to cross-

correlate them in order to obtain the liquid film velocity. By cross-correlating 

upstream and downstream signals, a function )(τxyR  with a well defined peak is 

obtained. However, as was explained at the start of this section it was not possible to 

achieve a well defined peak using probe signals sampled at 50Hz, see Figure 4.14. 

The 1kHz sampling frequency improved the cross-correlation result and a further 

improvement was achieved when 10 sets of cross-correlograms obtained from 10 sets 

of data (4.5 seconds long) at a given flow condition were ensemble averaged, see 

Figure 4.15 which shows a well defined peak occurring at the mean time delay 

between the upstream and downstream signals. The obtained result agrees well with  
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the cross-correlation theory introduced earlier in Section 2.3.3 and its graphical 

representation in Figure 2.17. 

 

 
Figure 4.14  Correlogram of the two signals, 50Hz sampling rate  

 
The separation of the probes was 0.07m, for the flow condition shown in Figure 4.13 

for which Ug,s=19.8m/s and Uw,s=0.212m/s the time taken for the liquid film to travel 

this distance is 0.108s (see Figure 4.15), so Uf = 0.07/0.108= 0.648m/s. the reference 

volume flow rate of the water was measured, see Section 5.1.2, as Qw,ref = 4.17x10-

4m3

 

/s. Using the relationship:  

ffrefw AUQ =,                     4.12 

 
It follows that a prediction for the cross-sectional area of the film from Equation 4.12 

Af = 6.43x10-4m2

 

. 
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Figure 4.15 Correlogram of the two signals after ensemble averaging, 1kHz sampling 

rate 

 

The mean liquid film thickness δ  measured by the CFM for this flow condition was 

0.0044m (from downstream probe). So, the value of Af

 

 can be found directly from 

simple geometric considerations: 

[ ]22 )( δπ −−= RRAf = 6.30x10-4m2

 

                4.13 

The two values of  Af

δ

  are very close, and confirms that the CFM (downstream) gives 

reasonable results for the film thickness  because the film cross-sectional area 

calculated from 4.11 was of similar size to the film area calculated from the measured 

film thickness δ . A difference between the two results would be expected because 

not all the water is flowing in the film; some is being entrained into the gas core. This 

is why a lower film area would be expected using Equation 4.13, which uses the film 

thickness measured by the CFM (downstream probe), than from Equation 4.12 which 

uses the reference water flow rate and the measured film velocity.  This is further 

discussed in Chapter 6. 
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4.2.6 CFM operation with both gas and liquid variations  
 
Once the signals from the CFM had been made fit for purpose, the CFM was used 

with varying gas and water flow rates, see Section 6.1. Figures 4.16 and 4.17, show 

that the mean film thickness obtained using the CFM measurements (using the level 

calibrations in Figures 4.8-4.10 explained in Section 4.2.3) conforms with the trends 

reported in the literature, see Section 2.3.1. The mean film thickness increases with 

increasing water flow rate, at constant gas flow rate and it decreases with increasing 

gas flow rate, at a constant water flow rate, once a certain volume flow rate had been 

reached. Further analysis is presented in Chapter 6. 

 

 
Figure 4.16  Mean water film thickness as a function of increasing water flow rate 

measured using the CFM 
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Figure 4.17  Mean water film thickness as a function of increasing gas flow rate 

measured using the CFM. 

 

4.3 Ultrasonic Flow Meter  
 
Based on the results of the preliminary work presented in Chapter 3, the 

design/manufacture and calibration of the Configuration D shown in Figure 3.17 and 

described in Section 3.3.1 will now be discussed. 

 

4.3.1 Principle of operation 
 
The USFM measures the time taken for sound to travel between two transducers 

(Section 2.4.2 and Section 3.3 introduced the ultrasonic technique). One transducer is 

placed upstream and another downstream. The effect of the fluid velocity makes the 

upstream time of flight longer than the downstream. The transit times calculations 

were presented in Section 3.3.4.  
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USFMs are characterized by: (a) an electronic control unit; and (b) a primary element, 

composed of a metering pipe on which one or more pairs of piezoelectric transducers 

have been mounted. 

 

4.3.2 Electronic control unit 
 
The electronic control unit varies significantly with the type of flow meter. Signal 

excitation can be continuous or pulsed, adaptation to attenuation can be automatic or 

manual, the electronic metering unit can be analogue or digital and different noise 

filtering strategies can be used. Here, a brief of the designed electronic circuit used in 

the present investigation is given, see Figure 4.18. 

 

The sine wave oscillator consisted of a non-inverting amplifier, with a variable gain, 

and a band pass RC filter. The resistors, VR1 and VR2, were varied depending on the 

frequency adjustment required. The band pass network provided positive feedback 

with a maximum gain of one-third at a centre frequency given by: 

 

RC
f

π2

1
=                                                                                                                  4.14 

 

Variable gain was used so that the adjustable negative feedback would allow the 

overall loop gain to be set to just greater than 1 at which level it was just enough to 

sustain oscillation.  

 

The amplitude was regulated by means of the back to back Zener diodes which began 

to conduct when the voltage across the upper part of the 10kΩ potentiometer was 

equal to the Zener voltage plus a diode drop. The consequent drop in loop gain 

controlled the amplitude.  

 

The op-amp used was a low cost LF356. The 40kHz used was a high frequency, a 

high speed device, with a good slew rate to avoid non-linear effects.  
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The MC1496 Analogue Multiplier was a key component of the circuit and contains a 

cross-coupled differential arrangement of matched transistors. The carrier input 

voltage causes the current to vary differentially. The MC1496 was used to multiply 

the two received signals from Rx1 and Rx2, see Section 3.3.4 and Equation 3.37.  

 

The base-emitter voltage of the upper quad arrangement was proportional to the 

logarithm of the emitter current, and was, therefore, the sum of the logarithms of the 

carrier and signal input voltages. The current flowing through the cross-connected 

collector resistors was, therefore, proportional to the anti-logarithm of the sum, hence 

proportional to the product of signal and carrier inputs. 

 

The Zener diode was used to set up a sufficient base-collector voltage for the correct 

operation of the lower differential stage. Double-balanced operation ensures 

maximum dynamic range, greatest linearity and lowest DC errors. The three main 

advantages of using transformers compared to resistors, capacitors and active circuitry 

are:  

 

o Ground isolation – avoids ground loops and circulating currents. 

o Accurate balance matching (compared with an inverter circuit). 

o No DC errors due to input bias currents. 

 
The final output of this circuit is a DC voltage proportional to 0.5 ( )φcos , where φ  is 

the phase-shift angle. It was shown previously how the cosine function limits the 

usage of the USFM to a defined range, see Section 3.3.4. 
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Figure 4.18 Ultrasonic electronic circuit 
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4.3.3 Design and testing of USFM with air only 
 
Figure 4.19 shows the USFM being installed in the test section of the flow loop. 

 

 
Figure 4.19 Ultrasonic flow meter installed in the flow loop 

 
 
The flow meter was made of Perspex. The total length of the body was 270mm and 

the internal diameter matched the test section i.e. 50mm. The four transducer ports, 

see Figure 4.20, had matching dimensions and each pair had a symmetric and parallel 

finish. The transducer holders were designed to be threaded rod so a fine adjustment 

of the final transducer position could be achieved. The transducers were fixed into the 

holders with removable silicon glue.  

 
 
 
 
 
 

Four transducer 
ports 
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Figure 4.20  Sketch of a side view of the USFM (not to scale) 

 
Operating at 40kHz made the positioning of the transducers in the housing port 

critical. A slight difference between the two transmission paths could have introduced 

a large extra phase shift into the measurement, causing inaccuracy in the system. To 

avoid this problem the transmitters (Tx1 and Tx2) were first fixed, then the receivers 

(Rx1 and Rx2) were adjusted to give a matched received signal at both receivers. 

Because this was a critical point, it was vital to repeat this check in each experimental 

run in case of the position of any of the transducers became distorted.  

 

Tx1 

Tx2 

Rx2 

Rx1
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The flow meter was tested in the test section, see Section 5.1, with only gas phase 

flow. This test was to gain an understanding of the characteristics of the flow meter. 

Figure 4.21 shows the characteristic curve obtained for the USFM. The curve shows 

the relationship between the DC output voltage, measured from the analogue 

multiplier MC1496 for different gas flow rates, of the USFM and the volumetric flow 

rate read from the Variable Area Flow Meter (VAFM), see Section 5.1.1, in the 

operating range.  Since this test is gas flow only, Vout

 

  was plotted against reference 

gas velocity, see Figure 4.22.  

 
Figure 4.21  Characteristic curve for the designed USFM (air only) 
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Figure 4.22  Vout

 
 expressed in term of the gas superficial velocity (air only) 

Earlier in Section 3.3.4, a calibration equation, Equation 3.39, was introduced to 

enable a convenient yet accurate best fit curve to be achieved in the form of: 

 

bUcaV gout
ˆ)ˆcos(ˆ +=                                                                                                 4.15 

 
For zero flow and since it’s only air for this test, 0, == refgg UU ,  the output Vout

 

 

obtained from the electronic circuit was 8.67 volts, so the above equation reduces to:   

baVout
ˆˆ += ≈  8.67                                                                                                    4.16 

 

When 
2

3
ˆ

π
=gUc  

bVout
ˆ=                                                                                                                       4.17 
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The velocity at 
2

3πφ = can be obtained as follows, 26.13ˆ =c  (see Section 3.3.4): 

 

 θπ
cos

4
ˆ

2
c

fd
c =                                                                                                           4.18 

 

So, 
2

3
cos

4
*

2

πθπ
=

c

fd
U g   

 

Thus, 35.20
cos*8

3 2

==
θfd

c
U g m/s                                                                          4.19 

 

where: θ the angle the transducer makes with the pipe = 45o

 

, c is the speed of sound in 

the fluid = 329.4m/s in air, d is the ultrasound path = 0.07m and  f  is the frequency of 

the ultrasound = 40kHz.  

Looking at Figure 4.22, to a best estimate, this velocity obtained from Equation 4.19 

corresponds to Vout 13.8ˆ =b = 8.13 volts. i.e.  and hence 54.0ˆ =a . This suggests that 

Equation 4.15 can be stated as: 

 
13.8) 26.13cos(54.0 += gout UV                                                                                4.20 

 
Figure 4.23 shows the new and more accurate characteristic curve for the designed 

USFM. Hence, Ug can be obtained from Vout

 

: 

 

26.13

54.0

13.8
cos 1





 −

=

− out

g

V

U                                                                                            4.21 
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Figure 4.23  Calibration equation (4.20) against measured data (air only) 

 

4.3.4 Liquid film effect on the performance of the USFM  
 
The first calibration tests of the USFM with only gas flow seemed to be very 

promising, Section 4.3.4. However, when the transducers were covered with liquid 

film of up to about 0.5mm thickness the device responded, but well away from the 

calibration settings. If the film thickness was increased to more than 0.5mm, the 

device stopped responding to changes in gas velocity. This can be put down to the 

characteristic of the transducers when covered with water.  

 

To overcome this problem, the transducers were moved so that they intruded into the 

pipe i.e. passing though liquid film as shown in Config.2, see Figure 4.24. This action 

introduced a slight disturbance to the film but it solved the problem of measuring the 

gas flow.  

 

 



 
CHAPTER 4                                                              DESIGNS AND CALIBRATION 

 158 

 

 
Figure 4.24  Transducers configurations. 

 

The USFM device was calibrated once again, see Figure 4.25, since the length of the 

acoustic path is different in the new configuration; now  d = 0.059m, hence 07.11ˆ =c . 

Since we are using water and air, the gas velocity notation is Ug,c

 

 to indicate the gas 

core velocity of the annular flow. 

However, since this test was carried with both water and air, a reference gas core 

velocity was calculated from: 

 

( )2
,,

,,

4
δπ

δ −
==

D

Q

A

Q
U

refgrefg

refcg                                                                                     4.22 

 
where: refgQ ,  is the gas flow rate read from the Variable Area Flow Meter (VAFM, see 

Section 5.1.1), δA  is the cross-sectional area of the gas core taking into account the 

film thickness δ  and D is the pipe diameter. Later in Section 6.4.1, it is shown that 

the entrained droplets are not causing the USFM to overestimate the measurement of 

the gas core velocity, so the effect of water droplets in the gas core can be neglected. 
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Figure 4.25  Vout

 
 expressed in term of the reference core gas velocity (air and water) 

The same argument that was used to find the constants values of b̂  and â  in Section 

4.3.4 is repeated here, where 07.11ˆ =c .  

 

For zero flow, 0,,, == refcgcg UU  the above equation reduces to: 

baVout
ˆˆ +=  ≈ 8.67                                                                                                    4.23 

 

When 
2

3
ˆ ,

π
=cgUc  

bVout
ˆ=                                                                                                                       4.24 

 

∴ sm
fd

c
U cg /98.19

cos*8

3 2

, ==
θ

           at bVout
ˆ=                                                  4.25 
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From Figure 4.25, to a best estimate, this velocity value corresponds to a voltage 

output of 7.96 volts i.e. 96.7ˆ =b  and hence 644.0ˆ =a . This suggests that Equation 

4.20 can be re-stated as: 

 

96.7) 07.11cos(644.0 , += cgout UV                                                                            4.26 

 
Figure 4.26 shows how the calibration curve Equation 4.26 fits the measured data. 

The curve shows some deviation from the measured data, especially at low velocities.  

 

 
Figure 4.26  The calibration curve fitting with the measured data (air and water) 

 
Most likely this is because the cosine wave used for the calibration curve is derived 

from a somewhat idealised representation of the output of the USFM electronic 

circuit. Tuning the values of b̂  and â , by trial and error, can improve the calibration 

curve to give a better estimate of the measured data for both air and water flow and 

also for air only flow, see Figure 4.27. Equation 4.26 was modified to: 
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03.8) 07.11cos(56.0 , += cgout UV                                                                              4.27 

 

07.11

56.0

03.8
cos 1

,





 −

=

− out

cg

V

U                   4.28 

 
 
Equations 4.27 and 4.28 will be used in the future experiments and investigations in 
this study.  
 
 

 
Figure 4.27  Modified version of Equation 4.27 against the measured data (air and 

water)  

 

4.3.5 Temperature effect on USFM readings 
 
In the design process of the USFM device, it was assumed that the temperature of the 

fluids is constant in the test section and so has a negligible effect on the USFM 

readings.  This assumption was made because each experiment at a given set of flow 

conditions takes less than 60 seconds to complete and during this short time the  
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temperature would be constant. Figure 4.28 shows that the output voltages of the 

USFM for each flow rate are effectively constant with time. This validates if there is 

any change in the temperature during the run time of the experiment, the USFM 

output voltage will change accordingly.  

 

 
Figure 4.28  Temperature effect on the USFM at different gas flow rates (air and 

water)  

 

4.3.6 USFM operation with both gas and liquid flows  
 
The transducers protruding into the test section effectively solved the problem caused 

by the liquid film without introducing any further complication to the measurement 

technique. This was examined at two flow conditions; first, constant water flow rate 

of 9.27x10-5m3/s while increasing the gas flow rate from 100m3/hr to 150m3/hr, see 

Figure 4.29. The second flow condition was a constant gas flow rate of 140m3/hr with 

a water flow rate varying between 9.27x10-5m3/s and 2.78x10-4m3/s, see Figure 4.30. 
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Figure 4.29 validates the proportional relationship between the gas flow rate and its 

velocity ( ggg AUQ  = ). Figure 4.30 indicates that the core gas velocity increases as 

the water flow rate increases because the film thickness increases, reducing the area of 

the core, resulting in an increase in the gas velocity. More detailed results will be 

given in Chapter 6.  

