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Abstract

A new theory and algorithm for scatterer classification in synthetic aperture radar

(SAR) imagery is presented. The automated classification process is operationally

efficient compared to existing image segmentation methods requiring human super-

vision.

The algorithm reconstructs coarse resolution subimages from subdomains of the

SAR phase history. It analyzes local peaks in the subimages to determine locations

and geometric shapes of scatterers in the scene. Scatterer locations are indicated

by the presence of a stable peak in all subimages for a given subaperture, while

scatterer shapes are indicated by changes in pixel intensity. A new multi-peak model

is developed from physical models of electromagnetic scattering to predict how pixel

intensities behave for different scatterer shapes. The algorithm uses a least squares

classifier to match observed pixel behavior to the model. Classification accuracy

improves with increasing fractional bandwidth and is subject to the high-frequency

and wide-aperture approximations of the multi-peak model.

For superior computational efficiency, an integrated fast SAR imaging technique is

developed to combine the coarse resolution subimages into a final SAR image having

fine resolution. Finally, classification results are overlaid on the SAR image so that

analysts can deduce the significance of the scatterer shape information within the

image context.
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PHASE HISTORY DECOMPOSITION FOR EFFICIENT SCATTERER

CLASSIFICATION IN SAR IMAGERY

I. Introduction

This chapter provides an introduction and overview of the dissertation document.

Section 1.1 is an executive summary of the research motivation, hypotheses, and

findings. Section 1.2 highlights the operational needs which are addressed by this

dissertation. Section 1.3 lists the conference papers, journal articles, and other deliv-

erables which have been produced in connection with this dissertation. Section 1.4

wraps up with an outline of the document and the organization of its chapters.

1.1 Executive Summary

Resource management is an ongoing need in defense operations. As a result,

synthetic aperture radar (SAR) imaging and classification algorithms are needed to

rapidly queue human operators and precision algorithms to regions of high inter-

est. This dissertation describes a new SAR imaging and classification theory as a

foundation from which to build rapid queuing solutions for improved operational ef-

ficiency. The theory is demonstrated in a new algorithm based on efficient imaging

and classification techniques.

Phase history decomposition is a highly efficient technique for SAR image re-

construction, where subimages are produced as an intermediate step of the imaging

process. The subimages have coarser resolution than the final image, but have been

shown to provide insight into the anisotropic and dispersive nature of objects in the

image scene. While research on the anisotropic nature of scatterers in subimages
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has been on-going for some time, research on the dispersive nature of scatterers in

subimages is quite nascent and worthy of additional investigation. In response, this

dissertation investigates the concept of scatterer classification by subimage analysis

and develops a fundamental and holistic theory for this emerging research area. This

research hypothesizes that

• it is possible to locate and classify canonical scatterers by observing the inten-

sities of subimage pixels, and

• phase history decomposition makes this approach to classification highly effi-

cient.

The key findings of this research effort include

1. image peaks due to a distributed canonical scatterer can be modeled with a

simple equivalent canonical point scatterer [58],

2. the intensities of subimage peaks reveal the locations and types of canonical

point scatterers in a SAR scene [57],

3. the classification and imaging errors associated with phase history decomposi-

tion are controllable [58, 59], and

4. the proposed approach is novel, efficient, and foundational [58, 59].

The first key finding results from development and study of a new scattering model

called the multi-peak model. The second key finding results from a new scatterer

classification algorithm called the spectrum parted linked image test (SPLIT). Imag-

ing accuracy in the third key finding and computational efficiency in the fourth result

from a new integrated algorithm that combines fast SAR imaging techniques with

scatterer classification. The greatest benefit of the new theory is the operational ef-

ficiency derived by automatically displaying scatterer classification results within the
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context of the SAR image. This is a significant improvement over existing scatterer

classification methods [3, 30, 46, 47, 48, 62, 73] that require human supervision to

ensure accurate classification.

1.2 Operational Needs

One of the ongoing needs in defense operations is resource management due to the

fact that there exists more imagery collection capability than processing capability

[13, 19, 32, 102, 115]. Therefore, SAR imaging algorithms are needed to provide rapid

queuing of operators and precision algorithms to regions of high interest [63, 142]. In

general, precision algorithms are not adequate in meeting this need because they are

computationally inefficient, operationally inflexible, or both [54, 80, 119, 127].

For instance, precision SAR imaging algorithms improve SAR image quality by

using better geometric approximations commonly made in the imaging algorithm

[24, 36, 76]. However, increasing the order of these geometric approximations comes

at an increased computational cost [24, 36]. Therefore, computational resource man-

agement is optimized when use of precision SAR imaging algorithms is limited to

regions where increased precision is warranted.

Precision target recognition algorithms are notoriously sensitive to operational

conditions, which cause them to be inflexible outside of a specific operational scenario

[54, 80, 119, 127]. In this case, the precision algorithms must be used selectively and

queued by experienced analysts based on operational parameters and image context.

Unfortunately, this creates an operational bottleneck by demanding human resources

be used to manage precision target recognition algorithms. This is, in effect, the exact

opposite of what is needed to improve resource management in defense operations.

In order to provide rapid queuing of operational resources, it is acceptable for a

SAR imaging and classification algorithm to sacrifice some precision in order to obtain
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Figure 1. The dissertation research improves theoretical knowledge in two new areas.

efficiency and flexibility. In keeping with this principle, this dissertation describes a

new SAR imaging and classification theory as a foundation from which to build rapid

queuing solutions for improved operational efficiency.

1.3 Contributions

This dissertation research improves theoretical knowledge in two new areas, as

shown in Figure 1. It develops new theory for Scatterer Classification by Phase

History Decomposition and combines this with existing theories in Scattering Matrix

Decomposition and Domain Decomposition Imaging. It also develops unique design
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principles to address the particular difficulties associated with combining these into

an integrated theory and algorithm.

The research presented in this dissertation resulted in three published conference

papers and two journal article submissions [55, 56, 57, 58, 59]. In addition, a fast con-

volution backprojection and scatterer classification code was fully developed and will

be provided to offices who sponsored elements of this work. It will also be considered

for integration into the AFIT LORE Processing INtegrated Environment (ALPINE).

From this code, alternate versions of the polar format algorithm, range Doppler al-

gorithm, and omega-k algorithm were also developed for experimental purposes.

Last, this dissertation produces a theoretical foundation for follow-on research in

the following areas:

• discontinuous phase histories,

• improved parameter estimation using advanced detection and estimation theory,

• extension to bi-static and 3D SAR,

• blended domain decomposition and decimation techniques, and

• additional uses for the multi-peak model and SPLIT algorithm.

These are described in more detail in Subsection 7.2 of the Conclusion.

1.4 Organization

The dissertation is organized as follows. Chapter II presents a survey of the ma-

ture research areas in Figure 1. Using a combination of tutorial and literature review,

it presents theory and trends in the topics of SAR imaging, domain decomposition,

canonical scattering models, and scatterer classification. Chapter III presents the

research objective in general terms. It serves as a transition between the background
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section and the more detailed theoretical developments and research findings con-

tained in the remaining sections. Chapter IV develops the new multi-peak model

for canonical scatterers. It describes how, under a wide-angle condition, the imaging

process integrates out the azimuth dependency of distributed canonical scatterers. In

this way, image peaks due to a distributed canonical scatterer can be modeled as due

to an equivalent canonical point scatterer. Chapter V develops the SPLIT algorithm,

which uses subimage pixel intensities to estimate the locations of canonical scatter-

ers as well as their frequency dependencies. SPLIT classifies the observed canonical

scatterers using the multi-point model to deduce the likelihood that a certain type of

scatterer is present. Chapter VI develops the integrated algorithm which combines

SPLIT-based classification with domain decomposition imaging. The integrated al-

gorithm is shown to be efficient in that it provides scatterer classification information

without increasing the computational complexity of SAR imaging algorithms. The

combined results provide more information about the scene than a SAR image can

provide alone. Chapter VII concludes with an overview of the key findings and con-

tributions in this dissertation, a summary of the advantages and limitations of the

algorithm, and suggestions for follow-on research.
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II. Background

This chapter provides the background needed to understand the theory and trends

in areas related to this research. It serves as a tutorial and includes reviews of the

seminal and current literature, where appropriate, along with observations of trends.

Section 2.1 begins with an overview of basic SAR imaging concepts. It builds on these

basic concepts to present the more advanced concepts of phase history decomposition

imaging and the sum of scattering centers model. Section 2.2 presents the set of

canonical scatterers used to obtain a parsimonious sum of scattering centers. It

explains how the amplitude and polarization responses of canonical scatterers are

derived from physical models of electromagnetic scattering. Section 2.3 gives an

overview of some basic principles of feature extraction and classification, to include

the least squares classifier featured in this dissertation. It concludes with an example

of least squares classification using the polarimetric model parameters for canonical

scatterers.

2.1 SAR Phase History

SAR images are typically reconstructed from a SAR phase history, which repre-

sents the SAR signal in the spectral domain. This section presents how the SAR

phase history is originated. Then it presents principles of SAR imaging, including

domain decomposition imaging. Finally, it presents how the phase history can be

modeled as a sum of phase histories due to multiple scattering centers.

2.1.1 Origination.

Monostatic SAR systems measure the electromagnetic reflectivity of objects in

the radar field of view and rely on subsequent signal processing to reconstruct an
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Figure 2. Notional airborne SAR system.

Figure 3. Notional phase history domain.

estimate of the reflectivity. The estimate is presented as a SAR image recovered

from quadrature-demodulated samples of the backscattered electric field received at

discrete and different frequencies and aspect angles along the synthetic aperture [24,

36, 37, 76, 133]. These discrete samples are collectively referred to as the SAR phase

history. The term ‘phase history’ refers to the phase differences corresponding to the

relative locations of each scatterer in the scene.

A notional airborne SAR system is depicted in Figure 2 where discrete samples

of the scattered electric field are collected over the flight path. The phase history

is typically displayed as a manifold at sample coordinates in the spectral domain

[24, 76]. For example, a notional SAR phase history domain, which states G̃ is

a function of (f, θ), is depicted in Figure 3, where the ˜ symbol denotes that the

phase history is a complex-valued function. The discrete samples are contained in

the domain Ω = [f , θ], where f is a vector of sample points in frequency and θ is
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a vector of sample points in azimuth. For convenience, the individual phase history

samples are not shown. This allows drawings of the SAR phase history to be readily

differentiated from drawings of SAR imagery which explicitly show individual pixels.

This convention is used throughout the dissertation.

The sample frequencies are determined by the transmitted electromagnetic field,

usually produced with a linear frequency modulated (LFM) signal [24, 76]. For mul-

tiple polarization channels, a separate phase history is produced for each channel. A

particularly important aspect of the SAR phase history is that it has frequency and

azimuth diversity, and in the case of polarimetric SAR, it has polarimetric diversity as

well. The remaining discussion assumes that the sampling rate is sufficient to prevent

aliasing in the image and that all amplitude variations due to antenna gain pattern

and spherical wave propagation are normalized between samples.

2.1.2 SAR Imaging.

The image, g̃, is reconstructed using an appropriate transformation from the spec-

tral domain to the spatial domain. Recall that the phase history, G̃, is defined over

finite regions of support, where fc is the center frequency of the phase history with

bandwidth B, and θc is the center angle of the phase history with aperture width

Θ. In this case, the finite regions of support can be represented by a band-limited

filter or window in frequency, HB(f −fc), and an aperture-limited filter or window in

azimuth, HΘ(θ−θc), where the windows have region of support HB(f) ∈ [−B/2, B/2]

and HΘ(θ) ∈ [−Θ/2, Θ/2], respectively. Hence, the 2D image is reconstructed from

the windowed phase history as

g̃(x, y) = B
{

HB(f − fc)HΘ(θ − θc)G̃(f, θ)
}

, (1)
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where (x, y) are image coordinates and B{·} is a Fourier-based imaging operator

that maps from (f, θ) to (x, y). The choice of HB and HΘ depends on the need for

image resolution versus image contrast. For convenience, the g̃ dependence on HB

and HΘ is suppressed in the notation. Although the phase history and image are

digitally sampled and processed in practice, the variables f , θ, x, and y are expressed

as continuous for ease of notation. Note that if multiple polarization channels are

available, the transformation is performed for each channel’s phase history, resulting

in a set of usually two to four polarization diverse images.

2.1.2.1 Subimages.

The relationship between spectral bandwidth in the phase history and spatial

resolution in the SAR image is a manifestation of the Gabor limit [60]. In short,

the spatial resolution is inversely proportional to the spectral bandwidth. Therefore,

it is possible to produce coarse resolution subimages from subdomains of the phase

history. An example of this is illustrated in Figure 4 where Figure 4(b) shows a coarse

resolution subimage. In this case, the subwindows, HB′ and HΘ′ , decompose the

spectral domain, where the regions of support for these subwindows, B′ < B and

Θ′ < Θ, are called subbands and subapertures, respectively. Multiple subdomains

may be created by simply shifting the subwindows to a discrete number of center

frequencies. In this case, center frequencies are annotated by subscripts i and j, and

the short hand notations HB′i = HB′(f − fci) and HΘ′j = HΘ′j(θ − θcj) are used

throughout the dissertation, where convenient. Thus, the reconstructed subimages

are annotated accordingly as

g̃ij(x, y) = B
{

HB′iHΘ′jG̃(f, θ)
}

. (2)
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(a) A fine resolution SAR image is reconstructed from the full domain of the
phase history.

(b) A coarse resolution SAR subimage is reconstructed from a subdomain of the
phase history.

Figure 4. Phase history decomposition produces multiple coarse resolution subimages.

When appropriate, the subscript, p, can be added to g̃ij and G̃ to denote subimages

produced from phase histories obtained from different polarization channels.

2.1.2.2 Phase History Decomposition.

The phase history can be replicated by using a series of subwindows designed

and weighted so that their summation approximates the desired fullband and full

aperture windows. The summations are expressed as HB ≈ ∑
i ciHB′(f − fci) and

HΘ ≈ ∑
j cjHΘ′(θ − θcj), where ci and cj are the weights. The shorthand notations

HΘ = HΘ(θ − θc) and HB = HB(f − fc) are used here and throughout the disserta-

tion, as appropriate. In this case, the resulting coarse resolution subimages can be

interpolated to a finer resolution and summed, where the result approximates the fine

resolution image conventionally reconstructed from the full domain of the phase his-
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(a) subaperture
imaging.

(b) domain
decomposition
imaging.