 

 
Figure 4.29  Response of the USFM to the increase in the gas volume  flow rate 
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Figure 4.30  Response of USFM to the increase in the water volume flow rate 
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CHAPTER 5 FLOW LOOP AND EXPERIMENTAL 

PROCEDURES 

5.1 Flow loop Facility 
 
In order to carry out dynamic testing of the measurement probes a flow loop in which 

annular flow can be established was required. This facility had to be capable of 

producing the necessary liquid-gas flows for the present investigation, including a 

range of different gas and water flow rates.  

 

The available literature contains several descriptions of established flow rigs for 

vertical annular flow (e.g. Lopez de Bertodano, 1997; Whalley, 1987; Keeys et al., 

1970; Quandt, 1965). The annular flow is invariably established in an acrylic pipe, 

called the test section, for ease of visualisation. The outlet from the test section is 

either passed to a separator or storage tank, and all the above named researchers seem 

to have had the same idea, given below, for establishing annular flow i.e. the same 

method of fluid injection system into the test section. 

 

The loop consisted of four sections, 1) air supply, 2) water supply, 3) test section, and 

4) outlet section. The flow loop is capable of producing flows with gas as the 

continuous phase. This was an open to air system, the water in the system and in the 

holding tank was replaced every few days to avoid algae growth in the tank. 

 

The annular flow rig was needed in the present study to allow: 

 

o Investigation of the film by the film removal method. 

 

o Determination of the entrainment fraction E for a variety of gas and liquid 

flow conditions.  

 

o Investigation of techniques for measuring the film velocity and the film 

thickness. 
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An available flow loop at the University of Huddersfield was capable of producing 

liquid, gas-liquid and solid-liquid vertical and inclined flows, but it did not have the 

capacity to produce annular flows since all the previous research work carried in this 

flow loop was at low gas flow rates. The existing flow loop includes a circulating 

liquid loop, an open gas loop (air outlet is to atmosphere), and a computer based data 

acquisition and control system.  

 

The loop modifications designed in the present study was based on the preliminary 

work explained in Section 3.1. The idea for the development of the annular flow rig 

for the purposes of this study originated with the concept of combining the water with 

the air supply. Some of the plant necessary to extend the existing capability to include 

annular flow was available, and were some of the reference measurement devices. 

 

Initially the air supply was taken from the compressed air supply from the university 

main compressor, supplied by a compressor (COMPAIR Rotary Screw CYCLONE 

215). The rate of supply is controlled/set by a hi-flow pressure regulator 

(FAIRCHILD 100) and measured by a rotameter (ABLE VA METER 50PTnAAI75) 

with an accuracy of 2%. The university main compressor was used in the early stages 

of establishing annular flow and investigating the maximum and minimum flow rates 

of both the air and water. Later, a side channel blower (RT 1900) was installed as an 

alternative air supply. The side channel blower was used to achieve high air flow 

rates, giving a maximum flow rate of 216m3/hr (gas superficial velocity in the test 

section of Ug,s

 

= 32.2m/s) at a maximum pressure of 250mbar. Ball valve A, see 

Figure 5.1, was installed after the RT 1900 to allow the air flow rate from the RT 

1900 to be varied.  

Water could be pumped through the test section using a vertical multistage in-line 

centrifugal pump from a reservoir containing water only. The water pump delivered 

up to 22m3/hr (water superficial velocity in the test section of Uw,s= 62.3m/s). Both 

the air suppliers and the water supply were capable of providing the required water 

superficial velocity (Uw,s= 5m/s) and minimum gas superficial velocity (Ug,s

 

= 

27.2m/s) found necessary in Section 3.1.1 for annular flow. Both blower and pump  
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could be independently set, allowing water volumetric flow rate Qw and gas 

volumetric flow rate Qg

 

 in the test section to be varied separately.  

Commercially, it would appear that the pipe sizes of most interest, in industrial 

situations, (process industries etc,) are in the range 50mm to 150mm diameter with 

maximum demand for 75-100mm diameter sections (Cosham et al., 2007). However, 

because we are concerned with the design of an experimental laboratory instrument a 

choice of section of 50mm diameter test section seemed sensible. This gave the 

opportunity of upgrading the existing flow loop design using commercial 

instrumentation. Also, for a given flow rate it’s easier to achieve annular flow the 

smaller the pipe diameter. Using design software SolidWorks, a diagram of the design 

loop was produced, see Figure 5.1. 

 

One of the major challenges in designing the flow loop was the selection of the flow 

meters, where each flow meter was required to provide a certain flow which resulted 

in different outlet and inlet conditions for each device. This raised the challenge of 

accommodating devices with different pipe diameters in a limited space, which made 

building the loop to the required design all the more challenging, particularly as there 

was already an existing flow loop for other experimental projects. 

 

Ambient atmospheric pressure (and temperature) conditions were assumed constant 

across the test section and at the Rotameter (variable area flow meter (VAFM)). This 

is not unreasonable because there is a low pressure drop across the test section (and 

VAFM). 
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Figure 5.1 Diagram of designed flow loop  
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5.1.1 Air supply and monitoring 
 
In the air supply section, the air flow is supplied by either the University high-

pressure air system or the alternative air supply RT 1900. After passing through the 

test section the air was vented to atmosphere.   

 
 Variable Area flow meter (Rotameter) 

 
Rotameters are the most commonly used type of variable area flow meters. The 

working principle is that the differential pressure remains constant and the flow is 

measured by the position of a freely moving float in a tube of varying cross-sectional 

area. A variable area flow meter (50PTnAAI75) type was installed in the gas line, see 

Figure 5.2. In this flow meter, air passing into the meter moves the profiled float to a 

position where the forces created by the flow are balanced by the weight of the float. 

 

This device provides a measurement of the reference volumetric gas flow rate refgQ ,  

delivered by the air compressor or RT 1900. Hence, the gas superficial velocity Ug,s

 

 

can be obtained: 

A

Q
U

refg

sg

,
, =           5.1 

 
where: refgQ ,  is the reference volumetric gas flow rate and A is the pipe cross-

sectional area. 

 

The 50PTnAAI75 model flow meter has a 2” (50mm) stainless steel flanged body 

with a flow range of 30-300m3

Ω

/hr. The flow rate can be read directly from the front 

display, but a magnet in the float sensed by the FloTrak system gives an output from 

an independent 4 to 20mA transmitter. This required the author to build a 

current/voltage (I/V) converter to provide a voltage for the LABJACK data 

acquisition unit, see Section 5.3.1, to read the voltage signals. This circuit is a simple 

voltage follower with a precision resistor of 250  and an AD620 amplifier, see 

Figure 5.3. 
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Figure 5.2 ABLE (50PTnAAI75) VAFM  

 

 
Figure 5.3 I/V converter circuit 

 

 



 
CHAPTER 5                          FLOW LOOP AND EXPERIMENTAL PROCEDURES 

 171 

 

Figure 5.4 shows the voltage output of the VAFM plotted against the direct reading 

from the front display. Due to background noise and vibration of the VAFM, it was 

only possible used it for flows between 75m3/hr to 175m3

 

/hr which were the minimum 

and maximum gas flow rates respectively, that would be used in the present study. 

 
Figure 5.4 Output voltage Vout

 

 from the ABLE VAFM flow meter against gas volume 

flow rate 

A stainless steel frame was constructed to house and support the VAFM, see Figure 

5.5. It consisted of two separate platforms that can be attached vertically, side-by-side, 

to ease the installation and removal of the VAFM. Also, this frame formed a rigid 

base for the test section of the flow loop, see Figure 5.1. 
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Figure 5.5 VAFM flow meter and support frame. 

 

 High flow pressure regulator with filter 

 
The FAIRCHILD Model 100 High Flow Pressure Regulator, see Figure 5.6, has a 

flow capacity of up to 2550m3/hr 

 

with a 7 bar of supply and a 2.8 bar set point. The 

screw handle of the device allows a fine adjustment for the air flow rate. It was used 

to regulate the air flow from the main university compressor only, i.e. not used with 

the RT 1900. The compensating action of the inner valve assembly of the Model 100 

allowed complete stabilization of downstream pressure. The choice of this instrument 

was based on the pressure drops calculated in Section 3.1.2. 

The purpose of the compressed air filter installed prior to the regulator was to take out 

any oil droplets that might originate from the compressor and be carried into the 

compressed air and which could affect the measurement of liquid related parameters.  

 
 
 
 
 
 



 
CHAPTER 5                          FLOW LOOP AND EXPERIMENTAL PROCEDURES 

 173 

 

 
Figure 5.6 FAIRCHILD Flow Pressure Regulator 

 

5.1.2 Water supply and monitoring 
 
Air was supplied axially to the test section, while water was injected normal to the 

axis of the test section, see Figure 5.1. Water was drawn from a storage tank using a 

vertical multistage in-line centrifugal pump and the flow rate was measured by a 

turbine flow meter (ABLE AT13T).  

 
 

 Turbine flow meter 

The turbine meter (ABLE AT13T) was installed in the liquid line of the flow loop, see 

Figure 5.7, to measure the reference water volumetric flow rate refwQ ,  delivered by the  
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centrifugal pump. Because the annular flow regime requires only a small amount of 

water, a low range flow meter was used. 

 

 
Figure 5.7 ABLE (AT13T) turbine flow meter 

 

Turbine meters provide measurements of the water volumetric flow rates by counting 

the rotation frequency of the turbine rotor. Turbine meters are designed so that the 

rotation frequency f  of the turbine is directly proportional to water flow rate over the 

specified operational range of the meter.  

 
Calibration of the turbine meter was carried out by comparing the turbine meter 

output frequency f with the water volumetric flow rate read from a reference 

gravimetric flow measurement system. In this gravimetric system, the water flows 

into a conical stainless steel hopper suspended from a load cell. The hopper has a 

pneumatic valve at its base which can be closed when required. The mass of water 

collected in the hopper in a known time is measured so the water mass flow rate wW  

can be determined. Knowing the density of the water wρ  the volumetric flow rate wQ  

measured by the gravimetric system can be calculated: 

 

w

w

w

W
Q

ρ
=                      5.2 

 

Cory (1999) has explained the operation of this system in detail. 
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The results for the calibration of the turbine meter are shown in Figure 5.8. The 

calibration was also checked by comparing the calibration factor given by the 

manufacturer with the factor obtained from the calibration curve in Figure 5.8.  

 
Figure 5.8 shows that there is a linear variation of frequency  f  with volume flow rate 

wQ  measured from the gravimetric system. The factory calibration for this meter is 

0.0033m3/hrHz over a design range of 0.48m3/hr to 4.8m3/hr. The meter factor 

calculated from the calibration experiments is 0.0034m3/hrHz. This is valid over a 

range of 0.33m3/hr to 3.3m3

 

/hr. This shows that the meter has experienced little wear 

and that it is usable at lower flow rates than the manufacturer's specifications suggest.  

 
Figure 5.8 Calibration of ABLE (AT13T) turbine flow meter using the gravimetric 

system 
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5.1.3 The test section 
 
Prior to performing experiments, a visual inspection was performed to check for any 

fluid leakage. So, each time the experiment was setup to run, the pumps were turned 

on to circulate a small amount of water through the entire system. The mixture of air 

and water concurrently flows upwards into the test section, which is an acrylic tube of 

50mm inner diameter. The tube length is 2000mm (L/D = 40), which is long enough 

to guarantee an annular flow in the test section for the specified flows. The critical 

ratio of length to diameter for fully developed annular flow is about 72 (Lopez de 

Bertodano, 2001). The laboratory ceiling was not high enough to allow L/D = 72, but 

we were not concerned with obtaining a fully developed flow, our concern was 

measuring the flows established in the test section. 

 
 

 Differential pressure sensor 

 
A Honeywell ST-3000 differential pressure (DP) sensor was installed on the flow 

loop, Figure 5.9. This device was used to measure the DP across a one metre vertical 

length of the sensor tube section, see Figure 5.1. A flushing system was installed in 

order to ensure that no air could become trapped in either the transducer or the 

measurement lines. The DP cell could be used to estimate the liquid volume fractions 

of different liquids flowing in the liquid phase of the annular flow. The method to do 

this is explained in Section 4.1.1.  

 

In the present study, water only was used as the liquid phase, and so the principle of 

operation of the sensor tube was tested by measuring the air and water volume 

fractions when the tube was filled with an air-water mixture. For this purpose the 

sensor tube, DP cell and associated solenoid valves, see Figure 4.2 in Section 4.1.2, 

were found to measure the volume fraction accurate to about 1% of reading. Since the 

sensor tube system could not be fully evaluated due to the fact that oil-water mixtures 

could not be used as the liquid phase in the present study, further results from the 

sensor tube will not be presented in Chapter 6. 
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Figure 5.9 Honeywell ST-3000 DP sensor 

 
 

 Solenoid valves 

 
Two 2-way BURKERT 6013, see Figure 5.10, solenoid valves were used for the 

sensor tube operation. The 6013 is a direct acting solenoid valve used to close a pipe, 

and for venting purposes.  

 

 
Figure 5.10 Burkert 6013 solenoid valve 

 

These Solenoid valves operate on 230volts/50Hz and to accommodate this with the 

LABJACK, see Section 5.3.1, a switching circuit was built, see Figure 5.11. This 

circuit is controlled via the LABJACK which sends a digital output of 0 volts (low)  

 



 
CHAPTER 5                          FLOW LOOP AND EXPERIMENTAL PROCEDURES 

 178 

 

and 5 volts (high) enabling the solenoid valves in the sensor tube to be opened and 

closed as required. 

  

 
Figure 5.11 Relay on/off switching circuit   

 
 

 Temperature sensor 

 
PT100 Chromel/Alumel thermocouple sensor was placed into the base of the test 

section to monitor the temperature of the flowing mixture (air-water). The probe body 

is made of stainless steel and the mounting is 1/4" NPT thread. Since the room, in 

which the flow loop is housed, was kept at a fairly constant temperature, the main 

source of the heat is the centrifugal pump. Temperature was recorded manually in 

each experimental run. Thermocouples have a relatively rapid response time and 

given the practicalities of the situation the response time of this device was quite rapid 

enough to accurately follow any changes in water temperature. 

 

5.2 Integrating the test section components 
 
Vertical annular flow was studied in 50mm internal diameter Perspex pipe called the 

test section, see Figure 5.1. It consisted of four flanged sections connected with bolts 

and sealed with EPDM flat gaskets. With the different joints in the test section, it was 

very important to ensure the section remained vertically aligned, and a double axis 

spirit level was used to help do this. Pipe supports were used to ensure that this 

alignment remained in place throughout the experimental runs. To ensure proper  
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mating of the pipe sections, the PVC flanges were manually reamed with a tapered 

reamer. The test section accommodated the USFM, CFM, gauge pressure sensor (used 

to compensate for temperature and pressure effects on gas flow rate Qg

 

 if required) 

and temperature sensor. The height of the vertical test section was limited to 2m, due 

to the height of the laboratory ceiling.  