(c) subaperture
imaging with
multilook.

(d) domain
decomposition
imaging with
multilook.

Figure 5. Examples of domain decomposition imagery of four automobiles in a parking
lot taken from the Gotcha public release data set.

tory [12]. This assumes a linear imaging operator, as is common [76], and is expressed

as

̂̃g =
∑

j

cj

∑

i

ciI {g̃ij} . (3)

where I{·} is the interpolation operator and the ̂ symbol indicates that the result

is an approximation to the full domain image in Equation (1). This process is called

domain decomposition imaging, where typical implementations have a controllable

error in the approximation [12]. Examples of conventional imaging and domain de-

composition imaging using cubic interpolation are shown in Figures 5(a) and 5(b),

respectively. In this case, error in the approximation is sufficiently controlled so that

the images are visually indistinguishable. The scene consists of four automobiles in a

parking lot taken from the Gotcha public release data set [25].

Domain decomposition imaging is traditionally motivated by the desire to reduce

the computational complexity of certain imaging algorithms by accepting a control-

lable error in imaging accuracy [12]. Efficiency is attained by an iterative, multi-level

decomposition and aggregation of subimages. The overall computational complexity

of multi-level domain decomposition algorithms is O(N2 log N), for an N ×N image

[12]. Domain decomposition can be implemented with any of the conventional SAR
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Table 1. Computational Complexity of Conventional SAR Imaging Algorithms [24, 36,
76].

Mode Algorithm Complexity
spotlight Matched Filter O(N4)

Convolution Backprojection O(N3)
Polar Reformating O(N2 log N)

stripmap Range Doppler O(N2 log N)
Chirp Scaling O(N2 log N)
Omega-K O(N2 log N)

imaging algorithms listed in Table 1. However, the benefit of a reduced order of

computational complexity will only be realized for the matched filter and convolution

backprojection algorithms.

2.1.2.3 Observations.

SAR imaging is a mature area of research with many textbooks dedicated to the

various methods and their applications. While the matched filter (MF) algorithm

provides the most flexibility and best image quality of the algorithms, its computa-

tional complexity of O(N4) is exceptionally high compared to other methods. The

other algorithms obtain computational efficiency by use of batch processes with geo-

metric approximations which limit imaging accuracy and flexibility. However, these

limitations can be managed so that they are insignificant for most SAR applications.

The algorithms with computational complexity of O(N2 log N) obtain computational

efficiency through 2D Fourier transforms of rectangular formatted phase history data.

In contrast, the convolution backprojection (CBP) algorithm uses the projection slice

theorem with polar formatted phase histories, resulting in a computational complex-

ity of O(N3) with higher order [40]. Because of this, CBP is usually employed only

when its superior flexibility in choosing the locations of image pixels is needed. An

example situation where such flexibility is desired is the case of 2D imaging of the

surface of the earth over very wide-angle or full 360◦ apertures. In this case, the CBP
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algorithm allows for image pixel locations to be selected to match the digital terrain

elevation data (DTED) of the scene for superior image quality.

The fast SAR imaging techniques ensure a computational complexity at or near

O(N log N) with a controllable amount of image artifacts introduced into the final

image. In general, the fast SAR imaging techniques only provide a computational

advantage for the CBP and MF imaging algorithms, but they are not limited to

these. There are two primary techniques for fast SAR imaging: domain decom-

position and domain decimation. Domain decomposition imaging produces coarse

resolution subimages with diversity in frequency, azimuth, and polarization, which

can be exploited for scatterer classification. As such, a single level version of the

multilevel domain decomposition technique in Reference [12] is used throughout this

dissertation. Alternately, domain decimation produces full resolution subimages of

limited extent that are diverse in location. The final image is reassembled from these

subimages by a process resembling a mosaic. Because the pixel locations of the full

resolution subimages can be adjusted with precision, domain decimation is the pre-

ferred method for applications where the image pixels are matched to DTED, such

as with the Gotcha radar.

It is conceivable to combine the decimation and decomposition techniques, al-

though this has not been reported in the literature. In this way, multilevel domain

decimation could be used to form the coarse resolution subimages matching DTED.

Then, the coarse resolution subimages can be used for scatterer classification and

subsequent single-level domain decomposition can be used to form the final image.

2.1.2.4 Subaperture Imaging.

Subaperture imaging is a decomposition of the phase history in azimuth only

and can be used with any of the conventional imaging algorithms. Its use is typi-
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cally motivated by the need to limit azimuth resolution, reduce speckle, or both. In

practice, SAR systems are often less restricted in angular bandwidth than frequency

bandwidth. This relationship is particularly true for airborne circular SAR systems,

like the one in Figure 2 of Section 2.1.1 which can orbit a given scene and produce

a phase history sampled over a full 360◦ in azimuth. In this case, subapertures of

the data are processed in turn. For surveillance applications, a series of subimages

is often viewed in sequence to simulate frames of streaming video, called video SAR

[18, 109]. In addition, when the subimages are registered to a common grid, they can

be coherently summed to produce a full aperture image expressed as

̂̃g(x, y) =
∑

j

cjB {HBHΘ′jG(f, θ)]} =
∑

j

cj g̃j(x, y). (4)

Figure 5(a) is an example of subaperture imaging. Here, multiple subimages are

reconstructed from successive 2◦ subapertures and are summed to approximate a full

360◦ aperture SAR image.

The grainy look in Figures 5(a) and 5(b) is attributed to a common SAR imaging

effect called speckle. Speckle in SAR imagery results from a combination of having

multiple scatterers and only finite processing resolution. The phase histories of the

unresolved scatterers produce a random sum with characteristic appearance in the

SAR image, although not appearing in photographs of the same scene. In fact, speckle

has been shown to be well-modeled by a random phase process [113]. By taking the

root mean squared (RMS) of pixel values over multiple subaperture images, areas

with highly random pixel intensities become smoother and the effects of speckle are

reduced. This is also called multilook imaging and is expressed as [36]

ḡ(x, y) =

√∑

j

cj |g̃j(x, y)|2. (5)
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An example of multilook imaging is shown in Figure 5(c) using the same data and

subapertures as in Figure 5(a). Speckle-reduced SAR imagery is often preferred be-

cause it can be easier to interpret and exploit, even for the case when the subaperture

images have coarser resolution than the full aperture image [116]. Multilook can be

combined with domain decomposition imaging as

̂̄g(x, y) =

√√√√∑

j

cj

∣∣∣∣∣
∑

i

ciI{g̃ij}
∣∣∣∣∣

2

, (6)

where the ̂ symbol indicates that the result is an approximation to the multilook

image in Equation (5). An example of multilook domain decomposition imaging using

cubic interpolation is given in Figure 5(d). In this case, error in the approximation

is sufficiently controlled so that the multilook images in Figures 5(c) and 5(d) are

visually similar. Note that the imaging process is repeated for each polarization

channel separately. The resulting set of polarization diverse images can be non-

coherently summed, if desired.

2.1.2.5 Observations.

With the recent availability of very-wide angle SAR systems, interest has increased

in exploiting the benefits of these systems. As a result, many different methods and

techniques for combining subimages have been proposed. However, even though other

non-coherent summations of subaperture images have been discussed in the literature

[110], the domain decomposition Equations (3) and (6) are commonly used in practice,

and are exclusively used throughout this dissertation.
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Figure 6. Vector from the antenna phase center to the qth scattering center.

2.1.3 Sum of Scattering Centers Model.

By linear superposition, a SAR phase history can be modeled as a sum of phase

histories due to Q scattering centers expressed as [138]

G̃(f, θ) =

Q−1∑

q=0

S̃q(f, θ)e−j2k|rq |, (7)

where S̃q(f, θ) is the amplitude function, k = 2πf/c is the wavenumber having speed

of light, c, and rq is a vector from the antenna phase center to the qth scattering

center, as shown in Figure 6.

A linear imaging operator is commonly used in practice, and in this case, the SAR

image can be modeled as a linear superposition of images due to Q scattering centers

expressed as

g̃(x, y) =

Q−1∑

q=0

s̃q(x, y), (8)

where

s̃q(x, y) = B
{

HBHΘS̃q(f, θ)e−j2k|rq |
}

(9)

is the resultant of the imaging operator acting on the qth windowed phase history in

Equation (7).
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Consider a scene consisting of a single scattering center. In this case, the phase

history samples contain amplitude and phase differences corresponding to the am-

plitude function and location of the scatterer. If for every sample, one knows the

distance from the SAR system to a reference point in the scene (usually the scene

center), then one can infer the location of the scatterer with respect to the refer-

ence. Furthermore, by applying an appropriate phase shift, the samples will integrate

coherently.

The exact locations of point scatterers are usually not known a priori. Therefore,

the imaging operator integrates over a grid of locations, each corresponding to a

unique phase shift. This grid determines the pixel locations of the SAR image, and

in the 2D case, is called the imaging plane. The accuracy of the coherent integration,

and thus the accuracy of the image, is limited to time-invariance of the scatterers,

field geometry, and SAR system [76].

Typically the imaging operator assumes a scene comprised of ideal point scatterers.

In this case, S̃q is set to a real constant, and s̃q is called the point spread function.

Therefore, a conventional 2D SAR imaging operator is [76]

B{·} =
1

2π

∫ ∞

−∞

∫ π

−π

{·}ej2k|r||f |dθdf, (10)

where r is a vector from the radar phase center to the spatial coordinates in a chosen

imaging plane at any azimuth angle. Because most of the energy in a SAR scene

is well-modeled by ideal point scatterers, imaging operators which assume an ideal

point scatterer, such as Equation (10), are common and used exclusively throughout

this dissertation.

Note that for 2D imaging, a scatterer does not need to physically lie in the imag-

ing plane in order to integrate coherently. Coherent integration occurs when |rq| of

the scatterer equals |r| of the imaging operator. Thus, scatterers with height, zq, per-
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pendicular to the 2D imaging plane are modeled as appearing at off-set coordinates

determined by a projection along the spherical wavefront into the imaging plane.

This is effect is referred to as SAR layover [76]. As a result, |rq| can be modeled as

a function of xq, yq, and θ, where (xq, yq) are the offset coordinates due to layover

effect, if any. As such, the shorthand notation

S̃q(f, θ)e−j2k|rq | = S̃q(f, θ; xq, yq) (11)

will be used throughout this dissertation.

2.1.3.1 Observations.

It has been observed that certain objects in a scene may exhibit non-ideal scat-

tering behavior with amplitude functions that are anisotropic, dispersive, or both. In

addition, moving objects have coordinates, (xq, yq), that vary with time. As a result of

their non-ideal behavior, such objects may appear unfocused or displaced in the SAR

image reconstructed from Equation (10). The insertion of additional filters into the

imaging operator can cause an anisotropic, dispersive, or moving object to simulate

ideal scattering behavior and become better focused in a SAR image, and adaptive

filters, such as those used in multiple signal classification (MUSIC), can enhance the

detection and of a pre-determined type of scatterer [39, 66, 70, 94, 126, 130, 145].

However, such filters have the negative consequence of defocusing other scatterers of

interest, especially if the filters are non-adaptive.

The imaging algorithms with a computational complexity of O(N2 log N) use an

inverse fast Fourier transform (IFFT) in two dimensions, where the computational

complexity of a single IFFT is O(N log N). Unfortunately, an FFT for polar coordi-

nates is not known. Therefore, these algorithms transform the SAR phase history and

imaging algorithm into a rectangular format before using the IFFT. This transfor-
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mation and its associated approximations produce many of the limitations associated

with the faster imaging algorithms. Therefore, the characterization and mitigation of

these limitations comprise much of the literature on SAR imaging.

This dissertation assumes the data and imaging operator are in polar coordinates,

as in Equations (7) and (10), throughout its development. However, the theory and

algorithm are not limited to polar coordinates, and considerations for rectangular

formatted data and imaging operators are discussed, where appropriate.

2.2 Physical Model of Canonical Scatterers

Unfortunately, the number of ideal point scatterers required to accurately model

or simulate a SAR phase history is typically quite large, particularly for wide band

or wide apertures data. A parsimonious sum is possible when the scattering cen-

ters are modeled as canonical scatterers [62]. Geometric objects in the scene, called

canonical scatterers, have a predictable response to changes in frequency, azimuth,

and polarimetry [83]. Examples of canonical scatterers include trihedrals, dihedrals,

plates, cylinders, and spheres. Canonical scatterers are of interest because they are

commonly associated with man-made objects [14, 106, 108, 149]. For example, the

Sandia Laboratories implementation of cylinders (SLICY) is comprised of canonical

scatterers as shown in Figure 7. Here, the cylinders are considered a special case of

the general cone shape.

It is desirable to detect and classify canonical scatterers in SAR imagery using well-

known, physical models of electromagnetic scattering [29, 122]. It has been shown that

the amplitude functions for canonical scatterers are parameterized by physical models

based on geometric optics (GO) and the Geometric Theory of Diffraction (GTD) [78].

A restricted set of possible geometrical shapes, combined with the high-frequency,

far-field assumptions in GO/GTD, produce a model with only a few parameters.
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Figure 7. The SLICY can be modeled as a collection of canonical scatterers [149]. Note
that a cylinder can be represented as a special case of a cone.

The model can be used to simulate a SAR phase history, or the parameters can be

estimated from SAR data to detect or classify canonical scatterers in the scene.

In order to develop a canonical scatterer classification algorithm in the spatial

domain, subimages are modeled as a sum of subimages due to Q canonical scatterers.

This idea is developed in detail later in Chapter III. Meanwhile, the following subsec-

tions present the background needed to understand how the amplitude functions of

canonical scatterers vary with changes in frequency and azimuth. They also present

how the intensity of canonical scatterers responds to changes in polarimetry.
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Figure 8. Canonical scatterer radar cross sections have a frequency dependency that
depends upon the local curvature of the scatterer [83].

2.2.1 Amplitude Response in Frequency.

For a co-polarized channel, the amplitude response of the electric field backscat-

tered from a canonical scatterer has a frequency response predicted by GO/GTD as

[62, 78]

S̃f (f ; A, α) = A(jf)α/2, (12)

where A is a complex-valued amplitude related to the physical size of the canonical

scatterer, f is the frequency of the incident electromagnetic field, and α is an integer

value depending upon the local curvature of the canonical scatterer’s shape. Note

that this model assumes the canonical scatterers are perfect electrical conductors.