5.3 Data acquisition & Control system 

5.3.1 LABJACK U12 
 
It was necessary to collect the data rapidly and to be able to store it for further 

analysis. This was achieved by using a USB based data acquisition card called a 

LABJACK U12, see Figure 5.12, which acquired the data and controlled the solenoid 

valves of the sensor tube system.  

 

 
Figure 5.12 LABJACK U12 

 

There are several functions and terminals provided by the LABJACK U12. For this 

project the U12 has eight terminals for analogue input signals (AI0-AI7) which can be 

controlled by using the EAnalogIn function for returning a single value or AIBurst for 

acquiring multiple samples of 1-4 channels at a sample rate of 400-8192 Hz. Also, it 

has two terminals for analogue output voltages (AO0 and AO1). Each analogue output 

can be set to a voltage between 0 and 5 using the EAnalogOut function. The U12 also  
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provides four digital I/O terminals (IO0-IO3). These can be controlled by either the 

EDigitalIn or EDigitalOut functions. DIO lines were used to control the solenoid 

valves. 

 

5.3.2 System interface 
 
Data acquisition and control system was performed via the LABJACK U12 using a 

computer running MATLAB software, see Figure 5.13. All data acquisition and 

control was automated through MATLAB based codes developed by the author, 

except the air and water valves which were controlled manually.  Data was collected 

simultaneously from the test section (USFM and CFM), from the gas line (VAFM),  

from the water line (turbine flow meter), and the sensor tube section involved 

controlling the solenoid valves and recording the DP output. The VAFM and turbine 

flow meter both had 4-20mA outputs and so were connected to the LABJACK via I/V 

converters. Data were collected at a sampling rate of 1kHz.  

 

 
Figure 5.13 System interface and wiring diagram 
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5.3.3 Sampling frequency: 
 
A sampling frequency problem occurred in the first attempts to optimize the operation 

of the CFM, see Sections 4.2.4 and 4.2.5. This was because the sampling rate was too 

low, 50Hz, and aliasing occurred. Initially the Nyquist criterion was not met: that the 

sampling frequency should be at least twice the highest frequency of interest in the 

signal being sampled. The sampling frequency was increased to 1kHz using the 

AIBurst function. This function reads from 1, 2, or 4 analogue inputs at a specified 

scan rate of up to 8192Hz. First, data was acquired and stored in the LABJACK's 

4096 sample RAM buffer, then the data was transferred to a PC. The AIBurst function 

has a limitation on its run time, it can acquire data for only 4.5 seconds. To 

compensate for this limitation, each data collection was made ten times then averaged 

using the Ensemble Averaging technique to reduce random errors, see Section 4.2.5. 

 

5.3.4 .m files (MATLAB programming codes) 
 
The purpose of these programming codes (or .m files) was to call, sample, average 

and filter the data. The sampling and filtering .m files were created especially by the 

author to deal with the data collected from the CFM device. This was due to the 

noticeable noise on the output signal. The main program was written to acquire the 

raw data and then process it into sampling, averaging and filtering codes. The final 

data was to be presented in graphical plots to be analysed later. All the calculations 

and graphical plots were performed using commercially available software, 

MATLAB. 

 

5.4 Experimental runs 

5.4.1 Parameters and flow conditions 
 
All of the experimental runs were performed in a vertical Perspex pipe of 50mm 

internal diameter using upward air and water flow in the annular flow regime. In the 

experiments, air and water were supplied at room temperature. Tables 5.1 and 5.2 list  
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the range of air and water volumetric flow rates used for the experimental work and 

their corresponding superficial velocities:  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 5.1 Water volumetric flow rates and superficial velocities 

 
Air volumetric flow rate 

(m
3

Air superficial velocity 

(m/s) /hr) 

100 14.15  
115 16.27 
125 17.68 
140 19.81 
150 21.22 
165 23.34 
175 24.76 

Table 5.2 Air volumetric flow rates and superficial velocities 

 
The lowest liquid volumetric flow rate chosen (0.334m3

 

/h) provided an unbroken 

liquid film on the tube wall at all gas flow rates used. If the liquid flow rate fell too 

low the liquid film broke into rivulets which was easy to see.  

The maximum air flow in the test section was 175m3

 

/hr. In addition to using only air 

and water, several other experimental parameters were maintained at constant or 

approximately constant values for all runs, these were: 

Water temperature  20-22oC 

Air temperature  17-22oC 

Water conductivity 143 cmS /µ  

Table 5.3 Constant operating conditions 

 

Water volumetric flow rate 

(m
3

Water superficial velocity 

(m/s)  /hr) 

0.334 0.0473 
0.501 0.0708 
0.667 0.0944 
0.834 0.1180 
1.001 0.1416 
1.168 0.1652 
1.335 0.1888 
1.502 0.2124 
1.669 0.2360 
1.836 0.2597 
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For each experiment, the run parameters measured were: the liquid film thickness 

(using CFM, see Section 4.2), the liquid film velocity (using cross-correlation 

technique, see Section 4.2.5), the gas velocity in the core (using USFM, see Section 

4.3), the reference gas and water volume flow rates (using VAFM and Able turbine 

flow meter, see Sections 5.1.1 and 5.1.2). The liquid volume fraction was measured 

on only a few of the runs, just to check the validity of the sensor tube measurement at 

minimum and maximum gas and liquid flow rates.  

 

5.4.2 Data collection process  
 
The common procedure used for each experimental run is described later in the form 

of a flow diagram, see Figure 6.14. As explained earlier in Chapter 4, the designed 

devices i.e. CFM and USFM, were calibrated prior to making the experimental 

measurements. At the “Prompt MATLAB to collect data from measurement devices” 

stage, voltage measurements are made. These measurements come from VAFM, 

Turbine flow meter, CFM and USFM. 
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Figure 5.14 Flow chart of data collection process
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CHAPTER 6 RESULTS AND DISCUSSION 
 
The presented results in this chapter will show how accurately the designed devices 

(CFM and USFM) will measure the individual properties of air-water annular flow i.e. 

liquid film thickness, liquid film velocity, entrainment fraction and gas velocity. At 

the end of this chapter it will be shown how these results enable the calculation of 

volumetric water and air flow rates.  

6.1 Liquid film  

6.1.1 Film thickness 

6.1.1.1 CFM measurement of liquid film thickness 

 

Using the CFM, the film thickness was measured at different gas and water flow rates, 

see Tables 6.2 and 6.3. Referring back to Figure 4.13 (CFM film thickness reading at 

1kHz sampling frequency), it can be seen that the CFM showed good measurement 

signals for the film thickness at both upstream and downstream sensors. 

Four different flow conditions were used to investigate the film thickness (presented 

in this section) and film velocity distribution (presented in Section 6.1.3). These flow 

conditions were selected in such a way to create four extreme combinations of low 

and high water and gas flow rates as shown in Table 6.1. The film thickness and film 

velocity were experimentally measured for the given flow rates. The reason for 

presenting the film velocities of these four extreme flow conditions beside the film 

thickness results is to evaluate the relationship between the film thickness and film 

velocities. However, the results of the film velocity will be presented and discussed 

more fully later in Section 6.1.2. 
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Water flow rate 

Qw,ref (m
3

Gas flow rate 

/hr) Qg,ref (m
3

 

/hr) Film thickness 

δ (mm) 

 

Film velocity 

Uf  (m/s) 1.84 

(High) 

0.334 

(Low) 

175 

(High) 

100 

(Low) 

      4.1 0.71 

      1.0 0.56 

      5.7 0.63 

      0.8 0.65 

Table 6.1 Film thickness and film velocity for four different combinations of flow 

conditions 

 
The output signals of the liquid film thickness from the CFM against time, 

corresponding to the conditions in Table 6.1, are shown in Figures 6.1-6.4. In each 

case the blue trace is the signal from the upstream sensor and the green trace is the 

signal from the downstream sensor. In three of the four conditions, Figures 6.1, 6.3 

and 6.4, the CFM shows a clear and well-defined signal for the film thickness. 

However, at the lowest water flow rate and highest gas flow rate the signal suffers 

from sudden disturbances due to breaks in the liquid film, discontinuities in the flow 

(at the downstream sensor only), see Figure 6.2.  

 
Starting from minimum gas and water flow rates, as the gas flow rate was increased in 

six steps, see Table 6.2. It was noticed that eventually gaps in the film occurred due to 

shear forces, see Figure 6.2. Reducing the gas flow rate and/or increasing the water 

flow rate returned stability to the film thickness.  Nevertheless, the CFM showed itself 

capable of responding to the changes in liquid film thickness. Zabaras and Dukler 

(1986) presented similar variations in their liquid film thickness signals using a 

parallel wire probe. 

 
Reference gas flow rates and the corresponding gas superficial velocities 

Qg,ref

m
  

3
175 

/hr 
165 150 140 125 115 100 

U

m/s 
g,s 24.8 23.3 21.2 19.8 17.7 16.3 14.2 

Table 6.2 Gas  flow rates used throughout the investigation 
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Figure 6.1 Film thickness signal for refgQ , = 100m

3
refwQ ,/hr, = 0.333m

3

 

/hr
 

 
Figure 6.2 Film thickness signal for refgQ , = 175m

3
refwQ ,/hr, = 0.333m

3
/hr 
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Figure 6.3 Film thickness signal for refgQ , = 100m

3
refwQ ,/hr,  = 1.84m

3

 

/hr 

 
Figure 6.4  Film thickness signal for refgQ ,  = 175m

3
refwQ ,/hr,  = 1.84m

3
/hr 



 
CHAPTER 6                                                                 RESULTS AND DISCUSSION 

 189 

 

6.1.1.2 Effect of gas and liquid superficial velocities on liquid film  

 

To present as full an analysis as possible of the effect of the gas and liquid superficial 

velocities on the liquid film, a total of seventy separate flow conditions were used (ten 

water flow rates between 0.333m3/hr and 1.84m3/hr, for each of seven gas flow rates 

between 100m3/hr and 175m3

 

/hr). The mode of application was to maintain either the 

water or gas flow rate constant and vary the other.  

Reference water flow rates and the corresponding water superficial velocities 

Qw,ref

m
  

3
1.84 

/hr 
1.67 1.50 1.34 1.17 1.00 0.834 0.667 0.501 0.333 

U

m/s 
w,s 0.26 0.24 0.21 0.19 0.17 0.14 0.12 0.094 0.071 0.047 

Table 6.3 Gas and water flow rates used throughout the investigation 

 
Figure 6.5 shows the variations of the liquid film thickness with increasing water 

superficial velocity at different gas superficial velocities. In Section 4.2.6 it was stated 

that at a constant gas flow rate the liquid film thickness is expected to increase with 

increasing water flow rate. The results of measurements, see Figure 6.5, confirm this. At 

the minimum water superficial velocity the film thickness is much the same for all the 

gas superficial velocities used although, as mentioned above, at the highest gas 

superficial velocities the film thickness could become unstable. However, as the water 

superficial velocity increased the film thickness increased at a faster rate for the lower 

gas superficial velocities, see Figure 6.5. This phenomenon is attributed to the ability of 

the gas flow to limit the liquid film growth. Further increase in water superficial 

velocity above 1.33m/s resulted in over flooding of the system i.e. liquid film collapses 

into the gas core of the annular flow.  
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Figure 6.5 Effect of water superficial velocity on liquid film thickness at different 

constant gas superficial velocities 

 

 
Figure 6.6 Effect of gas superficial velocity on liquid film thickness at constant water 

superficial velocity 
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Figure 6.6 shows the variations of the liquid film thickness with increasing gas 

superficial velocity at different water superficial velocities. Figure 6.6 shows that at a 

constant water superficial velocity the liquid film thickness decreases as the gas 

superficial velocity increases. This behaviour is attributed to increased film velocity and 

increased entrainment. This observation is more obvious at higher water flow rates than 

the lower water flow rates. Figure 6.6 also suggests that further increase in the gas 

superficial velocity could cause a dangerous dry-out for the system. Quandt (1965) 

reported similar decreasing trends in the film thickness using a computational model. 

 

This observation, also mentioned during the liquid film velocity discussion in Section 

6.1.2.2, is likely due to the higher gas superficial velocity increasing the liquid film 

velocity, which would give rise to a reduced film thickness: 

 

 ff URQ  )2( δπ=                  6.1 

 

where: Qf is the volumetric flow rate of the liquid in film, Uf

 

  is the liquid film 

velocity measured by the CFM, R  is the pipe radius and δ  is the film thickness. 

Equation 6.1, suggests that if the liquid film flow rate is approximately constant; 

increasing the liquid film velocity results in a decrease in the liquid film thickness. 

 

These trends are very similar to the observations of Drosos et al. (2006). This was 

taken as a first sign of the success of the CFM device in measuring the liquid film 

thickness.  It also shows that the CFM device can be used to measure the liquid film 

thickness and hence to predict either over-flooding or drying-out from the measured 

value of the liquid film thickness for a known pipe diameter. Results, in this study, 

showed that the CFM was able to read maximum and minimum film thicknesses of 

5.7mm and 0.8mm respectively.  
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6.1.2 Film velocity 

6.1.2.1 CFM accuracy in measuring film velocity 

 

The cross-correlation technique was used in this study to measure film velocity, see 

Sections 2.3.3 and 4.2.5. The liquid film velocity data and its analysis are given in 

Sections 6.1.2.2 and 6.1.2.3. However, prior to analysing the effect of the gas and 

water superficial velocities on the liquid film velocity, it was important to perform an 

initial check on the accuracy of the CFM readings. A “reference” liquid film velocity 

can be obtained from the reference water volumetric flow rate obtained from the 

turbine flow meter, which had been carefully calibrated, see Section 5.1.2, on the 

assumption that no water flows in the core: 

 

A

Q
U

refw

reff

,
, =          6.2 

 
It is shown that Uf,ref

 

  given by Equation 6.2 is likely to over-estimate the actual liquid 

film velocity since, obviously, water droplets do flow in the core. Nevertheless, it 

enables a useful comparison to be made with the film velocity measured by the CFM 

using cross-correlation. 

A percentage error in the liquid film velocity, ξ f,velocity

 

, could be calculated for each of 

the seventy flow conditions, and was defined as: 

% 100 
U

,

,
, ×

−
=

reff

refff

velocityf
U

U
ξ        6.3 

 
where: veclocityf ,ξ  is the percentage error in the measured liquid film velocity, Uf

reffU ,

  is the 

film velocity determined from the cross-correlation technique and  is the 

reference liquid film velocity given by Equation 6.2 and based on water flow rate 

obtained from the turbine meter. 
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For the seventy flow conditions mentioned earlier in Section 6.1.1.2, the results of the 

error calculation of the measured liquid film velocity are shown in Figure 6.7.  

 

 
Figure 6.7 Percentage error in measured liquid film velocity at different constant gas 

superficial velocities 

 
All the calculations gave a negative error as expected because of the assumption that 

all the water was in the liquid film, but actually some water was entrained as drops in 

the core, see Figure 6.7. The calculations indicated a mean percentage error of 

%4.7− . In addition the slight vibration of the test section caused by random pressure 

fluctuations in the air line may have contributed some inaccuracy to the measurement. 

The measured values by the CFM indicated maximum and minimum liquid film 

velocities of 0.71m/s and 0.56m/s respectively, see Figures 6.8 and 6.9. 