Figure 8 illustrates how frequency dependency of the radar cross section (RCS)

for canonical scatterers depends upon the scatterer’s local curvature. In this case, the

RCS is the magnitude squared of the amplitude function given by σ = |S̃f |2 ∝ fα.

The trihedral, having no curvature, features a quadratic response (f 2); the cylinder,

having curvature in one dimension, features a linear response (f 1); and the sphere,

having curvature in two-dimensions, features a flat response (f 0). The values of α

for common shapes are well known and listed in Table 2. Note that there is an

ambiguity when discriminating between canonical scatterers by α only. For instance,

plates, trihedrals, and dihedrals all have the frequency parameter, α = 2.
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Table 2. Traditional Frequency Response Parameter for Ideal Canonical Scattering
Geometries [83].

Scattering geometry α

plate, trihedral, dihedral 2
cylinder/cone, top hat 1

sphere, straight edge/wire 0

Note that diffraction from curved edges and tips of objects produce scattering with

inverse frequency response of α = −1 and α = −2, respectively [62, 84, 121]. However,

these have such a low RCS as to not be prevalent in SAR imagery. As a result, curved

edge and tip scattering mechanisms are ignored throughout this dissertation, except

in Section 5.4.2.

2.2.1.1 Observations.

The GO/GTD-based scattering models are limited by a high-frequency approxi-

mation. However, these models are preferred because backscattering which occurs at

lower frequencies has less directivity, which lowers the received energy of the desired

signal. For wavelengths greater than the object extent, the frequency response is gov-

erned by Rayleigh scattering [83]. In this case, there is little variation of the incident

field across the object, and the incident field can be modeled as being quasi-static

[83]. Under these conditions, relative intensities of scatterers can be determined, but

the amplitude response is independent of object shape [83]. Because shape cannot be

determined, no models exist for describing canonical scatterers when the wavelength

of the incident field is greater than the extent of the canonical scatterer.

Alternately, when wavelengths approach the order of the object size, it has been

shown that an object’s size is related to its late-time resonance response [27, 79]. In

this case, physical mechanisms cause EM energy to stay attached to the surface of an

object in what are called surface waves [83]. Surface wave scattering produces a strong
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early-time signal that is independent of object size [83]. However, it has been shown

that the much weaker late-time signal will resonate in accordance with object size

[79]. Models describing this late-time resonance response have been successfully used

to classify objects, but only in ideal scenarios where noise, clutter, and interference

are constrained.

In general, the performance of late-time resonance approaches to scatterer clas-

sification is limited because of the low energy of the late-time response. Thus, in

practice, accurate feature extraction requires a prohibitively high signal-to-noise ra-

tio. Matched filter techniques, such as those found in singularity expansion method

[9], have been shown to reduce noise sensitivity, but at the expense of requiring a priori

knowledge of the target. Despite these limitations, interest in late-time resonance re-

sponse models continues, as evidenced by recent publications [61, 105]. Nevertheless,

limiting factors restrict the usefulness of resonance response models in distinguishing

canonical scatterers.

2.2.2 Amplitude Response in Azimuth.

At a single azimuth angle or over an extremely narrow aperture, the amplitude

responses for all canonical scatterers are well modeled by Equation (12) [121]. How-

ever, for typical SAR apertures, the amplitude response of the backscattered field

for distributed scatterers has an azimuth dependency dominated by a sinc-like pat-

tern. This response is in relation to the slant plane containing the synthetic aperture.

Common distributed scatterers include flat plates at broadside aspect, dihedrals with

fold-lines parallel to the slant plane, cylinders with axes of rotation parallel to the

slant plane, and edges or wires lying parallel to the slant plane. Of these, the di-

hedral, in particular, is often present in SAR imagery of man-made structures. For

example, the side of a building and the ground form a dihedral with a fold-line often
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Figure 9. Example model parameters for a cylinder with axis of rotation projected into
the slant plane.

lying parallel to the slant plane. The amplitude response as a function of azimuth is

well-modeled by [6, 62]

Sθ(f, θ; L, θ0) = sinc
[

2
c
fL sin(θ − θ0)

]
, (13)

where the sinc function is defined as sinc(t) = sin(πt)
πt

, L is the effective length of the

scatterer as projected onto the slant plane, and θ0 is the orientation angle normal

to this projection and referenced to the center angle of the aperture, θc [62]. The

dependence upon θc is suppressed in the notation because the simplification θc = 0

can often be made without loss of generality. An example of the effective length and

orientation angle for a cylinder is illustrated in Figure 9.
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It has been shown that most scatterers have an angular persistence of less than

twenty degrees [43]. Furthermore, for flat plates, there is an extra cos(θ) factor in

the azimuth response of Equation (13) [6]. For these reasons, it is prudent to place

a restriction of Θ < 20◦ on the aperture width for which Equation (13) is valid.

However, in practice any aperture greater than 20◦ will likely be decomposed into

narrower subapertures before imaging; so this restriction is deemphasized throughout

the dissertation.

2.2.2.1 Observations.

For very narrow angle imaging, scatterer anisotropy is generally negligible because

large variations in target aspect are not expected [125]. However, anisotropy should

be accounted for any time large variations in aspect are encountered, such as for wide-

angle SAR applications [134]. These include strip-map data collected from air and

spaceborne radar platforms operating at P- or L-band [51], data collected from RCS

measurement facilities where targets are placed on turn-tables, and circular SAR data

collected from airborne radar platforms [110]. Much of the early research in target

anisotropy was motivated by radar imaging at low-frequencies for foliage and ground

penetration. The use of low-frequencies drove this early research to examine the

late-time resonance response of targets [8, 85].

Before the mid-1990s, such wide-angle SAR data collections were not common.

However, recent technological advances have enabled the collection of coherent data

over very wide apertures [110]. These developments have spurred interest over the

last decade in studying methods and models that predict and leverage the anisotropic

behavior of scatterers. A review of the current literature reveals that directional filters

are the most common approach to leveraging anisotropic behavior for target detection

and discrimination [1, 47, 130, 136]. Directional filters denote subaperture techniques
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where the subaperture filter is often chosen according to expected target anisotropy.

When ultra-wide band data is available, the directional filters are often extended to 2D

filtering to account for both anisotropic and dispersive analysis. In addition to filters,

the parametric model in Equation (13) [31, 50, 74] and a sparse dictionary method

[144] have also been proposed to characterize and identify anisotropic scattering.

2.2.3 Intensity Response in Polarization.

This subsection presents the theoretical background needed to understand how the

intensities of canonical scatterers are polarization dependent. Specifically, it presents

Krogager decomposition of the scattering matrix as a way to differentiate between

odd-bounce and even-bounce scattering mechanisms. The proportions of odd-bounce

and even-bounce scattering energy are very useful in determining the geometric shape

of canonical scatterers.

2.2.3.1 The Scattering Matrix.

The scattering matrix can be used to specify polarimetric properties of electromag-

netic scattering. That is, the polarization pairs of the scattered field are determined

via matrix multiplication of the scattering matrix with the polarization pairs of the

incident field [112]

Es =




Es

x

Es
y



 =
1√
4πr

AEie−jkr =
1√
4πr




Axx Axy

Ayx Ayy








Ei

x

Ei
y



 e−jkr, (14)

where the elements of the scattering matrix are complex, Aij ∈ C, and r is the distance

between the receive antenna and the reference plane at the scatterer. The polarization

pairs can be expressed in either linear or circular polarizations. This choice is often

dictated by the antenna design of the radar system. Standard coordinate system
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conventions for linear polarization pairs use x = H for horizontal polarization and y =

V for vertical polarization [112]. While, similar conventions for circular polarization

pairs use x = L for left circular and y = R for right circular [112].

The definition of the scattering matrix is not unique because the existence of

many equivalent coordinate systems introduces an ambiguity. However, two particular

coordinate systems and resulting scattering matrix definitions are commonly used.

The Jones matrix is popular because it presents a right-handed system with regard

to the conventional definition of wave propagation [112]. In contrast, the Sinclair

matrix, S, presents a left-handed system. A left-handed system would not normally

be desirable, but the Sinclair matrix has the distinct advantage that Sxy = Syx for

the case of monostatic backscattering. The dissertation is limited to the case of

monostatic backscattering only; therefore, the Sinclair scattering matrix given by

S =




Sxx Sxy

Syx Syy



 (15)

will be used exclusively throughout the remaining discussion. In this case, the trans-

formation from the linear polarization basis to the circular polarization basis is given

by [88]

SRR = jSHV + 1
2
(SHH − SV V )

SLL = jSHV − 1
2
(SHH − SV V )

SRL = 1
2
(SHH + SV V ),

(16)

where SLR = SRL for monostatic radar systems.

2.2.3.2 Krogager Decomposition of the Sinclair Scattering Matrix.

Several decompositions of the Sinclair scattering matrix have been proposed for

canonical scatterer analysis. The most common being Pauli [33], Krogager [87], and
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Figure 10. Reflection behavior for linearly polarized electric fields. The orientation of
both the vertical and horizontal components of the electric field are unperturbed after
an odd number of bounces (top and bottom). However, the vertical component of the
electric field becomes inverted following a double bounce (middle) [6].

Cameron [20]. Figure 10 uses linear polarization pairs to illustrate the motivation

behind such canonical scatterer analysis. The orientations of both the vertical and

horizontal components of the electric field are unperturbed after a single bounce as

shown in the top diagram. In contrast, the vertical component of the electric field,

~EV , becomes inverted after a double bounce as shown in the bottom diagram. After
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a triple bounce, such as may be experienced in the well of a trihedral, a double

inversion will cause the scattered field to return to its original orientation as shown in

the bottom diagram. As such, the vertical component of the electric field is inverted

for all even-bounce geometries and is unchanged for all odd-bounce geometries. The

linear polarization Sinclair matrix for ideal odd-bounce geometries is thus given by

So =




1 0

0 1



 . (17)

While the linear polarization Sinclair matrix for ideal even-bounce geometries is given

by

Se =




1 0

0 −1



 . (18)

In fact, these matrices comprise two terms of the matrix decomposition based on

Pauli spin matrices (referred to as Pauli decomposition)[92]

S =




SHH SHV

SV H SV V



 = a




1 0

0 1



+b




1 0

0 −1



+c




0 1

1 0



+d




0 −j

j 0



 , (19)

where a, b, c, and d are complex valued and given by [92]

a =
SHH + SV V

2
b =

SHH − SV V

2
c =

SHV + SV H

2
d = j

SHV − SV H

2
. (20)

Note that for monostatic backscatter, d = 0.

In order to better understand Pauli decomposition, it is beneficial to further ex-

amine the double-bounce mechanism depicted in the middle diagram of Figure 10.

Note that the horizontal component of the incident electric field, ~Ei
H , is parallel to

the dihedral fold line. If the situation were altered by rotating the dihedral fold line
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by 90◦, then the vertical component of the incident electric field, ~Ei
V , would become

parallel to the fold line. Conversely and according to this new orientation, ~EH would

be inverted while ~EV would remain unchanged overall. Such a change in orientation

is referred to as a roll. In Equation (19), a 90◦ roll would simply invert the sign of b,

leaving the magnitude unchanged. However, in general, the magnitude of b depends

upon roll angle.

The third term of Equation (19) can be interpreted to represent backscatter from

a dihedral with a fold line rotated 45-degrees, as compared to that shown in the

middle diagram of Figure 10 [92]. Therefore, dihedrals of arbitrary roll contribute to

both the second and third terms of the Pauli decomposition. In response, Krogager

proposed a roll-invariant decomposition of the Sinclair scattering matrix [86, 87]. The

Krogager decomposition expressed in circular polarization bases can be modeled as

[91]

S =




SRR SRL

SLR SLL



 = Ko




1 0

0 1



 + Ke




1 0

0 −1



 + Khe
−j2ϕ




0 1

1 0



 , (21)

where the phase difference between HH and VV polarizations is assumed to be zero

and ϕ is called the helix phase angle.

The coefficients Ko, Ke, and Kh can be extracted from polarization diverse SAR

images on a pixel-by-pixel basis using [90]

Ko = |SRL|,

Ke = min(|SLL|, |SRR|),

Kh = abs(|SRR| − |SLL|)|,

(22)

where the coefficients represent the strength of odd-bounce, even-bounce, and helical

scattering, respectively. This interpretation is valid for all canonical scatterers [92].
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Table 3. Krogager and Frequency Response Parameters for Canonical Point Scattering
Geometries.

Scattering geometry α κo κe

flat plate or trihedral 2 1 0
dihedral 2 0 1

cylinder/cone specular 1 1 0
top hat 1 0 1
sphere 0 1 0

straight edge/wire specular 0 0.5 0.5

The relative strengths of odd-bounce and even-bounce scattering can be deter-

mined by

κo =
|Ko|√

|Ko|2 + |Ke|2 + |Kh|2
, (23)

κe =
|Ke|√

|Ko|2 + |Ke|2 + |Kh|2
, (24)

where κo and κe are real-valued, normalized scattering intensities measured at a

given image location or pixel. In this case, the amount of helical scattering can be

interpreted as relating to the purity of the even-bounce scattering [88].

By simply combining these Krogager parameters with the frequency parameter

from Table 2, some of the ambiguity between scatterers can be resolved in three di-

mensions. A listing of ideal canonical point scatterers based on these three parameters

is given in Table 3.

2.2.3.3 Observations.

The goal of scattering matrix decomposition is to produce a set of basis matrices

which can give insight into the type of scattering present in a radar signal [92]. Such

insight has been shown to aid target detection and image segmentation as described

in the survey books [92, 112] and papers [33, 140]. These surveys describe how

scattering matrix decomposition is fundamentally driven by the time-varying nature
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of the target’s polarimetric signal. If the signal can be approximated as time-invariant,

then coherent scattering matrix decompositions are appropriate. However, if the

signal is time-variant, then power-type matrix decompositions are required [112].

When applicable, coherent scattering matrix decompositions are preferred because

they can better describe physical scattering mechanisms [112]. Furthermore, coherent

scattering matrices for backscattering have only five independent variables as com-

pared to ten for the power-type matrices [112]. Fortunately, the scatterer classification

algorithm developed in this dissertation only extracts polarimetric features from pix-

els where the response from a single canonical scatterer dominates. In this case,

the polarization response can be approximated as time-invariant, and the coherent

scattering matrix decomposition is applicable [92].

There are three well-established coherent scattering matrix decompositions that

have been proposed in the literature. These are Pauli [33], Krogager [87], and

Cameron [20]. The Pauli decomposition is adopted from the Pauli spin matrices

originating in physics and optics. It results in orthogonal basis matrices which for

radar backscattering can be interpreted as a sphere, a dihedral with a zero-degree roll,

and a dihedral with a 45-degree roll. The Krogager decomposition is presented as a

roll invariant alternative to the Pauli decomposition. It has the advantage of separat-

ing odd-bounce from even-bounce backscattering. The basis matrices for Krogager

decomposition can be interpreted as a sphere (odd-bounce), a dihedral (even-bounce),

and a helix. A disadvantage of Krogager decomposition is that the basis matrices are

not orthogonal. This results in backscatter from double dihedrals to appear as helical.

The Cameron decomposition attaches a great deal of importance to a class of targets

which Huynen termed symmetric [71]. A symmetric target has an axis of symmetry

in the plane orthogonal to the radar line of site. For these targets, decomposition

follows a decision tree where very detailed target information can be gleaned.
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Table 4. Comparison of Coherent Scattering Matrix Decompositions.

Decomp. Recent Publications Advantages Limitations

Pauli 2010 Inci [72] orthogonal basis not roll invariant
2010 Brigui [16]

Krogager 2008 Ainsworth [2] roll invariant not an orthogonal basis
2010 Zou [154]

Cameron 2009 Cameron [21] details symmetric targets wide apertures degrade symmetry
2009 Martorella [101] high-order feature space

Touzi 2008 Brisco [17] roll invariant focused toward non-coherent decomposition
orthogonal basis new and relatively unproven

It is important to note that Touzi has also made some significant contributions

to the study of coherent scattering matrix decompositions. He recently presented

a coherent decomposition that is both orthogonal and roll invariant [139], combin-

ing the strengths of the Pauli and Krogager decompositions, respectively. His intent

was to produce a decomposition that was useful for both coherent scattering matrix

and power-type matrix decomposition. Cameron recently raised the question of the

uniqueness of his approach [21], and at this time, it is unclear if the Touzi decomposi-

tion will rival the popularity of the three well-established coherent scattering matrix

decompositions previously discussed.

A summary of the advantages and limitations of each method is provided in Ta-

ble 4. Because the primary contribution of this dissertation lies in the development

of a new method for characterizing the anisotropic and dispersive characteristics of

scatterers, the choice of scattering matrix decomposition method is secondary. The

Krogager decomposition is chosen because of its simplicity and roll-invariance. Al-

though the Cameron decomposition would potentially provide more information, this

comes at the expense of increasing the dimensions of the feature space and at the

restriction of narrow apertures to preserve symmetry.
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2.3 Feature Extraction and Classification

This section provides an introduction to some basic concepts in feature extraction

and classification, as well as an overview of the feature extraction and least squares

scatterer classification method featured in this dissertation. The subsections present

some specific examples of feature selection, feature extraction, and least squares clas-

sification for canonical scatterers. These focus on use of the parameters for frequency,

azimuth, and polarization dependency discussed previously in this chapter.

2.3.1 Feature Selection.

Feature selection is an engineering art, where the goal is to replace unwieldy

high-order representations of objects with elegant lower-order approximations [108].

Within the limits of the approximation, this allows automated object detection and

classification to be tractable on modern computers using signal detection and estima-

tion theory. The features are derived from model-based parameters, statistical-based

parameters, or both. An example model-based parameter is the order of the amplitude

response with frequency, parameterized by α in Equation (12) of Section 2.2.1, which

is shown in Table 3 to be useful in discriminating between some types of scatterers.

An example statistical-based parameter is the expected value of the pixel intensity

associated with a given object. For instance, at X-band (f = 9 GHz) and referring to

Figure 8 of Section 2.2.1, the radius of a sphere must be 360 meters in order to produce

the same backscattered energy of a 1 meter long trihedral. Because such a large

sphere is not expected in the scene, certain high-intensity pixels are not expected to

be associated with a sphere. Alternately, statistical parameters are often derived from

statistical pattern recognition techniques using training data. An example of training

data is phase histories from scenes containing known objects at known locations.

Because training data is scenario specific and this dissertation seeks a general theory
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for scatterer classification, statistical parameters are excluded from the remaining

discussion.

2.3.2 Feature Extraction.

Model-based feature extraction is accomplished by a series of linear and non-linear

estimation techniques, depending upon the types of features being extracted. For

instance, model parameters are easily extracted from SAR data by fitting measured

data points and curves to responses predicted by the models. An example is image

peak detection, which can be used to estimate the location (xq, yq) of the qth scattering

center. Another example is least squares fitting of the main lobe of the sinc function

in azimuth to a quadratic approximation in the spectral domain parameterized by

L [3]. A final example is pixel summation from images of different polarizations to

obtain the Krogager coefficients.

After the parameters are extracted, they are recorded in a feature vector. For

canonical scatterers, all of the model parameters previously introduced in this chapter

can be arranged in the feature vector

w = [x, y, |A|, ∠A, α, L, θ0, κo, κe]. (25)

2.3.3 Least Squares Scatterer Classification.

Scatterer classification is accomplished by a likelihood ratio test, where the mea-

sured feature vector is compared to a set of ideal feature vectors, each representing a

particular scatterer type. The simplest form of likelihood ratio test is the least squares

classifier, where the vectors are represented in a Euclidean space and are compared

using the Euclidean norm. The simplicity of the least squares classifier makes it the

clearest method by which to test the hypotheses of this dissertation. Once the new
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Figure 11. An example 2D feature space for a least squares classifier and four classes.
The extracted feature vector, vq, is superimposed on a feature space divided into four
regions by classification basis represented by ideal feature vectors weven, wedge, wodd,
and whelix.

theory for scatterer classification via domain decomposition is established, follow-on

work with more sophisticated classifiers can be accomplished.

An illustration of least squares classification with a two-dimensional feature vec-

tor, w = [κo, κe], is given in Figure 11. There are four ideal feature vectors, each

corresponding to a different class of scatterer. The Euclidean norm divides the fea-

ture space into four regions, one for each class. An example extracted feature vector

for the qth scatterer is illustrated by vq, which is nearest weven, as measured by the

Euclidean norm. In this case, the qth scatterer is most likely a canonical scatterer

producing an even-bounce, such as a dihedral.

2.3.3.1 Observations.

The entire gamut of pattern recognition techniques have been adapted for char-

acterizing and identifying objects in SAR imagery [63, 142]. While, some of these

techniques have proven useful in different applications, many approaches are limited

by the dilemma of combinatorial complexity, especially as the number of features
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increases [119]. In contrast, the use of simple physical models with only a few param-

eters has the advantage of producing efficient and optimal solutions, by the principle

of Occam’s razor [11].

Furthermore, scatterer classification results can be used as a first step in a tree

algorithm or as an initialization mechanism for higher-order classification algorithms.

For example, Reference [149] describes how information gleaned from a canonical scat-

terer classifier enables a secondary target classification algorithm to produce better

separation between classes for subsequent hypothesis testing.

A least squares classifier is optimal when the desired signal is corrupted only

by additive white Gaussian noise (AWGN). The thermal noise of a SAR system

produces AWGN in the phase history [133]. Likewise, the image contains AWGN with

a scaled variance due to coherent processing of the imaging operator [133]. However,

because the frequency and polarimetric parameters are taken from the magnitude or

intensity of an image, the noise affecting these parameters is expected to be colored.

Furthermore, the interference due to neighboring scatterers and clutter is expected

to be colored as well. As a result, the performance of the least squares classifier used

in this dissertation is expected to be suboptimal.

Fortunately, there are some scenarios where the noise, clutter, and interference

can be minimized, particularly for simple targets in free-space. Examples include

stealthy aircraft in flight, streamlined spacecraft, and simple objects inside anechoic

chambers. For other scenarios, such as imaging of the earth’s surface or imaging of

complex targets comprised of many scatterers in close proximity, the performance of

the least squares classifier is expected to be suboptimal. Nonetheless, a least squares

classifier is sufficient to illustrate the usefulness of the phase history decomposition

method for scatterer classification.
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III. Research Objective

This chapter serves as a foundation for the work in this dissertation. It presents

the motivation for the research as well as some of the expected benefits and limitations

of the new approach to imaging and scatterer classification based on phase history

decomposition.

3.1 Motivation

SAR images contain bright spots representing locations where strong backscat-

terers are present in the scene. Within these bright spots are pixels having localized

peak intensities, called image peaks. For example, Figure 12 is a SAR image of a resi-

dential scene taken from the moving and stationary target acquisition and recognition

(MSTAR) data set, where bright spots and image peaks are noticeable throughout

the image [38, 80].

Because the imaging operator assumes a scene consisting of ideal point scatterers,

the dispersive, anisotropic, and polarimetric (DAP) characteristics of bright spots and

peaks are not revealed in the image. Rather, these characteristics must be determined

through additional analyses. By analyzing the DAP characteristics of bright spots

and peaks, it is possible to measure the likelihood that a bright spot corresponds to a

specific type of object. So, one may ask: By analyzing these characteristics in Figure

12, is it possible to determine whether the bright spots in ovals A and B are more

likely due to automobiles or construction equipment or is it possible to determine if

the bright line in oval C is more likely due to a fence or pipeline?

In general, the number of possible inquiries is unlimited, and reasonable answers

depend upon contextual clues which are best deduced by human operators. Therefore,

it is desirable to succinctly present the DAP characteristics of bright spots and peaks
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Figure 12. SAR image of a residential scene. Ovals A, B, and C represent bright spots
of interest.

within the context of the image. Because SAR signals are processed in both the spatial

and spectral domains, it is helpful to categorize dispersive and anisotropic analysis

methods into two categories — image segmentation and phase history decomposition

— according to the domain in which they decompose the signal. (The most common

polarimetric analyses are performed in the spatial domain).

Image segmentation methods decompose the SAR signal in the spatial domain.

The basic steps of the image segmentation methods are depicted in Figure 13. First,

the segments are localized to bright spots or known locations of interest, such as

segments A, B, and C. Then, a time-frequency transform is applied to each segment

to produce a coarse resolution spectrum for further analysis. Image segmentation

methods are best represented by two research projects: the hyperimage concept de-

veloped at ONERA, the French Aerospace Lab, [46, 47, 48] and parametric scatterer

classification developed at The Ohio State University [3, 30, 62, 73]. Other image

segmentation methods in the literature are generally a variation of these two primary

methods.

The hyperimage concept simply displays the 2D resultant of a time-frequency

transform. An example hyperimage is shown in Figure 14. Unfortunately, a human
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Figure 13. Basic steps of the image segmentation methods.

analyst must manually select the image segments and transforms. Then the analyst

must scrutinize the resultants, each of which are displayed separately and outside the

image. Thus, the hyperimage concept is best suited for highly trained analysts having

ample time to conduct the analyses.

Parametric scatterer classification goes the extra step to match image segments

and their spectra to the spectral and polarimetric responses expected for a set of ideal

canonical scatterers. The set of canonical scatterers is limited, so that classification

results can be succinctly represented by a small set of symbols and displayed as an

overlay within the image context. Alternately, the classification results can be used
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Figure 14. SAR image of a helicopter with example hyperimage displaying the spectra
of seven image segments [46].

to simulate the phase history as a sum of canonical scatterers. From this simulated

phase history, the bright spots in the original image can be reconstructed as shown
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Figure 15. SAR image of T-72 tank from measured data (top) and simulated SAR image
reconstructed from a canonical scatterer model (bottom). The model parameters were
estimated using parametric scatterer classification with human supervision [30, 111].

in Figure 15. Classification accuracy is highly dependent upon the non-linear image

segmentation process, and for typical scenes, human supervision is needed to ensure

quality image segmentation [3, 62, 73]. In addition, when image segments contain

energy from more than one canonical scatterer, the selection of model order, Q,

also requires human supervision to ensure estimates of the model parameters are

accurate [3, 62, 73]. Finally, classification accuracy suffers when image segments

contain non-canonical scatterers, such as resonant cavities. Therefore, in practice,

parametric scatterer classification demands human supervision at some point in the

process to ensure accuracy. Unfortunately, existing image segmentation methods

cannot succinctly present the DAP characteristics of bright spots and peaks within

the image context in an operationally efficient, automated way.
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Figure 16. Basic steps of the phase history decomposition methods.

Phase history decomposition methods decompose the SAR signal in the spectral

domain, as previously described in Section 2.1.2.2. The basic steps of phase history

decomposition methods are depicted in Figure 16. The phase history is subdivided by

regular intervals into subdomains, and coarse resolution subimages are reconstructed

from each subdomain for further processing. In practice, angular bandwidth is less
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restricted than frequency bandwidth; therefore, the most common decompositions

are in azimuth, as previously described in 2.1.2.4. The full aperture is subdivided

into two or more subapertures of equal width. The resulting subimages are diverse in

azimuth, but with coarser resolution in cross-range than a full aperture image. These

subimages reveal the anisotropic scattering behavior of each image pixel, which can

be analyzed, or in the case of multilook SAR, averaged over the full aperture.

Similarly, for decompositions in frequency, the bandwidth is subdivided into two

or more subbands. Because the available bandwidth is often limited, the subbands

are usually equal to half of the full bandwidth. The resulting subimages are diverse

in frequency, but with coarser resolution in range than a fullband image. These

subimages reveal the dispersive scattering behavior of each image pixel, which can be

analyzed or directly displayed in tri-color as shown in Figure 17.

By employing domain decomposition techniques, the coarse resolution subimages

can be interpolated and summed to closely approximate a fine resolution image re-

constructed from the full aperture, fullband SAR signal. Therefore, phase history

decomposition methods are computationally efficient. In addition, DAP character-

istics of bright spots or peaks can be automatically extracted from the subimages

and succinctly presented within the image context without the need for image seg-

mentation, spectral analysis, or most importantly, human supervision. Finally, note

that polarimetric analyses commonly performed on images are also valid for use with

subimages. Because of the advantages in operational and computational efficiency

and the fact that canonical scatterers often comprise objects of interest, this disserta-

tion develops a new SAR imaging and scatterer classification theory based on phase

history decomposition.
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Figure 17. SAR image highlighting the dispersive characteristics of subimage pixels.
Subbands centered on frequencies 8.8 GHz, 9.4 GHz, and 10 GHz are coded as red,
green, and blue channels, respectively [46].

3.2 Proposed Solution

The new SAR imaging and scatterer classification theory centers around two hy-

potheses:

• it is possible to locate and classify canonical scatterers by observing the inten-

sities of subimage pixels, and

• phase history decomposition makes this approach to classification highly effi-

cient.