 

Because the “reference” film velocity was known to be too high, the results shown in 

Figure 6.7 gave good initial confidence that the CFM was indeed measuring the film 

velocity and not for example, the speed of surface wave on the liquid film. 
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The need to assume that all the water was in the liquid film was overcome by using a 

correlation for the entrainment fraction, see Section 6.2.2. The correlation, Equation 

6.24, can provide an estimate of the volumetric flow rate of the entrained water in the 

core and an estimate for the total volumetric flow rate of the water in the pipe can be 

calculated from: 

 

festcwestw QQQ += ,,,          6.4 

 
where: estwQ ,  is the estimated water flow rate in the test section, estcwQ ,,  is the 

estimated volumetric flow rate of the entrained water in the core and fQ  is the 

volumetric film flow rate calculated from Equation 6.1. 

 

So, a better estimate for a reference value for the liquid film velocity can be given by: 

 

A

Q
U

estw

reff

,
, =           6.5 

 
Referring ahead to the error calculation in the water flow rate in Section 6.6.1, Figure 

6.39 indicates that taking into account the entrained water flow rate reduces the mean 

percentage error to -1.11%.  

 

However, the development of the entrainment method relies on knowing liquid film 

volumetric flow rate Qf  which requires liquid film velocity Uf  measured by the 

CFM. The only relevance of Section 6.1.2.1 to this argument is that the liquid film 

velocity obtained using the CFM is close to (and always less than) reference liquid 

film velocity Uf,ref

 

  from Equation 6.5. We know from the literature that the 

entrainment flow represents a small proportion, see Table 6.5, of the total liquid flow 

rate. Hence, the fact that the measured liquid film velocity was close to the reference 

liquid film velocity was taken as an indication that we were measuring the correct 

film velocity. 
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6.1.2.2 Effect of gas and liquid superficial velocities on liquid film 

velocity  

 
Figures 6.8 and 6.9 show the variations in the measured liquid film velocity with 

water and gas superficial velocity respectively. By inspection, both figures show that 

the liquid film velocity increases with increasing gas and liquid superficial velocity. It 

is interesting that a fivefold increase in water superficial velocity increased the film 

velocity by a mere 20 to 30%, because the film thickness also increased. However, for 

the ranges of values chosen, the gas superficial velocity has a greater influence on the 

liquid film velocity than the water superficial velocity. The reason behind these 

variations is the interfacial shear stress. The gas seems to exert a large interfacial 

shear stress which causes the liquid film to speed up. In the case of the increasing 

water flow rate, the wall shear stress has a tendency to slow the liquid film. 

 
However, the theory presented earlier in Section 6.1.1.2 concerning the effect of both 

gas and water superficial velocities on the liquid film thickness is able to explain the 

obtained results in Figures 6.8 and 6.9. Figure 6.8 indicates that the liquid film velocity 

increases with increasing the water superficial velocity (i.e. increasing the water film 

flow rate) at a constant gas superficial velocity. This agrees with Equation 6.1. 

However, it was also found in Section 6.1.1.2, see for example Figure 6.5, that 

increasing water superficial velocity and thereby increasing the water film flow rate, 

results in the liquid film thickness being increased (i.e. increasing the liquid film cross-

sectional area). It is this thickening of the liquid film which results in the relatively slow 

increase in the liquid film velocity with increasing water flow rate. 
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Figure 6.8 Effect of water superficial velocity on liquid film velocity at constant gas 

superficial velocity 
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Figure 6.9 Effect of gas superficial velocity on liquid film velocity at constant water 

superficial velocity 

 

6.1.2.3 Comparison of liquid film velocity results with Zabaras and 

Dukler (1986) 

 
The results obtained in this investigation for the velocity of the liquid film were 

compared to those of previous workers. A detailed comparison is made with the 

results of Zabaras and Dukler (1986). The reason these authors have been chosen for 

this comparison is because they presented a comprehensive set of data gained from a 

very similar test rig to that used in the present study with a pipe of diameter 50.8mm 

carrying a vertically upward co-current of air/water mixture.   

 

To make the comparison easier, flow rates were converted to mass flow rates since 

Zabaras and Dukler (1986) presented their results in these units. Also, they 

represented their results as a function of the liquid feed Reynolds number wRe .  

 

ν
feedw

w

Q , 4
Re =                      6.6 
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where: ν  is the kinematic viscosity (1x10-6m2
feedwQ ,/s for water) and  is the water 

feed flow rate per unit perimeter.  

 

That is:  

D

DU

D

Q
Q

swrefw

feedw  

1

4

) (

 

2
,,

, π
π

π
==                    6.7 

 

4

 ,
,

DU
Q

sw

feedw =                      6.8 

 

where: swU ,  is the water superficial velocity and D  is the pipe diameter. 

 
By substituting Equation 6.8 into Equation 6.6 we obtain: 

 

ν
DU sw

w

 
Re ,=                                 6.9 

 
 
 
Re 2360 w 3100 3561 5902 3100  

(Z and D) 

Uw,s 0.047  m/s 0.061 0.071 0.118 0.06 

Table 6.4 Corresponding liquid film Reynolds numbers and water superficial 

velocities 

 

Zabaras and Dukler (1986) were able to vary the gas mass flow rate Wg from 0.01kg/s 

to 0.09 kg/s but chose only to vary it in the range 0.03kg/s to 0.07kg/s. Similarly for 

the liquid feed Reynolds number, they used only four flows with Rew

 

 = 310, 768, 

1550 and 3100. The author of the present study believes that last Reynolds number of 

3100, corresponding to a flow velocity of 0.06m/s, is the best for comparison because 

this was the region where the annular flow was visually observed to be fully 

developed in the current study.  

The values of Rew  in the present study that are suitable for comparison with the 

results of Zabaras and Dukler were 2360, 3541 and 5902. Figure 6.10 shows how the 

film mass flow rate shows a similar trend to the data curve for Zabaras and Dukler 

between gas mass flow rates of 0.033kg/s and 0.068kg/s.  
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Zabaras and Dukler used a separation method to obtain the film mass flow rate. In the 

current study the film volumetric flow rate was obtained from measured parameters of 

the liquid film, i.e. the film thickness δ and film velocity Uf

 

. Then Equation 6.10 was 

used to obtain the film mass flow rate: 

ρ ff QW =                     6.10 

 

where: Wf is the film mass flow rate, Qf is the film volumetric flow rate given by 

Equation 6.11 and ρ is the water density taken 1000kg/m3

 

. 

( )[ ]22 δπ −−= RRUQ ff
                                                                                      6.11 

 

where: R is the pipe internal radius, δ is the measured film thickness using the CFM. 

 

 

 
Figure 6.10  Comparison of film mass flow rate when varying the gas mass flow rate 

with results of Zabaras and Dukler (1986) 
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Figure 6.10, indicates that the measured liquid film flow rates using the CFM agree 

with the results obtained by Zabaras and Dukler. This suggests that the measured 

values of liquid film flow rate Qf and hence the measured values of film thickness δ 

and liquid film velocity U f are likely to be reasonably accurate. This can be 

understood from inspecting Equation 6.1. Calculating the film flow rate Qf  in this 

equation is totally dependent on the measured values of the film thickness δ and the 

film velocity Uf

 

. The film thickness is used to obtain the cross-section area of the 

film, see Equation 6.12, and hence an inaccurate film area measurement would result 

in an inaccurate film flow rate.  

( )[ ] fARR =−− 22 δπ                            6.12 

 

A similar argument applies to the film velocity Uf

 

 which was measured using the 

cross-correlation technique, see Sections 2.3.3 and 4.2.5. Once, again the comparison 

suggests that the technique used has accurately measured the film velocity by giving  

an film flow rate measurement which compares well with the previous study of 

Zabaras and Dukler.  

 

The film velocity at the gas-water interface is higher than the mean film velocity 

(Sugawara, 1990). Thus if the CFM has been measuring the surface wave velocity it 

would be expected that the percentage error shown in Figure 6.7 would be positive not 

negative, indicating that the CFM device is measuring the actual liquid film velocity.  

 

6.1.3 Film velocity profile 
 
For annular flow the velocity profile of the liquid film is important because a better 

knowledge of the film velocity profile will give a better understanding of the 

relationship between the film and the gaseous core. In the current study simple liquid 

film modelling work has been undertaken in order to characterize the liquid film 

velocity profile. The back-flow or flooding phenomenon, which usually occurs when 

the gas flow lacks the ability to lift up the entire segment of the liquid film in the 

annular flow so the liquid at the internal pipe wall will start to flow downwards, was 
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then investigated. In co-current gas-liquid flow, the onset of flooding is identified by 

the critical gas flow rate at which partial liquid flow reversal is observed (Wadekar, 

2002). 

 

In this section, an attempt at characterizing the liquid film velocity was carried out in 

order to provide evidence that the measurement of the liquid film velocity is true. The 

effect of the gas and water flow rates on the thinning of the liquid film can be 

observed from the velocity distribution curves as it will be shown later, see Figure 

6.17.   

 

The simplest approach to modelling annular film flow is to develop a force balance 

equation for an element of the film. This method assumes mean values of the film 

properties. Additional assumptions are: 

 

o The surface of the liquid is smooth; there are no surface waves or ripples 

which imply that the flow rates are restricted. 

 

o The velocity profile of the film is known and it is identical to profiles found in 

single phase flow, e.g. the universal velocity profile for turbulent flow or the 

parabolic profile for laminar flow. 

 
With reference to Figure 6.11, a force balance on a cylindrical element of the film 

under steady state conditions yields: 

 

( )
( )22

2222

                                                               

  ˆ  2)(  ˆ  2

il

iiii

rrZg

rrZ
dZ

dP
PZrrrPZr

−+

−





 ++=−+

δπρ

δπδτππδτπ
             6.13 

 

where: ri

2/)( 0rrr i +=

 is the distance from the centre-line of the pipe to the film surface, r is the 

distance from pipe centre-line to the middle of the film ( ), Z is the axial 

coordinate, lρ  is the density of the liquid forming the fluid film (it is assumed that the 

liquid density within the liquid film is constant), dZdP / is the pressure gradient, τ̂  

and iτ̂ are the shear stress and interfacial shear stress respectively, g  is 9.81m/s2 and 

P is the pressure. 
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Equation 6.13 can be simplified and rearranged to form Equation 6.14: 

( ) ( )2222      ˆ  2 ˆ  2 iliii rrZgrrZ
dZ

dP
ZrZr −+−+= δπρδπδτπδτπ              
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                   6.14 

 

The local velocity can be calculated from: 

∫= drru f µ
τ̂

)(ˆ                    6.15 

 
 

where: µ  is viscosity of water, 1*10-3 τ̂kg/ms, and  is the shear stress. 

 
The boundary conditions for Equation 6.15 are: 
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Figure 6.11 Illustration of force balance on the control volume of liquid film for 

upward annular flow 

 

In the annular flow with which this project is concerned, the gas volume fraction is 

close to unity and gas density is small compared to that of the fluid, and so 

gravitational force is negligible compared to the pressure term. Accordingly and with 

reference to Figure 6.12, the upwards forces sum to zero and the following result is 

obtained: 
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dZ

dPri

i 2
ˆ −=∴τ                    6.18 

 
where: dZdP /  is negative in the direction of increasing Z.  

 
The total film volume flow rate from the above equations is given by: 
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∫=                    6.19  
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This expression is known as the “Triangular Relationship” as it relates the three 

variables: mean film thickness, film flow rate and wall shear stress. 
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Figure 6.12 Illustration of force balance on the control volume of gas core of upward 

annular flow 

 
Since the film thickness and velocity can be measured at different flow conditions, 

using Equations 6.11, 6.18 and 6.20 it enables us to predict the pressure gradient, 

which can then be used in Equation 6.16 to find the corresponding velocity 

distribution )(ˆ ru f . 

  

The same extreme flow conditions presented in Section 6.1.1.1 and tabulated in Table 

6.1 were used in this modelling investigation. Figures 6.13-6.16 show predicted liquid 

film velocity distributions )(ˆ ru f versus radial position r for the given different flow 

conditions using Equation 6.16. The velocity distribution shows no back flow i.e. no  
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negative velocity distribution. It’s very clear from all figures that the velocity of the 

film increases from a zero velocity at the pipe wall to a maximum value where the 

film meets the gas core. This result agrees with visual observation made by the author 

while carrying out the experiments. This finding emphasises the confidence in using 

the CFM as a liquid film velocity measurement device.  

 
Figure 6.13 Film velocity profile for

refgQ , high, Qw,ref

 

 high 
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Figure 6.14 Film velocity profile for 

refgQ ,  low, refwQ ,  low 

 
Figure 6.15 Film velocity profile for refgQ ,  low, refwQ ,  high 
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Figure 6.16 Film velocity profile for

refgQ ,  high, refwQ ,  low 

 
At this stage it is worth explaining the behaviour of each velocity distribution curve to 

understand the effect of the gas and liquid flow rates on the liquid film. To start it was 

useful to plot the distribution curves shown in Figures 6.13-6.16, together in Figure 

6.17. Figure 6.17 shows the predicted velocity distribution plotted against non-

dimensional distance NDr  from the edge of the liquid film ( 0=NDr ) to the pipe wall 

( 1=NDr ). 

 

At high water flow rates (green and turquoise curves in Figure 6.17) the liquid film 

struggles to build up its velocity i.e. film velocity is slower at small distances from the 

pipe wall. Close to the pipe wall the liquid film velocity distribution curve for the high 

water flow rates falls below that for the low water flow rates. This phenomenon helps 

explain the slower liquid film velocities with higher water flow rates visually 

observed at the wall. 
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At low water flow rates and with high gas flow rate, the liquid film velocity at the 

wall is higher (blue and red lines curves in Figure 6.17). Again this explains the visual 

observation of high liquid film velocities at the wall with high gas flow rate. It can be 

seen that with lower water flow rate and higher gas flow rate (red curve in Figure 

6.17), the liquid film has higher velocities than the high gas and water flow rates 

(turquoise line). 

 

These results agree with results and theoretical evaluations obtained by Moalem and 

Dukler (1984) and Karimi and Kawaji (2000). 

 

 
Figure 6.17 A comparison of liquid film radial velocity distribution profiles at 

different flow conditions  

 

6.2 Entrainment 
 
In annular flow the liquid in the film continuously enters the gas core in the form of 

droplets in a process called liquid entrainment, and the droplets in the gas core 

continuously deposit on the film in a process called droplet deposition. Knowledge of 

the entrainment fraction (defined as the water flow rate in the core as a proportion of  
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the total water flow rate, William et al., 2007) is essential for the development of a 

relation between entrainment and deposition rate.  

 

Furthermore, the usefulness of the prediction of entrainment fraction is not limited 

only to the estimation of flow rate measurements but also for many general thermal 

hydraulic predictions such as how the pressure drop in annular flow can be 

significantly reduced (Wongwises and Pipathattakul, 2006). 

 

In this study, being able to measure the liquid film thickness and the liquid film 

velocity meant that the entrainment fraction could be calculated as follows. If fQ  

 

is 

the measured water flow rate in the film, then: 

fff AUQ  =                     6.21  

 

where: Uf  is the velocity of the fluid film obtained by cross-correlation and Af

 

  is the 

cross-sectional area of the film = 2πRδ,  

If cwQ ,  

 

is the water flow rate in the core, then: 

frefwcw QQQ −= ,,                    6.22  

 
where: fQ  is the measured water flow rate in the film and Qw,ref

 

  is the total reference 

water flow rate through the test section measured on the turbine meter, see Section 

5.1.2. 