The first hypothesis requires development of a new model to predict the intensity of

subimage peaks due to canonical scatterers. Such models are called peak models. For

SAR signals, spatial resolution is inversely proportional to spectral bandwidth. This
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is a manifestation of the Gabor limit [60]. Therefore, phase history decomposition

methods essentially operate by sacrificing spatial resolution information to obtain

spectral bandwidth information. Typically, the spectral diversity of the subimages

is limited in order to maintain reasonable precision for scatterer localization. As a

result, only slowly varying pixel intensities can be accurately measured by subimage

analysis.

All canonical scatterers have a slowly varying amplitude response to changes in

frequency, in accordance with Equation (12). However, only canonical point scat-

terers, defined as having L ≈ 0 in Equation (13), have a slowly varying ampli-

tude response to changes in azimuth. Canonical point scatterers, such as a trihe-

dral, are characterized by the fact that their peak intensities are located at a single

location, or point, in the image, similar to the peak of a digitized sinc function

[42, 45, 57, 77, 122, 123, 131, 152, 153].

In contrast, distributed canonical scatterers, defined as having L > 0 in Equation

(13), have a rapidly varying, sinc-like amplitude response in azimuth [62, 122]. Dis-

tributed canonical scatterers, such as the common dihedral with a fold-line oriented

parallel to the imaging plane, are characterized by the fact that their energy usu-

ally spreads across multiple pixels. This is representative of a digitized rect function

with a region of support over multiple samples and ripple in accordance with Gibbs

phenomenon [107]. Thus, distributed scatterers often appear as a set of in-line peaks

of approximately the same amplitude. For example, in Figure 16, Oval C shows a

likely example of a distributed canonical scatterer, while Ovals A and B show likely

examples of canonical point scatterers.

Peak models have already been developed to predict the intensity of subimage

peaks due to canonical point scatterers [5, 57, 81, 117, 147, 150]. However, no model

exists to predict the intensity of subimage peaks due to distributed canonical scatterers.
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This dissertation develops a new multi-peak model to approximate the amplitudes of

localized image peaks that typically appear at a single pixel or an in-line group of pix-

els in a SAR image. The multi-peak model assumes high frequencies and uses a wide

angle approximation, but is an improvement over existing peak models because it

explicitly accounts for distributed scatterers. It replaces the rapidly varying azimuth

dependency of the amplitude function in the spectral domain with a slowly varying

frequency dependency. In this way, the multi-peak model accounts for distributed

scatterers while promoting the efficiencies associated with phase history decomposi-

tion methods.

The multi-peak model for a canonical scatterer with peak amplitude at location

(xq, yq) can be expressed mathematically as

|s̃q(xq, yq)| =
∣∣∣B

{
HBHΘS̃q(f, θ;wq)

}
(xq, yq)

∣∣∣

≈
∣∣∣B

{
HBHΘS̃q(f ;w′

q)
}

(xq, yq)
∣∣∣ ,

(26)

where wq is the set of parameters describing the amplitude function of the qth dis-

tributed canonical scatterer, while w′
q is a reduced set of parameters describing the

amplitude function of the equivalent canonical point scatterer. The equivalent canon-

ical point scatterer has an azimuth-independent, scaled amplitude function in the

spectral domain and a frequency dependency of reduced order. The approximation is

suitable for scatterers of sufficient electrical length and apertures of sufficient width.

These are the high-frequency and wide-angle assumptions of the multi-peak model.

Chapter IV develops the multi-point model and discusses the error due the approxi-

mation, as well as the conditions for which the error is well-controlled.

Not all image peaks are due to canonical scatterers. Therefore, there must be

a process for separating image peaks due to canonical scatterers from image peaks

due to non-canonical scatterers. Because non-canonical scatterers have amplitude
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responses that are rapidly varying or discontinuous in frequency, their image peaks

tend not to persist in subimages reconstructed from diverse subbands. Conversely,

canonical scatterers have a slowly varying amplitude response in frequency and tend

to persist. Therefore, the SPLIT algorithm uses a persistence criterion to reject non-

canonical scatterers from the scatterer classification process.

For each persistent peak, SPLIT compares the peak intensities from all subimages

to those predicted by the new multi-peak model. For example, in the case of two

subimages, the ratio of subimage peak intensities is related to the subband center

frequencies by [57]

|g̃1j(xq, yq)|2
|g̃2j(xq, yq)|2

≈
(

fc1

fc2

)α′+2

, (27)

where α′ is the parameter describing the order of the frequency dependency. Hence,

the value of α′ is estimated from the sampled image intensities on the left-hand side

and known center frequencies on the right-hand side. Alternately, when more than

two subimages at different subband center frequencies are analyzed, the estimation of

α′ becomes a straightforward curve fitting exercise [57]. When multiple polarizations

are available, the SPLIT algorithm also extracts the Krogager parameters from the

subimages. A least squares classifier compares the extracted parameters to the ideal

parameters for each type of canonical scatterer, as listed in Table 5. The SPLIT

algorithm and the error due to the narrow band approximation in Equation (27) are

developed in detail in Chapter V.

The multi-peak model and SPLIT algorithm support the first hypothesis, while

the second hypothesis is supported by the integrated algorithm. The integrated al-

gorithm combines SPLIT-based classification with a domain decomposition imaging

algorithm. The result is a computationally efficient scatterer classification algorithm

that autonomously presents classification results within the image context. The com-

putational complexity and cost of the integrated algorithm are presented in detail in
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Table 5. Extended Frequency Response and Polarimetric Parameters for Ideal Canon-
ical Scattering Geometries.

Scattering geometry α
′

κo κe

trihedral 2 1 0
dihedral90 2 0 1
cylinder90 1 1 0
top hat 1 0 1

sphere, plate 0 1 0
edge/wire90 0 0.5 0.5
dihedral0 0 0 1
cylinder0 -1 1 0

edge/wire0 -2 0.5 0.5
helical any 0 0

Chapter VI. Furthermore, all SAR imagery for the experiments in Chapter V were

produced using the integrated algorithm.

In summary, the multi-peak model, SPLIT algorithm, and integrated algorithm

form the foundation of a new theory for efficiently classifying canonical scatterers

through phase history decomposition. The operational efficiency is the key moti-

vation where DAP characteristics not readily available in the SAR image are made

available automatically in a computationally efficient way. These characteristics can

be succinctly displayed within the context of the SAR image and have the potential

to highlight areas of interest to aid in the management of high precision tools and

algorithms for SAR image analysis.
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IV. New Multi-Peak Model

This chapter presents the new multi-peak model to approximate the amplitudes of

localized image peaks that typically appear at a single pixel location or as an in-line

set of pixels in a SAR image. The multi-peak model is derived from a wide-angle

approximation of the well-known parametric model for canonical scatterers [62, 121],

which in turn, is based on physical models of electromagnetic scattering. In this way,

the multi-peak model is an improvement over existing peak models which poorly

represent distributed canonical scatterers, such as the common dihedral with a fold-

line oriented parallel to the imaging plane.

The multi-peak model approximates the image peak amplitudes due to distributed

canonical scatterers as if they are due to an equivalent point scatterer with an

azimuth-independent, dispersive amplitude function in the spectral domain. The

approximation results from the action of the imaging operator, which integrates the

sinc-like reflectivity pattern in azimuth over a sufficient aperture width. The relative

error due to the approximation is shown to be two percent or less when a tapered

window is used in azimuth, canonical scatterers are ten wavelengths long or longer,

and aperture widths are ten degrees wide or wider. In addition, because scatterers

with tilt angles near 0◦ behave as distributed scatterers and those with tilt angles

near 90◦ behave as point scatterers, another advantage of the multi-peak model is

that scatterer tilt angles near 0◦ and near 90◦ can be discriminated without the need

for fully-polarimetric SAR data.

The chapter is organized as follows. Section 4.1 gives the mathematical expres-

sion for an image peak due to a canonical scatterer. It discusses how and under

what conditions the imaging operator integrates the sinc-like amplitude response in

azimuth to produce a point-like amplitude response for distributed scatterers. Sec-

tion 4.2 presents numerical analysis to verify that error due to the approximation
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is two percent or less when canonical scatterers are ten wavelengths long or longer

and aperture widths are ten degrees wide or wider. Section 4.3 presents asymptotic

analysis which further reveals that the model error is best controlled with the use of

a tapered window in azimuth, such as the raised cosine windows employed in SAR

imaging algorithms. Section 4.4 presents the new multi-peak model and describes

how the model provides a reduced feature vector for scatterer classification by phase

history decomposition. Section 4.5 presents some additional considerations for using

the multi-point model with stripmap mode SAR collection geometries, where the syn-

thetic aperture is usually limited to a few degrees. Finally, Section 4.5.1 summarizes

the benefits and limitations of the new multi-peak model.

4.1 A Peak Model

From the scatterer models in Equations (7) of Section 2.1.3, (12) of Section 2.2.1,

and (13) of Section 2.2.2, the phase history due to a canonical scatterer is parame-

terized by

S̃q(f, θ;wq) = S̃f (f ; Aq, αq) × Sθ(f, θ; Lq, θ0q)e
−j2k|rq |, (28)

where Lq > 0 for a distributed canonical scatterer and Lq ≈ 0 for a canonical point

scatterer, setting Sθ ≈ 1. Thus, from Equations (9) and (10) of Section 2.1.3, the

image due to the qth canonical scatterer is

s̃q(x, y) =
1

2π

∫ ∞

−∞

∫ π

−π

HB(f − fc)HΘ(θ − θc)S̃f (f ; Aq, αq)

×Sθ(f, θ; Lq, θ0q)e
j2k(|r|−|rq)||f |dθdf.

(29)
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The peak amplitude of Equation (29) resides at location (xq, yq) in the image where

|r| = |rq|,∀θ. Thus, the peak amplitude is

s̃q(xq, yq) =
1

2π

∫ ∞

−∞
HB(f − fc)S̃f (f ; Aq, αq)|f |

×
∫ π

−π

HΘ(θ − θc)Sθ(f, θ; Lq, θ0q)dθdf.
(30)

Note that the integral in azimuth of Equation (29) represents an inverse Fourier

transform which affects the image of point scatterers and distributed scatterers dif-

ferently. A point scatterer with L ≈ 0 has a constant or slowly varying amplitude

response in azimuth, and the image will contain a single peak in accordance with

Equation (30). However, a distributed scatterer with L ≫ 0 has a sinc-like amplitude

function in azimuth, and given a sufficient aperture width, the image will contain a

rectangular function with ripple. The ripple is a manifestation of Gibbs phenomenon

[107] and results in one or more image peaks, depending upon the length of the scat-

terer and the dimensions of the image pixels. In this case, Equation (30) predicts

the amplitude of the rectangular function, including any peaks caused by ripple. The

multi-peak model derives its namesake from this effect, where distributed canonical

scatterers typically appear as an in-line group of multiple peaks in the image.

Consider a distributed canonical scatterer oriented so that the main lobe of the

sinc function is contained within the azimuth window. In this case, the resultant of the

inner integral of Equation (30) is dominated by the area under the main lobe. Indeed,

the sidelobes are small, diminished by the azimuth window, and add destructively, so

as to contribute very little to the result. Note also that the width of the main lobe

is inversely proportional to 2fL
c

. Thus, for a distributed canonical scatterer of fixed

physical length and oriented so that the main lobe of the sinc function is contained

within the azimuth window, the resultant of the inner integral has a magnitude that

is inversely proportional to frequency.
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This idea can be expressed by the mathematical approximation

∫ π

−π

HΘ(θ − θc)Sθ(f, θ; L, θ0)dθ ≈ cÂ

2fL
, Θ > Θmin, (31)

where Θmin is the minimum aperture width for which the area under the main lobe of

the sinc function dominates. Note that the Â dependency on HΘ and θ0 is suppressed

in the notation. This is a matter of convenience due to the assumption that azimuth

window and orientation angle are fixed during phase history decomposition.

Note that the approximation in Equation (31) depends upon the electrical length

of the scatterer, but this parameter is not usually controlled by the radar engineer.

Thus, an appropriate minimum of L & 10λ is chosen in accordance with the high-

frequency approximations of the underlying GO/GTD models [83]. Note also that

the approximation depends upon aperture width to capture the mainlobe of the sinc

function, and azimuth window to suppress the sidelobes of the sinc function. Both

of these are controllable by the radar engineer and are of primary importance. The

error introduced by the approximation and the window and aperture conditions for

which the error is well-controlled are best understood and illustrated by numerical

and asymptotic analysis.

4.2 Numerical Analysis

Numerical integration of Equation (31) for a range of frequencies and aperture

widths is shown in Fig. 18, for the case of L = 1 meter and a Hanning window for

HΘ. Figures 18(a) and (b) reveal that Â becomes independent of frequency when

Θ & 10◦ and f & 3 GHz for this case. Figure 18(c) also shows that this criteria

is met for varying orientation angles θ0. Because raised cosine windows, other than

Hanning, are often used in SAR imaging [76], these were also investigated and were
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(a) (b)

(c)

Figure 18. Numerical results for Eq. (31) where HΘ is a Hanning function with region
of support equal to Θ. The distributed scatterer is of length L = 1-meter.

observed to produce similar results to that shown in Fig. 18. The accuracy of the

approximation decreases gradually as the scatterer becomes electrically shorter, that
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is as f decreases or as L decreases in units of wavelength. The wavelength is defined

as λ = c/f .

Because the model in Equation (29) is based on GO/GTD, it is most accurate

for electrically large scatterers, where L & 10λ. This is sometimes referred to as the

physical optics region or high frequency approximation for electromagnetic scattering.

Accordingly, the numerical integration results in Figure 18 are truncated at fmin = 3

GHz, where the L = 1 meter scatterer is ten wavelengths long. Therefore, Θmin ≈ 10◦

is sufficient to support a high frequency approximation for electromagnetic scattering,

and for the purposes of this paper, apertures greater than ten degrees are considered

to constitute wide-angle SAR. In other contexts, the definition for wide-angle SAR

is constrained to the condition where bandwidth in frequency is much more limited

than bandwidth in azimuth [96, 110, 146], but Equation (31) is not limited to this

condition.

4.3 Asymptotic Analysis

Setting the limits of integration in Equation (31) to the region of support for HΘ,

θ ∈ [θc − Θ
2
, θc + Θ

2
], with the constraint Θ

2
< π

2
− |θ0| and setting θc = 0 without loss

of generality gives ∫ Θ

2

−Θ

2

HΘ(θ) sinc
[

2
c
fL sin(θ − θ0)

]
dθ. (32)

The change of variables a = 2fL
c

and x = sin(θ − θ0) further simplifies the integral to

Â ≈
∫ 1

−1

[
HΘ(θ0 + sin−1 x)√

1 − x2

]
a sinc(ax)dx, (33)

where the earlier constraint causes the limits of integration to be constrained to the

interval
[
sin

(
−Θ

2
− θ0

)
, sin

(
Θ
2
− θ0

)]
, or more generally x ∈ [−1, 1]. As a approaches

infinity, the second factor in Equation (33) is a form of the Dirac delta function [95].
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Under this limit, the sinc function becomes a sampling function so that the first factor

is sampled at x = 0, and

lim
a→∞

Â = lim
a→∞

∫ 1

−1

[
HΘ(θ0 + sin−1 x)√

1 − x2

]
a sinc(ax)dx

= HΘ(θ0), (34)

where HΘ(θ0) is assumed positive for |θ0| < Θ
2

and zero otherwise. Under the limit,

Â equals a constant; therefore, the error introduced by the wide-angle approximation

in Equation (31) is bounded. That is, for any typical azimuth window, the error

bound diminishes with increasing frequency, or equivalently as the distributed scatter

increases in electrical length.

Bounded error alone is not sufficient to make the wide-angle approximation gen-

erally useful for time-frequency analysis of SAR imagery. It is also important that Â

be insensitive to changes in frequency, or equivalently, changes in a. This sensitivity

is revealed by taking the partial derivative with respect to a of the right hand side of

Equation (33), where a partial derivative equal to zero reveals that Â is independent

of a. Thus, noting that ∂(a sinc(ax))
∂a

= cos(πax), the wide-angle approximation relative

error is defined as

ǫ(HΘ, a, θ0) =

∣∣∣∣
∫ 1

−1

[
HΘ(θ0+sin−1 x)√

1−x2

]
cos(πax)dx

∣∣∣∣
HΘ(θ0)

, (35)

where ǫ = 0 indicates that Â is independent of a. Plots of the error are shown in

Fig. 19 for the case of θ0 = 0 and for cases a = 20 and a = 40. The plots compare

the errors of a rectangular azimuth window and three other windows commonly used

in SAR image processing [76]. All windows are in accordance to MatlabR© default

definitions. The Hanning window appears to perform best overall, while the Taylor
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Figure 19. Wide-Angle approximation relative error for a rectangular window in az-
imuth and three other windows commonly used in SAR image processing.

window performance is marginal, and the rectangular window performance is notably

poor. Similar results are obtained for larger values of a, but with lower overall error,

as expected. Also as expected, the error increases rapidly for an aperture width less

than ten degrees, regardless of window type. In addition, the results are similar for

varying values of θ0. Because a rectangular window in azimuth causes much larger

error than that caused by a tapered window, the multi-peak model is recommended

for use with tapered windows, such as the family of raised cosine windows typically

employed for SAR imagery.

4.4 The Multi-Peak Model

Based on the azimuth limitations of the model, the peak amplitude of the qth

scattering center in Equation (30) is approximated as

s̃q(xq, yq) ≈
1

2π

∫ ∞

−∞
HB(f − fc)Aq(jf)αq/2|f |

[
cÂq

2fLq

]
df (36)
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for scatterers of sufficient length (L & 10λ) and an aperture of sufficient width (Θ &

10◦). Here, the phase history due to the qth scatterer is independent of θ. This result

is derived from Equation (30) when expressed in polar coordinates, but a similar

result can be obtained for rectangular coordinates using the far field approximation,

R(x, y) ≈ x cos θ + y sin θ, and the small angle approximation, f =
√

f 2
x + f 2

y ≈

fy. Therefore, for rectangularly formatted phase histories, an additional aperture

limitation of Θ . 20◦ is required in order to support a small angle approximation.

Because L is usually not known a priori, it is desirable to modify Equation (36)

to account for both distributed and point scatterers with a single parameter, α′.

Adopting the form of Equation (12), a convenient form for Equation (36) is

s̃q(xq, yq) ≈
1

2π

∫ ∞

−∞

∫ π

−π

HB(f − fc)HΘ(θ − θc)
[
A′

q(jf)α′

q/2
]
|f |dθdf, (37)

where

S̃q(f ;w′
q) = A′

q(jf)α′

q/2e−j2k|rq | (38)

is the phase history for an equivalent point scatterer to Equation (28) of Section 4.1.

For canonical point scatterers, L ≈ 0, which in turn causes α′ = α and A′ = A. For

distributed canonical scatters, L & 10λ and Θ & 10◦, which in turn causes α′ = α−2

and A′ = AcÂj
2L

∫
HΘ(θ−θc)dθ

. This supports the hypothesis expressed in Equation (26)

of Section 3.2 where w = [x, y, A, α, L, θ0] from Equation (28) and w′ = [x, y, A′, α′]

from Equation (38). Therefore, the SAR image peak amplitude due to a distributed

canonical scatterer can be modeled as due to an equivalent canonical point scatterer

having an azimuth-independent, scaled amplitude function in the spectral domain

and a frequency dependency of reduced order.

The fact that image peaks due to any canonical scatterer can now be approximated

as due to a canonical point scatterer is central to the high-frequency multi-peak model
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Table 6. Extended Frequency Response Parameter for Ideal Canonical Scattering Ge-
ometries.

Scattering geometry α
′

trihedral, dihedral90 2
cylinder90, top hat 1

sphere, plate, edge/wire90, dihedral0 0
cylinder0 -1

edge/wire0 -2

for wide-angle SAR. This new model provides an extension of the traditional point

model in Equation (12) of Section 2.2.1, and as a result, Table 2 of Section 2.2.1

expands to become Table 6. Aside from the plate, which is symmetric under the

model in two dimensions, the distributed scatterers are discriminated from their point

scatterer variants by tilt angles of 0◦ and 90◦, as indicated by a subscript. A benefit

of the multi-peak model is that scatterer tilt angles of τ ≈ 0◦ and τ ≈ 90◦ can be

discriminated without the need for fully-polarimetric SAR data.

If fully polarimetric data is available, ambiguity between most scatters can be

further resolved using a Krogager decomposition to obtain proportions of the odd-

bounce, even-bounce, and helical scattering [86]. Table 5 lists the new frequency

parameter α′ with the odd and even bounce parameters κo and κe, respectively. Us-

ing this basis for classification, only the sphere and plate are ambiguous. When the

phase history is imaged over multiple, wide-angle subapertures, then for reasonable

elevation angles (e.g. less than 60◦), point scatterers will tend to persist across mul-

tiple subaperture images, whereas, distributed scatterers do not persist. In this case,

a persistence criteria can be used to further resolve ambiguity between distributed

and point scatterers, such as the sphere and plate. The papers [26, 96, 110, 137] and

their references contain information on scatterer persistence which, for brevity, are

not addressed in this dissertation.
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4.5 Stripmap Mode SAR Considerations

The multi-peak model is accurate for the case of L & 10λ and Θ & 10◦. However,

stripmap mode SAR systems often have aperture widths less than 10◦. In addi-

tion, the multi-peak model also assumes an imaging operator that is a 2D transform

between the spectral and spatial domains. However, some stripmap mode imaging al-

gorithms do not operate in the 2D spectral domain. In response to these restrictions,

this section examines the special considerations that govern the use of the multi-peak

model with stripmap mode SAR systems.

The angular diversity in stripmap SAR signals is ultimately restricted to the width

of the azimuth beamwidth. Furthermore, a narrow azimuth beamwidth is usually

desired for two primary reasons. The first is a matter of antenna gain. A narrow

beamwidth creates a higher antenna gain, improving the overall signal to noise ratio

of the SAR system [36]. The second is a matter of pulse repetition frequency (PRF).

The PRF determines the Doppler sampling rate, and so a higher PRF provides for

a larger angular diversity without aliasing [36]. However, the PRF should also be

low enough that the signal corresponding to the entire swath width can be received

without range ambiguity [36]. These two requirements are in competition, and the

PRF is usually chosen to limit angular diversity so as to obtain a wider swath width.

Thus, as angular diversity is limited by PRF, very large azimuth beamwidths provide

no additional advantage, in most cases.

The half-power beamwidth of a radar system can be approximated by [36]

Θ ≈ 0.88
c

fcl
, (39)

where Θ is in units of radians, c is the speed of light, fc is the center frequency of

the radar signal, and l is the physical length of the antenna. For convenience, typical
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Table 7. Azimuth Beamwidths of Various SAR System Types [52, 36, 37, 148, 129, 98,
128, 132, 97, 114, 69, 143].

Θ System Type Band l(m)

< 1◦ spaceborne X 5-15
< 1◦ spaceborne C 8-15
1◦ spaceborne L 8-15

1◦ − 2◦ airborne X 0.6-1.1
2◦ − 4◦ airborne C 0.7-1.4
7◦ − 15◦ airborne L 0.7-1.6

20◦ − 115◦ airborne P 0.7-1.8

azimuth beamwidths for a variety of SAR systems are listed in Table 7. Here,

typical wavelengths for X-, C-, L-band radars were approximately 9.6, 5.3, 1.3 GHz,

respectively, while P-band frequencies varied.

For stripmap mode SAR, only airborne systems in L-band and P-band are ex-

pected to provide a large angular diversity, while other systems typically have an

angular diversity of only a few degrees or less. For convenience, the remaining dis-

cussion equates the angular diversity or aperture of the SAR system to its half-power

beamwidth in azimuth.

One significant limitation of the multi-point model is that it assumes azimuth

integration is performed in the two-dimensional (2D) spectral domain. While in-

tegration of 2D spectral domain data is standard for most spotlight mode imaging

algorithms, it is not standard for stripmap mode imaging algorithms. For instance,

the range-Doppler algorithm (RDA) and the chirp scaling algorithm (CSA) perform

azimuth integration in the range-Doppler domain, not the 2D spectral domain [36].

The range-Doppler domain is obtained by performing range-frequency integration

before azimuth integration. As a result, the azimuth response of canonical scatter-

ers is not integrated out at an appropriate level to allow the amplitude response of

distributed canonical scatterers to become azimuth-independent. Therefore, a key

assumption of the new multi-point model is violated for these imaging algorithms.
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Figure 20. Relative wide-angle approximation errors for distributed canonical scatter-
ers of varying lengths. HΘ is a Kaiser window with a coefficient equal to 3.6 and a
region of support equal to Θ.

Fortunately, the omega-K algorithm (OKA) is a stripmap mode imaging algorithm

that has the advantage of processing data in the 2D spectral domain. In addition,

the OKA is considered the most accurate of the stripmap mode imaging algorithms

for SAR data collected over a wide-aperture [36]. For these reasons, the OKA is

recommended for use with the new scatterer classification method for wide-angle

SAR, whereas the RDA and CSA are not.

The accuracy of the multi-point model degrades with a narrowing aperture or

a reduction in the electrical length of the scatterer. Specifically, as the scatterer

becomes electrically longer, the model tolerates a narrower aperture. For example,

plots of the relative wide-angle approximation error from Equation (35) for a Kaiser

window with a coefficient equal to 3.6, an orientation angle of zero degrees, and a

range of scatterer lengths are provided in Figure 20. (The Kaiser window simulates

the azimuth beam pattern [36].) It can be seen that for a given subaperture width,

the minimum length for which the multi-point model error is kept at near two-percent

or less is Lmin ≈ 80λ/Θ, where Θ is expressed in degrees. Using this error threshold

63



as an example and combining these results with Eq. 39, produces the relationship

Lmin ≈ 1.6l, (40)

which can be used as a rule of thumb for estimating the minimum effective length

of distributed scatterers which will be well modeled for a given SAR system. Addi-

tional analysis reveals that the factor 1.6 in Equation (40) is directly related to the

broadening factor of the azimuth window. It follows that a window with a smaller

broadening factor will produce a first null in the error function at a smaller aperture

width, but at the expense of higher sidelobes. Sidelobes in the error function are

controlled by choice of azimuth window. Additional analysis revealed that the raised

cosine windows typically employed in radar imaging, such as Taylor, Hanning and

Hamming, are sufficient to control modeling error. Such windows all have similar

broadening factors which are not expected to have a great effect on the relationship

given in Equation (40).

Using Equation (40) to evaluate the SAR systems listed in Table 7 reveals that

the spaceborne radars possess antenna lengths which require distributed canonical

scatterers with effective lengths of 10 to 20 meters in order to ensure accuracy of the

multi-point model. In contrast, airborne radars are an order of magnitude shorter

and effective lengths of only a few meters are sufficient. Last, note that the above

analysis focused on distributed canonical scatterers, with an effective length L > 0.

Recall that, canonical point scatterers, such as spheres and trihedrals, have a constant

or slowly varying angular response in azimuth. Therefore, canonical point scatterers

have an effective length of L ≈ 0 and are modeled accurately, regardless of aperture

width or antenna size.
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4.5.1 Summary of Benefits and Limitations.

This chapter presented a new multi-peak model, as expressed in Equations (37)

and (38) of Section 4.4, to predict the dispersive behavior of subimage peaks due

to canonical scatterers. The model was shown to be an improvement over existing

peak models because it accounts for common distributed canonical scatterers, includ-

ing plates at broadside aspect, as well as dihedrals, cylinders, and edges/wires lying

parallel to the imaging plane. For distributed canonical scatterers, the model ap-

proximates the amplitude response with a single factor having an inverse frequency

dependency. This factor replaces the integration of the mainlobe of the sinc-like re-

flectivity pattern in azimuth as part of the imaging process. The approximation was

shown to be valid for wide-angle SAR when the synthetic aperture is greater than ten

degrees in azimuth. Furthermore, the model accuracy was shown to degrade gradually

with a decrease in aperture width below ten degrees. The wide-angle approximation

error was shown to be controllable, but is quite high for a rectangular window in

azimuth. Therefore, the new multi-peak model is recommended for use with tapered

windows.