So, the entrainment fraction E  is given by: 

 

refw

frefw

fcw

cw

Q

QQ

QQ

Q
E

,

,

,

, −
=

+
=                   6.23 

 
Equation 6.23 can be used with the obtained data to determine the entrainment 

fraction for the seventy flow conditions tested. Figure 6.18 shows the entrainment 

fraction variation with the water superficial velocity at different constant gas  
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superficial velocities. The figure shows two clear and obvious trends for the flow rates 

used.  

 

 
Figure 6.18 Effect of water superficial velocity on entrainment fraction at constant 

gas superficial velocity 

 

First, the entrainment fraction remained more or less constant across the range of 

water superficial velocities tested, for constant gas superficial velocity. Second the 

entrainment fraction appeared to reach a limiting value of about 0.13 when the gas 

superficial velocity reached about 20m/s. At the lowest gas superficial velocity the 

average value of the entrainment fraction was 0.075 over the range of water flows 

used, see Figure 6.18. 

 

Figure 6.19 shows the entrainment fraction plotted against the gas superficial velocity 

for different values of water superficial velocity. For all of the gas superficial 

velocities used the curves showed the same general shape. For constant water 

superficial velocity initially there was a more or less linear increase in the entrainment  
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fraction with increasing gas superficial velocity but when the gas superficial velocity 

reaches about 20m/s the value of the entrainment fraction levelled off at about 0.13. 

This was the maximum value for entrainment fraction for the annular flow of air and 

water obtained in the current investigation. 

 

 
Figure 6.19 Effect of gas superficial velocity on entrainment fraction at constant 

water superficial velocity 

 
Pan and Hanratty (2002) stated that the occurrence of a limiting value of the 

entrainment fraction E is dependent on the pipe diameter. The results shown on Figure 

6.19 indicate that a correlation can be formulated for the entrainment fraction as a 

function of the gas superficial velocity, see Section 6.2.2. 

 

6.2.1 Comparison of measured entrainment fraction with recent studies 
  

Han (2005) and Pan and Hanratty (2002) who investigated annular air/water flows, 

followed a similar way of defining the entrainment fraction to that shown in Equation  



 
CHAPTER 6                                                                 RESULTS AND DISCUSSION 

 213 

 

6.23, and found a similar variation of entrainment as a function of the gas superficial 

velocity as that found in the present study. Unfortunately their test rigs had pipes of 

diameters only 9.5mm and 10mm.  

 
Figure 6.20 (left and right plots) shows the entrainment fraction versus gas superficial 

velocity at different water Reynolds numbers given by Sawanta et al., (2008) and 

compared with Assad et al., (1998) (plot on left), and with Pan and Hanratty (2002) 

(plot on right).  

 

 
Figure 6.20 Entrainment fraction vs. gas superficial velocity at different water 

Reynolds numbers from Sawant et al., (2008). 

 

Regardless of the flow conditions and pipe diameters that had been used by Sawanta 

et al., the present work shows a similar trend of the entrainment fraction as a function 

of the gas superficial velocity. However, Sawanta et al. attributed this trend to the gas 

Froude number Frg 

 

which does depend on pipe diameter, but also on the gas 

superficial velocity, see Section 2.3.1.  

Patruno et al., (2009) observed a similar trend in the variation of the entrainment 

fraction when plotted against the superficial gas velocity when comparing their 

simulation model with experimental data from Schadel (1990) using a pipe diameter 

of D=40.2mm. From all of these previous works by different researchers, it is 

apparent that the variation of the entrainment fraction with the gas superficial velocity  
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is similar in all cases. More importantly the CFM shows itself as a technique able to 

measure other annular flow parameters, namely entrainment fraction.  

 

Zabaras and Dukler (1986) also investigated the entrainment fraction though their 

graphs plotted entrainment mass flow rate against the gas mass flow rate. For ease of 

comparison and the lack of information about the density of water being used by 

Zebaras and Dukler, the author reformulated his results so they could be plotted on the 

same graph as the findings of Zabaras and Dukler, see Figure 6.21. 

 

 
Figure 6.21 Comparison of entrainment rate when varying the gas flow rate with 

Zabaras and Dukler. (1986) 

 
As the gas mass flow rate gW  increases, the entrainment mass flow rate eW  also 

increases until the dry out point (i.e. liquid film starts to thinning and breaking up) is 

approached. As discussed above this increase in the entrainment mass flow rate is 

more dependent on the gas flow rate more than the liquid flow rate. Figure 6.21 shows 

how the Zabaras and Dukler data fits with the present data. The Zabaras and Dukler 

data for Rew=3100 lies between the present data for Rew=2360 and Rew=3541. Also,  
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Zabaras and Dukler data shows same general increase in the entrainment mass flow 

rate with the gas mass flow rate as the present data at fixed water Reynolds number. 

 

Table 6.5 summaries available results in the literature for the entrainment fraction E 

for annular flow in pipes with reasonably similar diameters to the pipe diameter D 

used in the present study i.e. 50mm. The obtained range of entrainment fraction in this 

study fits nicely between the ranges of the entrainment fraction cited in the literature. 

However, the tabulated experiments do not show a defined trend in the values of the 

entrainment fraction in regard to the pipe diameter. This drives the author to conclude 

that the entrainment fraction is more likely to be affected by the flow properties and 

conditions. 

 
Author Fluids Pipe ID (mm) E 

Owen et al. air-water 31.8 0.17-0.38 

Asali air-water 42 0-0.38 

Present study air-water 50 0.075-0.13 

Zabaras and Dukler air-water 50.8 0.01-0.16 

Pan & Hanratty air-water 57.2 0.3-0.7 

Table 6.5 Summary of some experiments on entrainment fraction 

 
Once again this comparison suggests that the CFM device was measuring the liquid 

film velocity because measuring the surface wave velocity on the film would have 

resulted in values of entrainment fraction E grossly different from those found in the 

literature. 

 

6.2.2 Development of an entrainment fraction correlation 
 

By referring back to Figure 6.19, it was concluded that the entrainment fraction is 

dependent on the gas superficial velocity. In Figure 6.22 values for entrainment 

fraction (which are the average values of the entrainment fraction at each gas 

superficial velocity in Figure 6.19) are plotted against gas superficial velocity and a 

least squares fit programme has been used to produce a cubic equation to fit the data,  
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Equation 6.24. This equation expresses the entrainment fraction as a function of the 

gas superficial velocity.   

 

027.0 002.0 001.0 8.2 ,
2

,
3

,
5 −−+−= −

sgsgsgest UUUeE               6.24  

 
where: Eest is estimated entrainment fraction and Ug,s

 

 is the known gas superficial 
velocity. 

Equation 6.24 is considered to be a good correlation of the entrainment fraction as a 

function of the gas superficial velocity for the experimental conditions in the present 

study.  

 

 
Figure 6.22 Estimated entrainment fraction as a function of the gas superficial 

velocity (pipe ID = 50mm) 

 
The vital importance of this correlation is presented in Section 6.6.1 where it is used 

to estimate the water flow rate in the pipe. This estimated value of the water flow rate 

was then compared to the reference water flow rate to enable calculation of the 

percentage error in the measured water flow rate which enabled the accuracy of the 

CFM as a flow measurement technique to be evaluated. 
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6.3 Prediction of the liquid film thickness from film velocity and 
entrainment data 

 
The author was able to predict the liquid film thickness from the analysis of the liquid 

film velocity and the entrainment data presented in Sections 6.1.2 and 6.2.2 

respectively. The prediction is based on the fact that both the liquid film velocity and 

the entrainment fraction are functions of the superficial gas velocity. This can be 

understood from the following set of equations: 

 

cwfrefw QQQ ,, +=                               6.25 

 

where: Qw,ref  is the reference water flow rate, Qf  is the film flow rate and Qw,c

 

 is the 

entrained water flow rate in the core. 

Qw,ref  = 2πRδUf + Qw,c

 

                  6.26 

f

cwrefw

RU

QQ

π
δ

2
  ,, −

=∴                    6.27 

 

where: R is the pipe radius, Uf

 

 is the liquid film velocity and δ is the liquid film 

thickness. 

In Equation 6.27, Qw,c  is obtained as an estimated value which is defined by Equation 

6.24. Where, Uf

 

 is known from Figure 6.9 at any given gas superficial velocity at a 

constant water superficial velocity. So, for convenient notations Equation 6.27 can be 

re-written as: 

estf

estcwrefw

est
RU

QQ

,

,,,

2
  

π
δ

−
=∴                   6.28 

 

where: the subscript ‘est’ indicates an estimated value. 
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The values of liquid film thickness predicted from Equation 6.28 are plotted against 

the measured liquid film thickness values from the CFM probes in Figure 6.23. The 

result shows that the prediction method is very good with higher water superficial 

velocities. However, at lower water superficial velocities the results seem to drift 

slightly away from the rest of the data. In general, there is a remarkable degree of 

agreement between the two quantities and the conclusion must be that prediction 

method presented by the present study can successfully predict the liquid film 

thickness if both the gas superficial velocity and liquid film velocity are both well 

known at certain water superficial velocities, at least for the 50mm ID pipe. 

 

 
Figure 6.23 Comparison of measured and predicted liquid film thickness 

 

6.4 Volume fraction 
 
To accurately predict the phase velocities and mixture properties requires a good 

knowledge of the volume fraction, see Figure 6.24. The gas volume fraction of a gas- 
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liquid flow is defined as the ratio of the volume of gas to the total volume of the gas-

liquid mixture in a finite length of the pipeline.  

 
The volume fraction of each phase is an important quantity in measuring and 

predicting the average density, pressure drop, flow pattern, etc. of a flowing gas-liquid 

mixture in a pipe. By knowing the volume fraction and the velocity of each flowing 

phase one can estimate the mass flow rate of each phase. 

 

 
Figure 6.24 Schematic of flow phases distribution in annular flow 

 

6.4.1 Volume fraction of water film (
fw,α ) 

 
The volume fraction of the water film αw,f

A

A f

fw =,α

 is given by Equation 6.29, and is defined as 

the ratio of the cross-sectional area of the film to the total cross-sectional area of the 

pipe: 

                    6.29  

where: fw,α  is the volume fraction of the liquid film, fA is the area of the liquid film 

and A is the total cross-sectional area of the pipe. 
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The liquid film thickness was measured by the CFM, so knowing the radius of the 

pipe (25mm) it is possible to calculate the water film volume fraction:    

2
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=         

2
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But since δ<<R: 
 
 

Rfw

δα 2
, ≅                     6.31 

 
 

fw

R
, 

2
αδ 





=                                6.32 

 
where: δ  is the thickness of the liquid film and R is the radius of the pipe.  

 
By inspection, Figures 6.25 and 6.26 appear very similar to Figures 6.5 and 6.6 for the 

film thickness, see Section 6.1.1.2. This is because the liquid film thickness is directly 

proportional to its volume fraction, the constant of proportionality being (R/2), see 

Equation 3.32. Figure 6.25 emphasises the fact that increasing the gas superficial 

velocity increases the velocity of the film, see Section 6.1.1.2. This can be concluded 

from the decreasing volume fraction of the water in the film. 

 
In Figure 6.26, it’s clear that the volume fraction of the water film increased with 

increase of the water superficial velocity.  
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Figure 6.25 Effect of gas superficial velocity on volume fraction of water film at 

different water superficial velocities 

 

 
Figure 6.26 Effect of water superficial velocity on volume fraction of water film at 

different gas superficial velocities 
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The measurements indicate maximum and minimum water volume fraction values of 

0.404 and 0.065 in the present study. The author can conclude, using Equation 6.32, 

from the previously mentioned work of Zabaras and Dukler that they have achieved 

volume fraction of water film between a maximum and minimum of 0.11 and 0.015 

respectively. However, the larger water film volume fractions found in the present 

study are due to the high water Reynolds number Rew with a minimum value of 2360 

and maximum of 13000. Where with Zabaras and Dukler the maximum of Rew was 

set at 3100 and the minimum value of Rew

6.4.2 Volume fraction of entrained water droplets (

 was of 300. 

cw,α ) 

                                                                                                         
The volume fraction of the entrained water droplets αw,c

A

A cw

cw

,
, =α

 is given by Equation 6.33, 

and is defined as the ratio of the cross-sectional area of the entrained water droplets to 

the total cross-sectional area of the pipe: 

                    6.33 

 
From the entrainment fraction equation:  

 

( )E

QE
Q

f

cw −
=

1

 
,                     6.34 

 
where: 

cwQ ,  is the water flow rate in the core, E is the entrainment fraction and 
fQ  is 

the water film flow rate. 
                                                                                                          
Because the entrained droplets are very small (Nigmatulin et al., 1996), they are likely 

to be travelling at close to the gas velocity. The water volume faction in the core, 

cw,α , is given by Equation 6.33, which is based on the assumption that the entrained 

droplets are moving with the same gas axial velocity as the gas, i.e. cgcw UU ,, = , so we 

can say: 

 

cgcwcw UAQ ,,,  =                    6.35 

 
where: cwU ,  is the velocity of water in the core and cwA ,  is the equivalent cross-

sectional area of the water in the core.  
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From Equations 6.34 and 6.35: 
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 ,,                    6.36 
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where: 

cw,α  is the water volume fraction in the core, E  is the entrainment fraction, 

fQ  is the liquid film flow rate, cgU ,  is the gas core velocity and A is the pipe cross-

sectional area.  

 
Using Equation 6.37 with measured values of the entrainment fraction E (see Section 

6.2), film flow rate Qf  and gas core velocity Ug,c

cw,α

 (see Section 6.5), the water volume 

fraction in the core  is shown for the experimental conditions of the present study 

in Figures 6.27 and 6.28. The results presented in Figures 6.27 and 6.28 show an 

increase in the water volume fraction in the core with increasing water superficial 

velocity then a levelling off, similar to Figure 6.19. Some fluctuations are seen after 

the water volume fraction in the core has levelled off but this is likely to be due to 

random fluctuations or experimental errors.  

 

Similar behaviour is seen in Figure 6.28 with the water volume fraction in the core 

cw,α  increasing with superficial water velocity up to a maximum value. The 

maximum and minimum recorded values for water volume fractions in the core are 

9.2x10-4 and 2.1x10-4

fw,α

 respectively compared with maximum and minimum water 

volume fraction  values of 0.404 and 0.065 in the present study. These values 

seem to be reasonable when they are compared to the entrainment rates of 0.13 and 

0.075 obtained in Section 6.2. However, here we observe a new phenomenon. The 

water volume fraction in the core remains approximately constant as the gas 

superficial velocity increases but there appears to be a definite maximum in water 

volume fraction in the core cw,α  at a superficial gas velocity of about 20m/s, see 

Figure 6.28.  
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Note also that the water volume fraction in the core, see Figure 6.28, does not vary 

greatly with gas superficial velocity. It is much more dependent upon the water 

superficial velocity. This is unlike the entrainment rate E, which is much more 

dependent upon the gas superficial velocity. This indicates that the flow rate of liquid 

droplets in the core is predominantly dependent upon the velocity of the core rather 

than the liquid volume fraction in the core. 

 

The available data in the Zabaras and Dukler (1986) work indicates that a large 

amount of the water is being entrained into the gas core. Using their data in Equation 

6.37 revealed that the entrained water droplets volume fraction varied between 9.6x 

10-3 and 7.3x10-4

 

. The range of the gas superficial velocities being used by Zabaras 

and Dukler extended up to 37m/s whereas the current investigation was set at a 

maximum of 25m/s. 