The new multi-peak model is useful for scatterer classification by phase history

domain decomposition methods. These methods sacrifice some precision in scatterer

localization in order to gain efficiency by removing the need for human supervision

typically required for image segmentation methods. Future follow-on research may

reveal even more benefits of the new multi-peak model. However, notable limitations

of the model include the following. Accuracy of the model is limited to the restricted

apertures Θ & 10◦ for polar formatted data and 10◦ . Θ . 20◦ for rectangular

formatted data; scatterers must be of sufficient length (L & 10λ) to support a high-

frequency approximation; and a tapered window must be employed in azimuth to

suppress the sidelobes of the sinc function. In addition, the multi-peak model is de-
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veloped from GO/GTD scattering models which assume a perfect electrical conductor

in the far field. Furthermore, the model assumes a normalized phase history account-

ing for antenna gain pattern, spherical wave propagation, and other losses. Lastly,

for stripmap mode SAR, the accuracy of the model is limited to use of the Omega-

K algorithm and distributed scatterers having an effective length approximately 1.6

times the physical length of the antenna.
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V. SPLIT Algorithm

This chapter develops the SPLIT algorithm for classifying canonical scatterers.

Section 5.1 explains how the SPLIT algorithm analyzes the pixels of all subimages

within a given subaperture and extracts a feature vector based on the multi-peak

model. Section 5.2 describes how these feature vectors are summed across multi-

ple subapertures. Section 5.3 develops a least squares classification algorithm using

the Euclidean norm for a set of ideal feature vectors, each representing a class of

canonical scatterer. Section 5.4 presents SPLIT scatterer classification results for

simulated and measured data. Finally, Section 5.5 examines the sensitivity of SPLIT

classification accuracy to signal parameters, such bandwidth and interference due to

neighboring canonical scatterers, clutter, and noise. It presents a statistical signal

model with associated Monte Carlo simulations to illustrate the impact of bandwidth

and interference on classification accuracy.

5.1 Subaperture Feature Extraction

The SPLIT algorithm analyzes the pixels of all subimages within a given sub-

aperture and extracts a feature vector based on the multi-peak model. Given an

M × N subimage, the feature vector for a peak at the subimage pixel (m, n) in the

jth subaperture is

vj(m, n) = [α′, κo, κe]j, (41)

where α′ is the frequency parameter of the multi-peak model and κo and κe are the

proportion of odd-bounce and even-bounce scattering energy, respectively.

The following subsections describe the steps of the SPLIT algorithm. First, the

scattering centers are localized to subimage pixels (mq, nq) using a peak detection

algorithm. The peak detection algorithm identifies any peaks appearing at the same
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Figure 21. Scattering centers are stationary in range with changes in frequency [28].

location in all subimages. These stable peaks indicate a stationary and slowly varying

amplitude response to changes in frequency, and thus, are likely due to canonical

point scatterers. Next, SPLIT extracts the frequency parameter from the available

co-polarization channels using a least squares estimator. Finally, SPLIT extracts

the polarimetric parameters from each subimage using Krogager decomposition, as

applicable.

5.1.1 Scattering Center Localization.

Scattering centers are stationary in range with changes in frequency, as illustrated

by the simulated 1D range profiles of Figure 21. In addition, the multi-peak model

predicts that image peaks due to canonical point scatterers have an amplitude that

varies slowly with changes in frequency. Therefore, the subimage peaks due to canon-

ical point scatterers are expected to be stable and occur at the same pixel coordinates

in each subimage. In contrast, non-canonical scatterers, such as those due to reso-

nance, material dispersion, structural dispersion, or scatter motion, are not expected

to produce stable subimage peaks. In this way, the SPLIT algorithm determines the

likely locations of canonical scatters using a stable subimage peaks detector.

The stable subimage peaks detector works as follows. For subimages of the jth

subaperture, the SPLIT algorithm assigns a ‘1’ to each pixel that is a local peak

as compared to its neighboring pixels. It assigns all other pixels a ‘0.’ The SPLIT
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algorithm arranges the pixel values in an M × N array, one for each subimage. An

illustrative example featuring three subimages is given by

|g̃1j|2 =





2 3 6 3

4 5 10 4

17 8 4 7

4 6 7 11





, |g̃2j|2 =





10 4 3 2

7 9 20 7

18 8 2 3

4 6 7 10





, |g̃3j|2 =





1 2 6 1

4 5 19 4

20 9 8 3

4 7 14 8





,

where the output of the peak detector, D{·}, for each subimage is

D
{
|g̃1j|2

}
=





0 0 0 0

0 0 1 0

1 0 0 0

0 0 0 1





, D
{
|g̃2j|2

}
=





1 0 0 0

0 0 1 0

1 0 0 0

0 0 0 1





, D
{
|g̃3j|2

}
=





0 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0





.

The peak detector can be readily implemented using the imregionalmax function

in Matlab R©. The stable peaks are found by a simple element-wise multiplication,

sometimes referred to as an array multiply. The result of the stable peak detector is

I⊗

i=1

D
{
|g̃ij|2

}
=





0 0 0 0

0 0 1 0

1 0 0 0

0 0 0 0





. (42)

where
⊗

represents array multiplication and I = 3 is the number of subimages. For

the illustrative example in Equation (42), there are only two stable subimage peaks,

and these pixel coordinates reveal the likely locations of canonical scatterers.
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5.1.2 Frequency Parameter Estimation.

The SPLIT algorithm obtains a frequency parameter estimate by examining the

intensities of the stable subimage pixels and comparing these intensities to those pre-

dicted by the multi-peak model. This section presents a mathematical development

for a simple exponential relationship between the measured subimage pixel intensities

and the known subband center frequencies. The exponent is directly related to the

frequency parameter, α′ of the multi-peak model. The relationship is based on a first

order approximation using a narrow-band assumption. The following subsections ex-

amine the error due to the narrow-band approximation and describe a curve fitting

procedure for estimating the frequency parameter from the peak intensity measure-

ments.

5.1.2.1 First Order Approximation.

Starting with the multi-peak model for the qth scattering center from Equation

(37) of Section 4.4 and signifying the wide-angle approximation with the ̂ symbol

gives the equality

̂̃sq(xq, yq) =
1

2π

∫ π

−π

HΘ(θ − θc)dθ

∫ ∞

−∞
HB(f − fc)

A′

j
(jf)1+α′/2df. (43)

Setting C = A′

j2π

∫
HΘ(θ − θc)dθ, assuming only positive frequencies, and applying a

Taylor series expansion of (jf)α′/2 in the neighborhood of fc gives

̂̃sq(xq, yq) = C

∫ ∞

−∞
HB(f − fc)

[
(jfc)

1+α′/2 +
∞∑

n=1

1

n!

dn(jf)1+α′/2

dfn

∣∣∣∣
f=fc

(f − fc)
n

]
df.

(44)
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Defining hB(t) as the inverse Fourier transform (IFT) of HB(f) gives

̂̃sq(xq, yq) = C(jfc)
1+α′/2hB(0) + C

∞∑

n=1

1

n!

dn(jf)1+α′/2

dfn

∣∣∣∣
f=fc

h
(n)
B (0)

jn
, (45)

where the second term contains higher-order functions resulting from the Taylor series

expansion and frequency domain differentiation property of Fourier transforms [107].

Note that a symmetric azimuth window will cause all odd-ordered derivatives of

h
(n)
B (0) to become zero. Furthermore, for α′ ∈ {−2, 0} the derivative with respect to f

becomes zero for all n. These facts combined with a narrow-band assumption, causes

the summation term in Equation (45) to be negligibly small in practice. For example,

in the case of 4.0 GHz bandwidth at X-band, the relative error due to the approxi-

mation is less than one-percent. An analysis of the narrow-band approximation error

is provided in the following subsection.

Consider the stable subimage pixel (mq, nq) dominated by the response due to a

canonical scatterer at coordinates (xq, yq). In this case, a first-order approximation of

the ratio of the pixel intensities between two subimages, having subwindows centered

at two different center frequencies, fc1 and fc2 is

|g̃1j(mq, nq)|2
|g̃2j(mq, nq)|2

≈ |C(jfc1)
1+α′/2hB(0)|2

|C(jfc2)1+α′/2hB(0)|2 . (46)

Assuming a uniformity in the sampling and weighting of each subdomain (i.e. sub-

windows in azimuth are identical and each subband has an equal number of uniform

samples) allows the constants in the numerator and denominator to cancel. This

results in a simple relationship between the measured subimage pixel intensities and

the subband center frequencies given by

|g̃1j(mq, nq)|2
|g̃2j(mq, nq)|2

≈
(

fc1

fc2

)α′+2

, (47)
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where the accuracy of the approximation is subject to three conditions:

1. the energy in the pixel is dominated by the backscattering from a canonical

scatterer;

2. the wide-angle approximation error of the multi-peak model is well-controlled;

and

3. the narrow-band approximation error resulting from ignoring the higher-order

terms in Equation (45) is negligible.

The first assumption is addressed later in Section 5.5, the wide-angle approxima-

tion error was previously addressed in Sections 4.2 and 4.3, and the narrow-band

approximation error is discussed in the following subsection.

5.1.2.2 Narrow-band Approximation Error.

This section examines the narrow-band approximation error, which results from

ignoring the higher-order terms in Equation (45). The following derivation assumes

that the subwindow in frequency is symmetric, with frequencies restricted to positive

values, so that fc > 0 and B < 2fc. Under these conditions, the band limited integral

of Equation (43) becomes

̂̃sq(xq, yq) = C

∫ fc+B/2

fc−B/2

HB(f − fc)(jf)1+α′/2df. (48)

Next, note that

(jf)1+α′/2 =
(√

j
)α′+2

f 1+α′/2 =

(±(1 + j)√
2

)α′+2

f 1+α′/2. (49)
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In order to analyze the error in the neighborhood of fc, let

(jf)1+α′/2 = (jfc)
1+α′/2 + (jf)1+α′/2 − (jfc)

1+α′/2

=

(±(1 + j)√
2

)α′+2 [
f 1+α′/2

c + f 1+α′/2 − f 1+α′/2
c

]

=

(±(1 + j)√
2

)α′+2

f 1+α′/2
c

[
1 +

(
f

fc

)1+α′/2

− 1

]
.

(50)

Choosing to restrict the function (jf)1+α′/2 to positive roots, recalling that the window

is centered on frequency fc, setting D = C
(

1+j√
2

)α′+2

f
1+α′/2
c , and substituting into

Equation (48) gives

̂̃sq(xq, yq) = D

∫ fc+B/2

fc−B/2

HB(f − fc)

[
1 +

(
f

fc

)1+α′/2

− 1

]
df

= D

{
hB(0) +

∫ fc+B/2

fc−B/2

HB(f − fc)

[(
f

fc

)1+α′/2

− 1

]
df

}
,

(51)

where the first term represents the first order approximation of Equation (45) used in

Equation (46) and the integral represents the error terms. The narrow-band relative

error is defined as the magnitude of the error terms divided by the first order ap-

proximation term. With the change of variables u = f − fc, the narrow-band relative

error is

ε(HB, β) =

∣∣∣∣∣

∫ B/2

−B/2

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du

∣∣∣∣∣
hB(0)

, (52)

where the error is dependent upon the window function and fractional bandwidth,

β = B/fc.

73



A bound on the error can be derived by examining the integral in the numerator of

Equation (52) partitioned about zero. Assuming a positive-valued window, HB(u) ≥

0, then for the case of α′ > −2:

∫ 0

−B/2

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du ≤ 0 ≤

∫ B/2

0

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du

(53)

Alternately, for the case of α′ < −2, the inequalities in Equation (53) are reversed.

Note also that

∣∣∣∣∣

∫ 0

−B/2

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du

∣∣∣∣∣ ≥
∣∣∣∣∣

∫ B/2

0

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du

∣∣∣∣∣ .

(54)

Thus, from Equations (51) through (54) the error is bounded by

ε(HB, β) ≤ − sgn(α′ + 2)

hB(0)

{∫ 0

−B/2

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du

+

∫ B/2

0

HB(u)

[(
1 +

u

fc

)1+α′/2

− 1

]
du

}
.

(55)

Furthermore, assuming a rectangular window and applying the mean value theorem

for integration produces an even tighter bound given by

ε(HB, β) ≤ − sgn(α′ + 2)

hB(0)

{∫ 0

−B/2

HB(u) · mean

[(
1 +

u

fc

)1+α′/2

− 1

]
du

+

∫ B/2

0

HB(u) · mean

[(
1 +

u

fc

)1+α′/2

− 1

]
du

}

≤ − sgn(α′ + 2)

{
mean

−B/2<u<0

[(
1 +

u

fc

)1+α′/2

− 1

]

+ mean
0<u<B/2

[(
1 +

u

fc

)1+α′/2

− 1

]
du

}
,

(56)
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where the mean values must be determined separately for the case of α′ = −4, because

in this case, the exponent is -1.

For the case of α′ 6= −4:

mean
−B/2<u<0

[(
1 +

u

fc

)1+α′/2

− 1

]
=

2

B

∫ 0

−B/2

[(
1 +

u

fc

)1+α′/2

− 1

]
du

=
2

B

[
2fc

4 + α′

(
1 +

u

fc

)2+α′/2

− u

]∣∣∣∣∣

0

−B/2

=
2

B

[
2fc

4 + α′ −
2fc

4 + α′

(
1 − B

2fc

)2+α′/2

− B

2

]

(57)

and

mean
0<u<B/2

[(
1 +

u

fc

)1+α′/2

− 1

]
=

2

B

∫ B/2

0

[(
1 +

u

fc

)1+α′/2

− 1

]
du

=
2

B

[
2fc

4 + α′

(
1 − B

2fc

)2+α′/2

− B

2
− 2fc

4 + α′

]

(58)

For the case of α′ = −4:

mean
−B/2<u<0

[(
1 +

u

fc

)−1

− 1

]
=

2

B

∫ fc

fc−B/2

[
fc

f
− 1

]
df

=
2fc

B

[
ln(f) − f

fc

]∣∣∣∣
fc

fc−B/2

=
2fc

B

[
ln(fc) − ln

(
fc −

B

2

)
− B

2fc

]

(59)

75



and

mean
0<u<B/2

[(
1 +

u

fc

)−1

− 1

]
=

2

B

∫ fc+B/2

fc

[
fc

f
− 1

]
df

=
2fc

B

[
ln

(
fc +

B

2

)
− B

2fc

− ln(fc)

]
(60)

From Equations (57) through (60) and recalling from Equation (45) that the error

is zero for the case of α′ = {−2, 0}, the bound on the narrow-band approximation

relative error is

ε(rect, β) ≤






0, α′ ∈ {−2, 0}

2

β
ln

(
2 + β

2 − β

)
− 2, α′ = −4

−4 sgn(α′ + 2)

β(4 + α′)

[(
2 + β

2

)2+α′/2

−
(

2 − β

2

)2+α′/2
]

+2 sgn(α′ + 2),

otherwise

,

(61)

where the window in frequency is assumed to be a rect function given by HB(f) =

rect[−B/2, B/2]. The bounds for α′ ∈ {−1, 1, 2} are shown in Figure 22 for a rect

window. Note that the actual error is well below this bound for the case of a tapered

window. For example, the results from a numerical analysis of Equation (52) for a

Hanning window are shown in Figure 23. In this case, the error is less than one-

percent for a fractional bandwidth of 0.5 or less.