 
Figure 6.27 Effect of water superficial velocity on volume fraction of entrained water 

droplets at different gas superficial velocities 
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Figure 6.28 Effect of gas superficial velocity on volume fraction of entrained water 

droplets at different water superficial velocities 

 

6.4.3 Total water volume fraction ( totw,α ) 

 
The overall volume fraction of the water in the pipe αw,tot was obtained by simply 

summing the volume faction of entrained water droplets αw,c and the volume fraction 

of the water film αw,f

 

. The results, see Figures 6.29 and 6.30 show the variation of the 

total volume fraction of water with water and gas superficial velocities respectively. 

The results indicate that the maximum and minimum total volume fraction values 

obtained in this study are 0.405 and 0.065 respectively.  
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Figure 6.29 Effect of gas superficial velocity on overall water volume fraction at 

different water superficial velocities 

 

 
Figure 6.30 Effect of water superficial velocity on overall water volume fraction at 

different gas superficial velocities 
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6.4.4 Gas volume fraction ( cg ,α ) 

 
Since the flow in the test rig comprised only water and gas, the gas volume fraction is 

simply given by: 

 

fwcwcg ,,, 1 ααα −−=                      6.38 

 

where: 
cg ,α  is the gas volume fraction, 

fw,α  is the volume fraction of the liquid in the 

film and 
cw,α  is the volume fraction of entrained water droplets. 

 
Graphs of gas volume fraction versus water and gas superficial velocity are shown in 

Figures 6.31 and 6.32 respectively. Inspecting the figures, it can be concluded that, as 

expected, they show the results of the total water volume fraction in the pipe. As the 

water superficial velocity increases i.e. water volume fraction increases, the gas 

volume fraction decreases. This observation can be attributed to the increased liquid 

film thickness.  

 

The film thickness increases with the water flow rate and so water occupies a larger 

fraction of the cross-sectional area of the pipe, so less area is available to the gas. The 

reverse effect happens when the gas superficial velocity is increased. The gas shears 

off parts of the liquid film and also causes liquid film to travel faster, see below, 

resulting in an increase in the area occupied by the gas.  

 

As mentioned above, the film velocity was also found to increase with the increase in 

gas superficial velocity, see Section 6.1.2.2. This also caused the liquid film thickness 

to reduce for a given water flow rate (i.e. not all the film thickness reduction may be 

due to increased entrainment). The maximum and minimum gas volume fraction 

values that they have been observed in this study are 0.935 and 0.595 respectively. 

Calculation show that Zabaras and Dukler (1986) established annular flow with larger 

gas volume fractions of 0.98 and 0.88, maximum and minimum values respectively.  
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Figure 6.31 Effect of water superficial velocity on gas volume fraction at constant gas 

superficial velocity  

 

 
Figure 6.32 Effect of gas superficial velocity on gas volume fraction at constant water 

superficial velocity 
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The above gas and water volume fraction measurements in the present study confirm 

the accuracy of the CFM device since the volume fraction measurements were based 

on the measurement of the liquid film thickness. The values of water and gas volume 

fraction obtained in this study are well within the range of the range of values reported 

in the literature (Wada et al., 2006). 

 

6.5 Gas core velocity 
 

6.5.1 USFM accuracy in measuring gas core velocity 
 
Prior to carrying out any analysis of the USFM results, it was essential to determine 

how accurate the USFM device was in measuring the core gas velocity. A reference 

gas velocity refgU ,  was obtained from: 

 

( )2

,,
,,

4
δπ

−
==

D

Q

A

Q
U

refg

g

refg

refcg                                        6.39 

 
where: refcgQ ,,  is the gas flow rate read from the VAFM (see Section 5.1.1), gA  is the 

cross-sectional area of the gas core (which does not take into account the cross-

sectional area occupied by droplets in the gas core) and  D  is the pipe diameter. 

 

The measured value of the core gas velocity cgU ,  were obtained from the USFM 

calibration equation, see Equation 4.27 in Section 4.3.5: 
 










 −
= −
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bV

c
U out
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ˆ
cos

ˆ
1 1

,                   6.40 

 

where: 5604.0ˆ =a , 0283.8ˆ =b  and 26.13ˆ =c . 
 

From refcgU ,,  and Ug,c velcg ,,ξ, a percentage error in the measured gas core velocity  

could be calculated: 
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%100
,,

,,,
,, ×

−
=

refcg

refcgcg

velcg
U

UU
ξ                  6.41 

 
For annular two phase flow and for a range of values of water superficial velocity Uw,s 

(between 0.047m/s and 0.141m/s) and range of values of gas superficial velocities 

Ug,s

velcg ,,ξ

 (between 14.1m/s and 21.2m/s), Figure 6.31 shows the percentage error in the 

measured gas core velocity  plotted against the reference gas core velocity 

refcgU ,, . The calculation indicates a small percentage error of average value of 1.2% 

with a standard deviation of 0.43. This result encouraged further investigations related 

to the core gas velocity.  

 

However, it was essential to see the effect of the presence of the water droplets in the 

gas core on the accuracy of the USFM i.e. causing the core velocity to be 

overestimated by the USFM. This was done by taking the area of the droplet in the 

core into the calculation of the reference value of the gas flow rate in the core. Hence, 

Equation 6.39 can be adjusted to give: 

 

dg

refg

drefcg
A

Q
U

,

,
,,, =                    6.42 

 
where: Ug,c,ref,d is the new value for the reference gas velocity in the core and Ag,d

 

 is 

the cross-sectional area of the gas core taking the entrained droplet area into account 

and defined by: 

( )
fwcwdg AA ,,, 1 αα −−=                   6.43 

 
where: cw,α  is the volume fraction of entrained water defined by Equation 6.37 and 

fw,α  is the volume fraction of water film defined by Equation 6.29. 

 

Figure 6.33 shows the new percentage error calculation in the measured gas core 

velocity. The errors settle to a mean percentage error of 0.85% with a standard 

deviation of about 0.43. Introducing the area of the entrained droplets has reduced the 

mean percentage error in the measured gas velocity from 1.2% to 0.85%.  
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Figure 6.33  Percentage error in measured gas core velocity at different constant 

water superficial velocities 

 

 
Figure 6.34  Percentage error in measured gas core velocity at different water 

superficial velocities  
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The accuracy achieved by the USFM was taken to indicate that the gas velocity 

measurements were not affected by the disturbance caused by the transducers 

protruding through the liquid film. In this study the maximum and minimum recorded 

values of gas core velocities were 26.8m/s and 15.4m/s respectively, see Figures 6.37 

and 6.38.  

 

6.5.2 Measuring core gas velocity using USFM 
 
From the basic flow rate equation AUQ *= , the volume flow rate is controlled by the 

velocity of the flow and the cross-sectional area of the flowing medium. If the volume 

flow rate is to be kept constant then the cross-sectional area and the flow velocity 

must change in an inverse proportion. In our case, the cross-sectional area of the gas 

was affected by the liquid film thickness. Hence, it was of interest to investigate how 

the film thickness affects the core gas velocity. This will widen our knowledge of how 

such changes affect flow rate measurement of vertical upward annular flows.  

 

6.5.2.1 Effect of gas and liquid superficial velocities on core gas velocity 

 
Because the variation of the output voltage of the USFM with the velocity of gas has 

the form of a cosine function, see Section 3.3.4, it is possible to obtain the same 

output voltage value for different gas velocities. Thus it was necessary to be careful in 

choosing the range of the gas flow rates for which the USFM could be used, see 

Section 3.3.4. The number of the flow conditions in the present study for which the 

USFM could be unambiguously used was twenty five (five water flow rates and five 

gas flow rates).  

 

The results from the experiments on the effect of the gas superficial velocity on the 

gas core velocity are shown in Figure 6.35. The gas core velocity increases linearly 

with increasing gas superficial velocity, at a constant water flow rate. With the gas 

flow rate kept constant and by increasing the water flow rate, the relationship between 

the water superficial velocity and the core gas velocity was investigated, see Figure 

6.36. The increase in the core gas velocity with increasing water flow rate is 

predictable. This is due to the increase in the film thickness for a constant gas flow  
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rate; hence the gas core area is getting smaller forcing the gas flow to travel faster to 

maintain the same flow rate. 

 

 
Figure 6.35  Effect of gas superficial velocity on gas core velocity at different water 

superficial velocities 
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Figure 6.36 Effect of water superficial velocity on gas core velocity at different gas 

superficial velocities 

 

6.5.2.2 Relationship between the gas core velocity and liquid film 

thickness 

 
The main reason for carrying out this part of the investigation was to validate the 

performance of the USFM. In this section both the film thickness δ and the gas core 

velocity Ug,c

 

 were monitored while the gas and liquid flow rates were varied, see 

Figures 6.37 and 6.38. Results shown in Figure 6.37 agree with the expectation of an 

inverse relationship between area of the core and the gas core velocity in the basic 

flow rate equation. For a constant gas volume flow rate (as indicated by the VAFM), 

as the water flow rate increased the liquid film thickness increased resulting in a 

decrease in the gas cross-sectional area and an increase in the core gas velocity 

(measured by the USFM).  
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As the gas flow rate increased at constant water flow rate, the liquid film thickness 

decreased, see Figure 6.38. The larger the water volume flow rate the greater was the 

decrease in film thickness.  

 

 
Figure 6.37 of water flow rate on core gas velocity and film thickness at different gas 

flow rates 
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Figure 6.38   Effect of gas flow rate on core gas velocity and film thickness at 

different water flow rates  

 

6.6 Comparison of reference and measured flow rates 
 
The results previously obtained in this chapter are used in this section to examine the 

accuracy of the combined CFM and USFM system for measuring the water and gas 

flow rates. Errors are further assessed in the next chapter, see Section 7.4. 

 

6.6.1 Water flow rate (Qw) 
 
It was shown earlier that Equation 6.24 can be used to estimate the entrainment 

fraction estE  if the gas superficial velocity is known, see Section 6.2.2. If Qf  is found 

using the CFM then Eest can be used to provide an estimate of the liquid volumetric 

flow rate in the core estcwQ ,, . Provided the gas superficial velocity in the core is 

known, see Section 6.2.2, this can give an estimated value for the water flow rate 

estwQ ,  in the pipe. 
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The process for estimating the total water flow rate estwQ ,  in the pipe is as follows; 

knowing Ug,s from the USFM measurement, Eest is estimated from the entrainment 

fraction correlation: 

 

027.0 002.0 001.0 8.2 ,
2

,
3

,
5 −−+−= −

sgsgsgest UUUeE               6.44 

 
Then, having found the water flow rate in the film, Qf, by measuring the film 

thickness and film velocity measurements using the CFM (see Section 6.1), Eest is 

used to estimate liquid volumetric flow rate estcwQ ,,  in the core. 
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The estimated value for the total water flow rate in the pipe estwQ ,  is: 
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QQQ
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=+=                  6.46 

 
where: Qw,est  is the estimated total water flow rate in the pipe, Qw,c,est  is the entrained 

water flow rate and Qf  is the liquid film flow rate. 

 

Using the reference water flow rate Qw,ref  obtained from the turbine flow meter, the 

percentage error in the estimated water flow rate estimated wξ  using the method given 

in Equations 6.44-6.46 above can be calculated as: 
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Q

QQ
ξ                   6.47 

 
Figure 6.39 shows how the estimated errors in the measured water flow rate vary with 

reference water flow rate at constant reference gas flow rates. The estimated errors in 

the water flow rate appear to be scattered randomly between a maximum positive 

value of +  7.4% and a maximum negative value of -7.0%. However, the mean error is 

-1.1% with a standard deviation of +3.8% from the mean value.  
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Figure 6.39   Percentage error in the measured water flow rate at different constant 

gas flow rates. 

 

6.6.2 Gas flow rate (Qg )  
 
Using the reference gas flow rate refgQ ,  obtained from the VAFM, the estimated 

percentage error in the estimated gas flow rate gξ  can be calculated as follows: 

 

%100
,

,, ×
−

=
refg

refgestg

g
Q

QQ
ξ                   6.48 

 
where: Qg,est, see Equation 6.49, is obtained from the measured value of the Ug,c 

defined by Equation 6.40, and Ag,d  is the cross-sectional area of the gas core taking 

the entrained droplet area into account and defined by Equation 6.43: 

 

dgcgestg AUQ ,,,  =                    6.49 
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The estimated percentage error in the measured gas flow rate is plotted against the 

reference gas flow rate at different constant reference water flow rates, see Figure 

6.40, which shows that the errors appear scattering randomly with most below 1%. 

The mean estimated percentage error is 0.8% with a standard deviation of about 0.4%. 

There is one outlying data point in Figure 6.40 which caused the standard deviation to 

slightly increase. 

 

 
Figure 6.40  Percentage error in the measured gas flow rate at different constant 

water flow rates 

 

In both error calculations, gas and water flow rates, the total error is an accumulation 

of different physical error sources that could affect the measurement. These physical 

errors could include:  

(i) Presence of the meniscus; during calibration it was found that when the 

thickness of the reference film was less than about 3mm the presence of the 

meniscus could introduce errors of as much as -0.5% and +3.5% (see Figure 

3.5).  
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(ii) Conductivity measurement, the presence of electrodes of a definite physical 

size will disrupt the film flow to an extent. The separation of 20mm was 

determined for zero flow conditions and under those conditions gave an 

accurate and reproducible measure of film thickness, but in the presence of 

flow it is quite possible that some small errors might be introduced. 

 

(iii) The voltage output Vout measurements are expected to be accurate to a very 

high degree, it is the constant of proportionality in converting Vout to δref which 

introduces the errors in (ii) above. 

 

(iv) The errors in the USFM measurements are likely to be very small, providing 

the timing device is correctly set up and calibrated. It is assumed that was the 

case. However, the measurement of the gas core velocity in the presence of 

water droplets is more problematic. It was assumed that the droplets were 

sufficiently small to be carried along at the mean gas flow rate. Obviously, in 

practice this will not always be the case. With vertical flows the mean droplet 

velocity will be less than the mean gas flow velocity and, in addition there will 

be a (small) range of droplet velocities. Obviously this effect will vary with 

the water volume flow rate. But it is likely that the presence of droplets will 

affect the USFM measured gas velocity. Indications are that the error 

introduced is not large (less than one or two %), but it is not possible to be 

precise at the moment. 
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CHAPTER 7 WET GAS FLOW METER PROPOSAL 
 

The importance of wet gas metering was introduced in Section 1.2.3.  The Literature 

Review shows that wet gas metering is becoming increasingly important to the Oil 

and Gas Industry and different proposals have been made by different researchers, 

Richard (2001). Each separate proposal was usually made to overcome one or other of 

the common practical problems of wet gas metering as listed below: 

 
o Practical Problems with Flow Conditioners, 

o Practical Problems with Flow Patterns, 

o Practical Problems in Determining Fluid Properties, 

o Practical Problems in Meter Survivability, and 

o Practical Problems in Finding the Liquid Content in the Gas Flow. 

 

The majority of published proposals on Wet Gas Flow Metering are concerned with 

Orifice Plates. More recently researchers have given greater emphasis to the Venturi 

Meter although much of this research consisted of taking Venturi Meter readings and 

then applying them to existing Orifice Plate Meter to check their suitability. The V-

Cone, see Section 2.4.1, is not in general use because it is relatively new and largely 

untested, and so not yet trusted by many industries (Svedeman, 1997).  

 

In this chapter, the author will attempt to summarise the different aspects of a 

proposed wet gas flow meter based on the results presented in this thesis including, 

hardware, electronics, analysis and accuracy. 

 

7.1 Proposed Flow meter hardware 
 
The aim of any research study in the oil and gas field is invariably directed to produce 

economic and less bulky measurement systems. The proposed wet gas flow meter in 

this investigation consists of three major components, see Figure 7.1; Conductance 

Flow Meter (CFM), Ultrasonic Flow Meter (USFM) and Sensor Tube system. 
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Figure 7.1Hardware components of the proposed flow meter 

 

It can be seen from Figure 7.1 that the system can be disassembled and reassembled 

(using the connecting flanges between each component) which enables the orientation 

of the components to be changed to fit the space intended to accommodate the device. 

Each component has its own subcomponents i.e. transducers, needle electrodes, 

solenoid valves, DP cell etc. The position of these components can be changed to suit 

the available space as long as a certain minimum is available. 
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The approximate size of CFM, used in the present study, is 0.15x0.15x 0.25m with its 

flanges. The USFM is 0.15x0.15x0.30m with its flanges. When the sensor tube is 

attached, the three components together form a system of approximately 

0.5x0.15x1m. It was mentioned in Section 1.2.1 that there are a number of constraints 

on the design of any proposed multiphase flow meter. One of these constraints is that 

it should not occupy a footprint of more than 0.5m x l.0m and should be less than 

2.0m high. The dimensions provided by the proposed wet gas flow meter in this study, 

for a 50mm pipe size, meet this requirement.  

 

It was mentioned in Section 5.1 that the pipe sizes of most interest in industrial 

situations are in the range 50mm to 150mm diameters with maximum demand for 75-

100mm diameter sections (Cosham et al., 2007). This places the proposed flow meter 

in this study in a good position in the scale of the pipe sizes used in actual gas wells. 

However, the proposed devices can be further developed to better suit the range 

50mm to 150mm pipe internal diameters. 

 

7.2 Proposed flow meter electronics 
 
The electronic circuit developed for measurement of liquid film thickness was based 

upon the conductance technique used by the CFM, see Section 4.2.2, and Figures 4.3 

and 4.5. By using an inverting amplifier an output was obtained which was 

proportional to the conductance of the multiphase between the electrodes of the CFM.  

 
The voltage output Va  is given by Equation 4.7, see Section 4.2.2: 

 

ifba VRV  S m−=                                                                  7.1 

 
where: fbR  is the reference feedback resistance, iV  is the AC input voltage and mS  is 

the conductance of the multiphase. 

 
The complete electronic circuit whose voltage output is a DC signal was fully detailed 

and presented in Section 4.3.2. The accuracy of the measurement using this circuit 

was investigated in Section 3.2.1 and discussed in Section 6.6.2. 
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For the USFM the designed electronic circuit was based upon the trigonometrical 

relationship between the product of two sine waves and the difference of two cosine 

terms to obtain the phase difference between the two signals, see Section 3.3.4: 

 

( ) ( ) ( )[ ] ( )[ ]{ }212121212211 coscos
2

1
sinsin θθωωθθωωθωθω +++−−+−=++ tttt      7.2      

 

If the two frequencies are the same (ω1 = ω2 = ω) th e resu lt is a DC co mponent 

(0.5cos(θ1 – θ2)) and an AC component (-0.5cos(2ωt + θ1+θ2)) which can be filtered 

out.  

 

The DC component is proportional to cosine of the two received ultrasound signals – 

which can be related, see Equations 3.38 and 3.39, to the gas velocity in the core of 

the wet gas flow. To achieve this multiplication, the MC1496 analogue electronic 

multiplier was used. The complete design of the USFM electronic circuit was 

presented in Section 4.3.2. Testing the electronic circuit with the designed USFM 

hardware showed a mean percentage error in the measured gas core velocity of 1.17% 

without taking the effect of the presence of the water droplets in the gas core and 

0.851% when taking into account the effect of the presence of the water droplets in 

the gas core, see Section 6.5.1. 

 

7.3 Proposed flow meter analysis 

This section summarises the analytical arguments used obtain the different flow 

parameters from the measurements.  

 

7.3.1 Three phase annular flow [oil, water, gas] 
 
The three phase annular flow considered is when oil, water and gas flow together. 

This section discusses how we can measure the volumetric flow rates of all three 

phases using the proposed CFM, USFM and Sensor Tube devices. 

 

To accurately predict the phase velocities and mixture properties requires a good 

knowledge of the volume fraction. The proposed wet gas flow meter in this study  
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introduces the Sensor Tube, see Section 4.1, which can be used to measure the volume 

fractions of a three phase annular flow. Some of the liquid film is extracted into the 

sensor tube and its density measured off-line, after which the liquid is released back 

into the system. With an oil-water mixture, the oil and water volume fractions could 

be calculated from this density measurement. 

 

The differential pressure, P∆  in the sensor tube can be measured by the DP cell as: 

 
 STmSTw hghgP        ρρ −=∆          7.3 

 
From which it follows that: 
 

∴ 






 ∆
−=

ST

wm
hg

P

 
  ρρ          7.4 

 
where: ∆P is the measured differential pressure, wρ  is water density, mρ  is mixture 

density, g  is 9.81m/s2
STh and  is the separation of the pressure tappings in the sensor 

tube (1m). Pressure sensor lines are filled with water during the oil-water mixture 

density measurement to avoid having air in the pressure lines. 

 

It is known that: 

wlwolom ραραρ ,,   +=                                  7.5 

 

where: lo,α  is the oil volume fraction in the liquid film, oρ  is the oil density, lw,α  is 

the water volume fraction in the liquid film and wρ  is the density of the water. 

 
Also, we have: 

 
1 ,, =+ lwlo αα           7.6 

 
So, from Equations 7.3-7.6, having measured mρ  and knowing oρ  and wρ , the oil 

and water volume fractions in the liquid film can be found.  

 



 
CHAPTER 7                                                   WET GAS FLOW METER PROPOSAL 

 246 

 

Hence, by measuring the film velocity 
fU  (using cross-correlation, see Section 4.2.5) 

and the film thickness δ  (using CFM, see Section 4.2 and 6.1.1), the following 

equations can be used: 

 
( ) ff QURR =−−  )( 22 δππ                     7.7 

 

( )[ ]
folof QURR ,,

22   )( =−− αδππ                  7.7a 

 

( )[ ]
fwlwf QURR ,,

22   )( =−− αδππ                 7.7b

  
 
where: R is the pipe radius, δ  is the film thickness, 

fU  is the film velocity,  
fwQ ,  is 

the water volume flow rate in the liquid film, 
foQ ,  is the oil volume flow rate in the 

liquid film and fQ  is the total film volume flow rate.  

 
The total liquid volume flow rate in the film is given by: 

 

fwfof QQQ ,, +=                                 7.8 

 
It is assumed that: 

 
(i) The ratio of the droplet mass flow rate dW  to the total liquid mass flow 

rate ( fd WW + ) (where fW  is the film mass flow rate) is equal to the 

entrainment fraction E. 

 

and 

 

(ii) For the droplets in the core flow, oα  and wα  are the same as in the film, 

then the entrainment fraction E  can be expressed as: 
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where: dρ  is the average droplet density, dQ  is the droplet total volume flow rate, 
fρ  

is the film density and 
fQ  is the film volume flow rate. 

 
Since the average droplet density is equal to the film density, 
 

wwoofd ραραρρ +==                   7.10 

 
 
Equation 7.9 can be rearranged in the form: 
 

fd Q
E

E
Q  

1







−

=                    7.11 

 

By knowing E  and Qf  (from Equations 7.8 and 7.9) we can find dQ . 

 
Because lo,α  and lw,α  for the droplets are assumed to be the same as for the film, it 

follows: 

 

dlodo QQ  ,, α=                                7.12 

dlwdw QQ  ,, α=                    7.13 

 
where: doQ ,  is the droplet volume oil flow rate and 

dwQ ,  is the droplet volume water 

flow rate. 

 
The mean gas core velocity 

cgU ,  can be measured using the USFM, see Sections 4.3 

and 6.5, and the mean gas flow rate gQ  can be obtained from: 

 

cgg URAQ , )2( δπ−=                    7.14 

 
where: gQ  is the gas volume flow rate, cgU ,  is the mean gas velocity averaged over 

the pipe cross-section measured by the USFM, δ  is the liquid film thickness 

measured by the CFM, R is the pipe cross-sectional area and A is the cross-sectional 

area of the pipe. 
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Hence, we can determine the total volume flow rates for water wQ  (Equations 7.7b 

and 7.13), gas 
gQ (Equation 7.14) and oil oQ  (Equations 7.7a and 7.12). 

 

7.3.2 Two-phase annular flow [conducting liquid and gas] 
 

This section deals with two phase annular flow where only two phases are flowing 

together. The proposed wet gas flow meter deals with conducting liquid phases e.g. 

water. For two-phase annular flow, the proposed CFM and USFM devices of the 

proposed flow meter are the only required techniques to perform the measurements of 

the two-phase annular flow. 

 

From the analysis above it follows at once that the entrainment fraction E  is given 
by:  
 

fcw

cw

QQ

Q
E

+
=
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,                    7.15 

 
and 
 

( )E

QE
Q

f

cw −
=

1

 
,                     7.16 

 
where: 

cwQ ,  is the water flow rate in the core defined previously by Equation 6.22 and 

Qf  is the film flow rate 
                                                                                                          
 
Because the entrained droplets are very small, they are likely to be travelling at close 

to the gas velocity. This lead to the assumption 
cgcw UU ,, = , so we can say: 

 

cgcwcw UAQ ,,,  =                    7.17 

 
where: 

cwU ,  is the velocity of water in the core and 
cwA ,  is the equivalent cross-

sectional area of the water in the core.  
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From Equations 7.16 and 7.17: 

( )E

QE
UA

f

cgcw −
=

1

 
 ,,                    7.18 
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f

cw
U

Q

E

E

A ,
,  

1
 

1







−

=α                   7.19 

 

where: 
cw,α  is the water volume fraction in the core. 

 
From the liquid film thickness measurement, the area of the liquid film

fA  can be 

calculated and hence: 

 

A

A f

fw =,α                     7.20 

 
where: 

fw,α  is the volume fraction of the liquid in the film. 

 
The total water volume fraction 

totw,α  is given by: 

 

fwcwtotw ,,, ααα +=                    7.21 

 
where: totw,α  is the volume fraction of the total water in the pipe. 

 

The volumetric water flow rate then can be calculated from: 

 
AUQ ftotww   ,α=                    7.22 

 
where: 

wQ  is the total volume water flow rate, 
fU  is the film velocity measured using 

the cross-correlation technique, 
totw,α  is the volume fraction of the total water in the 

pipe and A is the cross-sectional area of the pipe. 

 
 

 

 

 



 
CHAPTER 7                                                   WET GAS FLOW METER PROPOSAL 

 250 

 

Since the sum of the volume fractions of each component of the phase/flow is 1, it 

follows that: 

 

fwcwcg ,,, 1 ααα −−=                     7.23 

 

where: 
cg ,α  is the volume fraction of the gas core. 

 
Also, the core gas velocity 

cgU ,  can be measured from the USFM device, see 

Sections 4.3 and 6.5. So, taking into account the liquid film thickness measurement to 

calculate the cross-sectional area of the gas core 
cgA ,  (defined by Equation 6.43), the 

gas flow rate  
gQ   can be calculated from:  

 
AUQ cgcgg  ,,α=                               7.24 

 

7.4 Proposed flow meter discussion and summary 
 
As stated in Section 1.2.3, no technique presently available comes close to the 

industry's desired standards for the simultaneous metering of the liquid and gas phase 

flow rates in wet gas flow. This is partly because operators are not willing to allow 

meter tests on actual production flows due to possible financial penalties that might be 

incurred with consequent production delays. Meter manufacturers are forced to test 

their meters on wet gas laboratory test loops which have the major drawback that 

nowhere does the test equipment available replicate the real flow conditions found in 

wet natural gas production lines. 

 

In parallel to developments aimed at improving the accuracy of flow metering 

systems will be negotiations as to what is an acceptable accuracy for partners and 

governments associated with an oilfield development. These two aspects (technology 

and accuracy) will probably both have to progress in order for metering of flow to 

become a reality.  
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For the proposed wet gas flow meter used in this investigation, the error calculations 

showed that the flow meter is capable of measuring water and gas volume flow rates 

with a mean percentage errors of about  1.11%-  and 0.77% respectively. These 

values seem promising and suggest promoting this flow meter for commercial 

development, use since the range of the available accuracy is between +/-5 and 10%. 

 

 Figure 7.2 presents a schematic of the procedures for the measurement of the various 

flow parameters. If the volume fraction is required than DP cell is used – the Pressure 

Difference Measurement Technique shown on the left of the diagram. If the core gas 

velocity is required than the diagram shows that the USFM is required. Should it be 

necessary to measure liquid film thickness then the diagram shows that the CFM will 

be required. 

 

 
Figure 7.2  Measurement sources for the proposed flow meter 
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CHAPTER 8 CONCLUSIONS  

The completion of this research study has produced a number of different 

contributions to knowledge. These contributions are the outcome of the different 

conclusions drawn from this study.  

 

8.1 Conclusions 
 
The primary aims and all objectives listed in Chapter 1 of this thesis were achieved. In 

addition to achieving the primary objectives a number of specific conclusions have 

been reached as a result of the measurement techniques and the flow meters that were 

developed. The results of the experiments have been compared with previous data 

available for this pipe diameter. However, not a great deal of previous work has been 

carried out on 50mm diameter pipes and so it was not possible to compare all the 

results obtained in this thesis with previous work. In general the agreement between 

the current and data and previous data was good. 

 

The literature review revealed that for annular two-phase flow, where the volumetric 

flow rate of the liquid phase is much less than the volumetric flow rate of the gas, the 

annular flow is defined by measuring four properties of the flow in any of the possible 

combinations given below: 

 

(I) Film thickness δ, film velocity Uf, gas core velocity Ug,c and the gas 

volume fraction 
cg ,α .  

 
(II) Film volume fraction 

fw,α , volume fraction of liquid in the core 
cw,α ,  

film velocity Uf  and gas core velocity Ug,c. 

 
(III) Film volume fraction fw,α , film velocity Uf, gas core velocity Ug,c and 

entrainment fraction  E.  
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The designed techniques in the current study (CFM and USFM) were integrated into a 

single, relatively simple measurement system and used with an entrainment model to 

enable determination of the parameters in (III) above for a two-phase annular flow. 

For three phase flow a sensor tube system designed in the study can be additionally 

used for measuring the volume fractions of oil and water in the liquid. 

 

A test flow loop has been designed and built to investigate the two-phase (gas-water) 

annular flow under different known flow conditions. The loop consisted of four 

sections, 1) air supply, 2) water supply, 3) test section, and 4) outlet section. A turbine 

flow meter for measuring the water volume flow rate was calibrated in the laboratory 

and this calibration was checked against that of the manufacturer. Good agreement 

was obtained. A Rotameter (Variable Area Flow Meter) with manufacturer’s 

calibration was used to measure the gas (air) volume flow rate, see Sections 5.1.1 and 

5.1.2. The ambient temperature and liquid conductivity was monitored each time the 

loop was run. However, the author recommends carrying out a calibration at least 

once every two weeks to maintain accuracy and repeatability patterns.  

 

A new technique, the conductance flow meter (CFM) has been built that is capable of 

measuring the film thickness when the liquid film is electrically conducting. 

Measuring the conductance using a conductance probe, containing a pair of steel 

electrodes protruding into the pipe, it was possible to measure the thickness of the 

liquid film on the wall of the pipe, see Sections 3.2 and 6.1.1. The CFM device was 

configured as containing a pair of such conductance probes, set a known longitudinal 

distance apart, thus enabling the CFM device to also be used to measure the liquid 

film velocity using cross-correlation, see Sections 3.2 and 4.2.   

 

The CFM designed and built for this project covers a wide range of film thicknesses, 

see Section 6.1.1.2. It was found that a sampling rate of about 1kHz was required.  For 

the experiments undertaken in the present study the experimental data shows a 

minimum film thickness of 0.8mm in flows where Qg = 175m3/hr and Qw = 0.33m3/hr, 

and a maximum film thickness of 5.7mm in flows where Qg = 100m3/hr and Qw = 

1.83m3/hr.  However, the calibration process showed that the flow meter can measure 

film thicknesses up to 20mm, see Section 4.2.3.  
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Using the upstream and downstream pairs of probes the CFM was also used as a 

cross-correlation velocity flow meter to measure the velocity of the liquid film, and 

showed good repeatability, see Section 6.1.2.1. Under test conditions the mean error 

in the flow velocity obtained from the CFM, as compared with a reference velocity 

calculated from the turbine meter reading and the measured film thickness, was about  

-1.11%, see Section 6.1.2.1. Analyzing the data obtained from the CFM, the film 

thickness, velocity and entrainment depended virtually exclusively on the gas flow 

rate and very little on the liquid flow rate. As the gas flow rate increases, there was a 

simultaneous increase occurs in all of the three parameters, see Sections 6.1.1.2, 

6.1.2.2 and 6.2.1.  

 

The core gas velocity of the annular flow was measured using a new design of 

ultrasonic flow meter (USFM), in which the novel feature was the arrangement of the 

electrodes, see Section 3.3.4. The phase difference between two received ultrasonic 

signals was converted to a DC voltage which was a measure of the gas core velocity 

and hence the core gas flow rate, see Section 4.3.  Testing the flow meter under 

different annular flow conditions showed good repeatability.  

 

The error in the gas velocity measured with the USFM had a mean value of 1.2% 

(section 6.5.2).  Introducing different gas and water flow rates in the test section, the 

disturbance to the film caused by the presence of the ultrasound transducers did not 

affect the film thickness measurements. This was concluded from the error 

calculations carried in Section 6.5.1.  

 

The entrainment fraction is defined as the ratio of the ‘total water volumetric flow rate 

minus the film volumetric flow rate’ to the ‘total water volumetric flow rate’ (see 

Section 6.2). However, the author has developed an expression for the entrainment 

fraction in terms of the gas superficial velocity, see Section 6.2.2. The relationship 

was successfully used to estimate the entrained water flow rate in the core thus 

enabling a better estimate of the total water flow rate in the pipe, see section 6.6.1. 

Also, with knowing the liquid film velocity at a certain gas superficial velocity, this 

correlation was able to successfully contribute in the prediction process of the liquid 

film thickness, see Section 6.3.  
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A newly designed extraction technique – the sensor tube – was proposed and 

investigated to measure the liquid volume fractions in flows where the liquid film and 

the entrained droplets consist of a mixture of two different liquids of different density 

(e.g. oil and water) see Section 4.1. This is considered a significant outcome of the 

research project. Its advantages are (i) its ease of use and (ii) its short duration time of 

less than 2 minutes. Previously sampling techniques have not been used for this 

purpose and the use of sampling techniques cited in the literature (for example in the 

measurement of entrainment) has always been associated with tubes of relatively 

small internal diameters (5mm<ID<15mm). In this project, with the aid of automatic 

control (solenoid valves), the sampling technique was extended to a larger pipe 

diameter and different parameters of measurement, namely the liquid volume 

fractions, see Section 4.1.2. However, the technique was not able to extract liquid 

films at gas flow rates of less than Qg = 50m3

 

/hr. This limitation was due to the lack 

of pressure inside the test section to force out the liquid film.  

On the basis of a number of simplifying assumptions a model has been developed to 

predict the liquid film thickness (see Section 6.3) and water and gas volume fractions 

(see Section 6.4). The velocity profile predicted by the model agreed with visual 

observations and the analysis presented by Maron et al., (1984) (see Section 6.1.3).   

 
By examining the overall system accuracy of the CFM combined with the USFM, see 

Section 6.6, the error calculation showed a %11.1−  mean error in the total water flow 

rate measurement with a standard deviation of 3.8%. This error is believed to be 

mainly due inaccuracies in the entrainment fraction model rather than in the measured 

water flow rate of the liquid film. This is due to the fact that the entrainment fraction 

varies slightly with water flow rate (section 6.2) and this is not accounted for in the 

entrainment fraction model. The mean error in the gas flow rate measurement was 

0.77% with a standard deviation of 0.4%. These values of mean error represent a 

significant improvement over existing annular flow measurement techniques (see 

chapter 2) where typical errors on phase flow rate measurements are of the order of 

plus or minus 5% to 10% for each phase. 
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The combination of the designed CFM and USFM with the sensor tube offers the 

opportunity to develop a wet gas flow meter to measure three-phase flow at relatively 

low cost and enhanced accuracy, see Chapter 7. The combined device would have the 

advantage that it would be substantially smaller than measurement techniques based 

on the use of separators (see chapter 2) and could even be retrofitted onto off-shore 

platforms. A best estimate of overall dimensions that the device would fit into is a 

cubic space of 1.5m high x 1.5m x 0.5m, see Section 7.1. It is believed that such a 

device, if successful would be of great interest to oil companies. For the proposed wet 

gas flow meter, error calculations based on the results of this thesis suggest a mean 

accuracy in the measured water and gas volume flow rates of less than 1% for both. 

These values seem promising when compared to the range of currently available 

accuracies of between 5% and 10%, see Section 7.4.  

 

8.2 Present contribution 

The contribution made to knowledge by this thesis includes: 

 

 The design of a new experimental loop to establish annular flow and which 

can be upgraded for use with different diameters and orientations of test 

sections, if required. 

 

 A novel configuration for a film extraction technique to measure the volume 

fractions of different liquids in gas-liquid annular flow. 

 

 Designing a novel device to successfully measure the liquid film velocity and 

thickness. 

 

 Development of an entrainment fraction correlation that can be used to predict 

the entrained water flow rate from the gas superficial velocity. (Alternatively 

the entrainment model enables the liquid film thickness to be estimated from 

the gas superficial velocity if the film velocity is known and the total water 

flow rate is measured using an auxiliary reference measurement, see section 

6.3). 
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 Designing a successful device with a novel transducer configuration to 

measure the core gas velocity in annular flow. 

 

 The work has resulted in a novel combination of online measurement 

techniques to measure the gas and liquid flow rates in annular flow. 

 

 A new technique is also proposed in the next chapter to measure the liquid 

film conductivity in multiphase annular flows, see Section 9.1.  
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CHAPTER 9 FURTHER WORK 
 

This study covered a significant area in term of flow rate measurement, but there 

remain a large number of possible directions for further work such as:   

 

9.1 Alternative method for measuring volume fraction in multiphase 
annular flows:   

 
 
Electrical impedance techniques have proven attractive for many applications because 

of their generally fast response and relative simplicity of operation. Measurements 

obtained from these devices rely upon the change of permittivity or the conductance 

of a two-phase mixture with the volume fraction of the disperse phase.  

 

For the film that occurs with annular flows, non-conducting mixtures (such as water-

in-oil) use measurement of capacitance, whereas conducting mixtures (such as oil-in-

water) require conductance measurements.  

 

The capacitance technique is used in oil continuous multiphase volume fraction 

measurements. Here, the fluid permittivity decreases with increasing gas volume 

fraction and increases with increasing water volume fraction.  

 

The conductance technique is used in water continuous multiphase volume fraction 

measurements. Here, the conductance decreases with increasing gas and oil volume 

fractions, and increases with increasing water volume fraction.  

 

A conductance probe method, the Flush Mounted Sensor (FMS), is proposed to 

measure the fluid conductivity using much the same technique as used with the 

Conductance Flow Meter (CFM). This technique relates the conductance to the 

impedance between two electrodes which are set flush with the inside wall of the tube, 

see Figure 9.1. As the impedance between the two flush electrodes changes the 

conductance changes. The FMS will provide a conductance measurement which can  
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be used to refine the CFM film thickness measurements. The aim of the FMS device 

is to respond independently of the film thickness of the annular flow.  

 

 

Figure 9.1 Principle of operation of Flush Mounted Sensor 

 

A model sensor, see Figure 9.2, was designed, built and bench tests carried out. The 

model sensor could be in either of one of two configurations. The first was Config.1, 

with two 1.3mm diameter probes placed 6.3mm centre to centre. This was calibrated 

in a similar manner to the CFM, see Section 4.2.3. 20 cylindrical dry foam plugs were 

placed longitudinally in the centre of the 50mm ID pipe to produce films of different 

thicknesses in the range 1mm to 20mm (only water film used). For film thicknesses in 

the range 1mm to 6mm the relationship between voltage drop and film thickness 

appears linear, see Figure 9.3. However, for films in the range of 6mm to 10mm the 

curve changes direction and from about 10mm to 20mm resumes a near linear relation 

but with a different, shallower gradient. The suggestion is that different mechanisms 

determine the voltage measurement in the two ranges.  Figure 9.3 shows the measured 

voltage drop between the electrodes for each film thickness and should be compared 

with the calibration curve for the CFM, Figure 4.10.  
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However, when tested with liquids of different conductivities this probe configuration 

was deemed not fit for purpose. Figure 9.4 suggests that as the film thickness changes 

the impedance between the two flush electrodes changes and hence the conductance 

changes i.e. the voltage output of the FMS is dependent on both the liquid film 

thickness and the conductivity of the liquid film.  

 

 
Figure 9.2  Flush Mounted Sensor configurations (not to scale) 

 
To overcome this problem of output voltage dependency on the film thickness, 

different probe and electrode configurations were investigated using COMSOL 

software. From the COMSOL investigation it was found that there are five factors to 

be considered when finding the best sensor configuration for this technique. These 

elements are: film thickness, excitation frequency f, liquid film conductivity σf, 

spacing between electrodes lsp and the electrode dimensions. Figure 9.5 shows the 

COMSOL predictions and it is clear that to minimize the influence of the film the 

probe separation should be minimal. The new probe configuration (Config.2) used in 

this investigation retained the 1.3mm diameter electrodes but separation between the 

pair of electrodes was reduced to lsp=1.2mm.  
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Figure 9.3  Flush Mounted Sensor calibration curve (Config.1) 

 

 
Figure 9.4  Voltage output of Flush Mounted Sensor for different liquid conductivities 

(Config.1, bench test) 
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Figure 9.5  Voltage output of Flush Mounted Sensor for different probe separations 

(Config.II, COMSOL prediction) 

 
For the combination of low excitation frequency (50Hz), a short separation distance 

between the electrodes (1.2mm) and small electrode diameter (1.3mm), The 

COMSOL results predicted for the new sensor configuration (Config.2) show the 

voltage output was found to be dependent on the liquid film conductivity and largely 

independent of the liquid film thickness, see Figure 9.6. The COMSOL results agree 

with the bench test result carried out for the new sensor configuration, see Figure 9.7.  

 
To vary the conductivity of the water, an electrolyte (sodium chloride) was added to 

the water. A quantity sufficiently small that it would not affect the other properties of 

the water (0.3g/l) substantially increases its conductivity (Martin, 1983). To avoid 

introducing unnecessary variables all the bench tests performed on FMS technique 

were carried out at in a controlled temperature environment.  
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Figure 9.6  Voltage output of Flush Mounted Sensor for different liquid conductivities 

(Config.2, COMSOL) 

 
The bench test of the FMS shows that, provided film thickness δ > 1mm, the output 

voltage of the FMS device is directly proportional to the liquid film conductivity σf, 

and independent of film thickness, see Figure 9.7. For δ < 1mm, the voltage output is 

directly proportional to film thickness for a constant film conductivity. 

 

A parallel investigation of the CFM with different water conductivities shows that for 

a given conductivity the output voltage is directly proportional to film thickness, see 

Figure 9.8. For a given film thickness it can be seen that the output voltage increases 

with conductivity, however below an output of 0.1 volts the curves are so close 

together that it can be said CFM does not differentiate between conductivities. 
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Figure 9.7  Voltage output of Flush Mounted Sensor for different liquid conductivities 

(Config.2, bench test) 

 

 
Figure 9.8 Voltage output of CFM device for different liquid conductivities (bench 

test) 
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From both systems, CFM and FMS, a working system to cross-check the 

measurement film thickness would be:  

 

If the CFM reads ≤ 0.1 volts, then the liquid film thickness δ would be measured 

directly and only by the CFM. 

 

If the CFM reads > 0.1 volts, then the liquid film thickness δ > 1mm.  In this case the 

FMS can be used to measure the liquid film conductivity σf  and this can be used to 

check the film thickness measured by the CFM. 

 

9.2 Integrate the flow metering devices developed in this thesis into a 
multiphase flow rig:   

 
The proposed system has proved successful for a two-phase gas-liquid system. 

However, it is common to have three-phase gas-oil-water flow from production wells 

as production progresses. Therefore, it is essential to extend the system to multiphase 

flow. A possible future project could be the integration of the flow meters designed 

for this project into a three phase (oil-water-air) flow rig. This project will develop 

better understanding about: 

 

o The range of three-phase flow rates that can be used with the CFM and USFM 

developed for this project. The range of flow rates could be extended to 

beyond those used in this project to further analyze the behaviour of the 

annular flow parameters i.e. liquid film thickness, liquid film velocity, 

entrainment, gas core velocity and liquid film flow profile. The knowledge 

gained could be used to improve the performance of the flow meters. 

 

o The behaviour of the test system could be further validated using multiphase 

flow. In this way the techniques for determining volume fraction could be 

improved. This may result in a better design configuration than that used in 

this project. 

 

 



 
CHAPTER 9                                                                                     FURTHER WORK 

 266 

 

9.3 Investigate the robustness of the system:   
 
The system capability and accuracy should be tested in real life work stations, in 

particular the robustness of the USFM and the CFM devices, which have been the 

focal points of the present research. This investigation should include installation 

effects and consequent errors in the flow measurements. Such effects could be static 

(effects that do not change with time such as: single or double elbows, diameter 

reduction, partially open valve and bluff bodies) or dynamic (effects which arise from 

rapid time dependent changes in the flow field or by pulsations in the flow e.g. from 

pumps and compressors, control valves and pressure regulators or by flow induced 

oscillations).   

 

9.4 Commercial development of an online flow meter:   
 
The author believes that the USFM and the CFM devices could produce an excellent 

commercial online flow meter. Such a step would require the reconstruction of the 

devices so they fit real applications including improved electronic circuits that can 

cope with field applications and can be integrated into a DSP system.  
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