76



Figure 22. Narrow-band approximation relative error bounds in Equation (61) as a
function of fractional bandwidth for a rectangular window.

5.1.3 Polar Reformatting Considerations.

The polar format algorithm (PFA) is a very common SAR imaging algorithm

which deserves specific consideration. Recall that the derivation of Equation (47)

assumed an imaging operator in polar coordinates with uniform sampling and weight-

ing in each subdomain. However, the PFA features a rectangular imaging operator

through a coordinate transformation that eliminates the |f | factor, often referred to

informally as the Jacobian [40]. Under the far field assumption and small angle ap-

proximation, Θ . 20◦, described earlier in Section 4.4, the multi-peak model is still

valid. The far field assumption produces a polar to rectangular transformation given

by |f |dfdθ = dfxdfy, f =
√

f 2
x + f 2

y , and θ = tan−1(fy/fx) [76].

Note also that the effective sampling density changes during polar to rectangular

reformatting as shown in Figure 24. In the case of an inscribed rectangle and
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Figure 23. Narrow-band approximation relative error in Equation (52) numerically
evaluated as a function of fractional bandwidth for a Hanning window.

(a) Inscribed rectangle with rectangular
windows

(b) Circumscribed rectangle with polar windows

Figure 24. Polar reformatting examples. Circles are the original samples in polar
coordinates, and squares are the interpolated samples in rectangular coordinates. The
black squares are assigned a value of zero.
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rectangular windows, the sample density and weighting are uniform as shown in

Figure 24(a). Here, the circles represent the original samples in polar coordinates

and the squares are interpolated to be uniformly sampled in rectangular coordinates.

As a result, the removal of the Jacobian causes the order of the exponent to reduce

from α′ + 2 to α′ for Equations (43) through (61).

Alternately, for the case of polar windows and a circumscribed rectangle, the

weighting and zero-padding around the original annulus varies with frequency, as

shown in Figure 24(b). Here, the black squares are assigned a value of zero. As a

result, a Jacobian-like weighting of the phase history persists even after the Jacobian

has been removed. Therefore, the order of the exponent from earlier discussions will

remain unchanged due to the polar weighting of the samples.

For hybrids of the two schemes above, the exponent will need to be adjusted

according to the effective weighting caused by the resulting sample densities. The

polar reformatting algorithm is discussed at length in References [24] and [76].

5.1.3.1 Iterative Curve Fitting Algorithm.

For the case of two subimages, the frequency parameter is easily obtained from

the measured subimage pixel intensities using Equation (47). However, for the case

of more than two subimages, there are more than two subimage pixel intensity mea-

surements. In this case, frequency parameter estimation requires curve fitting of the

measurements to the set of normalized, ideal curves expected for a given α′. Typically,

no truth data exists for these measurements; so any attempt to normalize the mea-

surements creates an overdetermined system of equations. The iterative curve fitting

algorithm developed in this section solves the overdetermined system of equations

using a gradient decent technique [120, 10]. It assumes that there are I subimages

for the jth subaperture.
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Using the preselected subband center frequencies, a normalized frequency vector

is defined as

f(α′) =

[
(fc1)

α′+2, (fc2)
α′+2, ..., (fcI)

α′+2
]T

(fc)α′+2
, (62)

where T indicates the transpose and fc is the center frequency of the full bandwidth,

B. This vector can be interpreted as defining the normalized values (or curves) that a

set of ideal, normalized intensity measurements will assume for a given α′. Similarly,

an observation vector of the pixel intensities in each subimage is defined as

σ =
[
|g̃1j(mq, nq)|2, |g̃2j(mq, nq)|2, ..., |g̃Ij(mq, nq)|2

]T
. (63)

Typically, no truth data exists, and so the correct normalization factor, ν, is unknown

a priori. Therefore, there exists an overdetermined linear system defined as σ/ν =

f(α′). In response, the iterative curve fitting algorithm obtains an estimate of α′ using

a greedy search method that continually reduces the total least squares error of the

optimal normalization factor. This can be interpreted as adjusting α′ to find the best

possible fit to the family of curves defined by f(α′).

Beginning with Equation (47), the algorithm assigns the initial value

α′
1 =

log

(
|g̃1j(mq, nq)|2
|g̃Ij(mq, nq)|2

)

log
(

fc1

fcI

) − 2, (64)

where the subscript on α′ indicates the current iteration of the algorithm. In each

iteration, the optimal normalization factor will minimize the norm of the residual

expressed as ||σ/ν − f(α′)||2. This is determined by setting the derivative of the

square of the norm of the residual to zero [10, 120]. Thus, the optimal normalization
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factor for the kth iteration is

ν̂k =
(σT

σ)

σT f(α′
k)

, (65)

where theˆ symbol indicates that this is an estimate of the normalization factor. This

estimate may be refined by additional iterations of the curve fitting algorithm.

Next, the frequency parameter is adjusted by a scaled version of the norm of the

residual expressed as

δk = (0.95)k||σ/ν̂k − f(α′
k)||2, (66)

where the factor (0.95)k has a dampening effect that ensures convergence of the

algorithm. This factor was selected experimentally; although any value less than

unity will suffice, where higher values can cause a slower convergence rate and lower

values can cause convergence to a local minima. The next value for α′ is chosen via a

greedy search method to obtain the smallest norm of the residual. This is expressed

as

α′
k+1 =






α′
k + δk, ||σ/ν̂k − f(α′

k + δk)||2 < ||σ/ν̂k − f(α′
k − δk)||2

α′
k − δk, otherwise

(67)

The algorithm iteratively adjusts α′ until reaching a prescribed amount of precision

expressed as δK < 0.01, where K is the total number of iterations. At this point,

the estimate of the frequency parameter is finalized as α′ = α′
K+1. All experimental

results contained in this dissertation used the exact procedure and prescribed values

described above.

An example of the curve fitting algorithm for the stable peak at pixel (1,3) in

Equation (42) of Section 5.1.1 is as follows. The observation vector is

σ = [17, 18, 20]T , (68)

and given subband center frequencies of 9.25 GHz, 9.5 GHz, and 9.75 Ghz, the nor-
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malized frequency vector is

f(α′) =

[
9.25α′+2, 9.5α′+2, 9.75α′+2

]T

9.5α′+2
. (69)

The initial value for α′ is given by

α′
1 =

log
(

17
20

)

log
(

9.25
9.75

) − 2 = 1.0871, (70)

and the initial optimal normalization factor is given by

ν̂1 =
(σT

σ)

σT f(α′
1)

= 18.3095, (71)

The adjustment to α′ for this iteration is

δ1 = (0.95)1||σ/ν̂1 − f(α′
1)||2 = 0.0195. (72)

Because δ1 > 0.01, another iteration is required. The adjustment to α′ is

α′
2 = α′

1 + δ1 = 1.1066, (73)

because

||σ/ν̂1 − f(α′
1 + δ1)||2 = 0.0205 < ||σ/ν̂1 − f(α′

1 − δ1)||2 = 0.0206 (74)
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The following concludes the curve fitting process:

ν̂2 =
(σT

σ)

σT f(α′
2)

= 18.3086,

δ2 = (0.95)2||σ/ν̂0 − f(α′
1)||2 = 0.0185.

α′
3 = α′

2 + δ2 = 1.1251

α′
4 = α′

3 + δ3 = 1.1426

α′
5 = α′

4 − δ4 = 1.1260

α′
6 = α′

5 + δ5 = 1.1418

α′
7 = α′

6 − δ6 = 1.1267

...

α′
16 = α′

15 + δ15 = 1.1292 + 0.0095 = 1.1387

δ15 < 0.01 −→ α′ = α′
16 = 1.14

(75)

An alternate example for the stable peak at pixel (3,2) in Equation (42) of Section

5.1.1 is as follows. The observation vector is

σ = [10, 20, 19]T , (76)

and the initial value for α′ is given by

α′
1 =

log
(

10
19

)

log
(

9.25
9.75

) − 2 = 10.1924. (77)

Note that α′ = 10.1924 is far outside the expected range for ideal frequency param-

eters. Using Table 5 of Section 3.2 as a guide, the ideal range is α′ ∈ [−2, 2]. As a

result, the SPLIT algorithm rejects this pixel as non-canonical by halting the curve

fitting algorithm and reassigning it a value of ‘0’ in Equation (42) of Section 5.1.1.

In summary, the SPLIT algorithm requires that a subimage peak meet two criteria

before extracting the frequency parameter. First, the peak must be stable, and sec-
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ond, it must have a frequency parameter that is within or nearby the expected range

for canonical scatterers. For the experimental results contained in this dissertation

the estimated frequency parameter was required to be within the prescribed ranges

of α′
1 ∈ [−6, 6] and α′

K+1 ∈ [−4, 4].

5.1.4 Polarimetric Parameter Estimation.

The Krogager scattering matrix parameters are estimated from fully-polarized

SAR data. This requires the availability of at least three phase histories, two co-

polarization phase histories (HH and VV) and one cross-polarization phase history

(HV or VH). The Krogager parameters were introduced earlier and discussed at length

in Sections 2.2.3 and 2.3.3.

The Krogager parameters, κo and κe, for a subimage pixel having a stable peak

are easily obtained by a coherent summation of the pixel values from the polarization-

diverse subimages. The parameters represent the proportion of odd-bounce and even-

bounce scattering in each pixel of the subimage, where it is convenient to define the

proportion of helical scattering as κh = 1 − κo − κe.

In general, it has been noted that the polarimetric parameters of canonical scat-

terers can be estimated with greater accuracy than the other parameters. For this

reason, the latest variant of the canonical scatterer classifier developed at The Ohio

State University estimates canonical scatterer parameters from an image segment us-

ing a tiered approach, rather than a joint estimation approach. Because estimates of

the polarization parameters are assumed to have the highest statistical confidence,

these are estimated first, so as to restrict the possible values of the other parameters

in subsequent tiers of the estimation scheme [73].

Deference to the polarimetric parameters is also adopted in this dissertation. The

assumption is that the frequency parameter, α′, has a much higher variance than
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the Krogager parameters and is much more sensitive to modeling error, signal noise,

and clutter. Because of this assumption, some ambiguities in the feature space are

resolved by favoring instances of strong polarimetric response. For example, according

to Table 5 from Section 3.2, the ideal feature vector for a horizontal cylinder is

wa = [α′, κo, κe] = [−1, 1, 0], while the ideal feature vector for a horizontal wire is

wb = [−2, 0.5, 0.5].

Consider the case of an extracted feature vector, v = [−2, 1, 0], where the Eu-

clidean norms are ||wa−v||2 = 1 and ||wb−v||2 = 0.707. Clearly the norm is smaller

for the horizontal wire; however, ‘horizontal cylinder’ is the best classification deci-

sion because both norms are large and the polarimetric response better matches that

of the horizontal cylinder. In this way, the concept of polarimetric preference will

impact the partitioning of the feature space for the SPLIT algorithm, as described

later in Section 5.3.

5.2 Feature Vector Summation

The SPLIT algorithm extracts the frequency parameter from each co-polarization

channel. The result is a single pixel having two estimates of the frequency parame-

ter, α′, when both HH and VV polarizations are available. In addition, the SPLIT

algorithm extracts the polarization parameters from each subimage. This results in

a single pixel having I estimates of the polarimetric parameters, [κo, κe]. Finally, the

SPLIT algorithm extracts frequency and polarimetric features for each subaperture.

Therefore, it is possible for the same pixel to be assigned multiple feature vectors,

each extracted from a different subaperture. In these instances, the feature vectors

for a single pixel are combined using a weighted average. Recall that pixels failing

the canonical scatterer criteria of the SPLIT algorithm are assigned a feature vector

weight of zero.
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For the case of both HH and VV polarizations, the frequency parameter is equal

to the weighted average

α′
j =

∑

p

σjpα
′
jp

∑

p

σjp

, (78)

where σjp = mini{|g̃ijp(mq, nq)|2} is the minimum subimage pixel intensity for a given

subaperture and polarization.

Likewise, the polarimetric parameters are equal the to weighted vector sum

[κo, κe]j =

∑

i

σij[κo, κe]ij

∑

i

σij

, (79)

where σij = minp{|g̃ijp(mq, nq)|2} is the minimum subimage pixel intensity for a given

subband and subaperture.

Finally, referring to Equation (41), the feature vector for a single pixel observed

at multiple subapertures is equal to the weighted vector sum

v(mq, nq) =

∑

j

σjvj(mq, nq)

∑

j

σj

, (80)

where σj = mini{|g̃ij(mq, nq)|2} is the minimum subimage pixel intensity for a given

subaperture. This vector is referred to as the average feature vector.

An example of cross-aperture feature vector summation is as follows. Consider
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the 4 × 4 feature vector arrays for subapertures j = 1 and j = 2 given as

V1 =





0 0 0 0

0 0 0 0

17[1.14, 0.22, 0.67] 0 0 0

0 0 0 0





, (81)

V2 =





0 0 42[1.79, 0.82, 0.11] 0

0 0 0 0

14[0.99, 0.25, 0.58] 0 0 0

0 0 0 0





, (82)

where 0 is the zero vector. Note that the feature vector array in Equation (81) is

derived from the earlier examples in Equations (42) and (75). The weighted vector

sum from Equation (80) computed for each pixel results in an array of average feature

vectors expressed as

V =





0 0 [1.79, 0.82, 0.11] 0

0 0 0 0

[1.07, 0.23, 0.63] 0 0 0

0 0 0 0





, (83)

where the pixels with non-canonical scattering have weights of zero and contribute

nothing to the vector sum.

5.3 Canonical Scatterer Classification

The feature space for canonical scatterers can be partitioned using the ideal fea-

ture vectors in Table 5. However, these do not uniformly fill an entire Euclidean
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feature space. Therefore, additional ideal feature vectors are added with deference

to the polarimetric parameters, as described earlier in Section 5.1.4. First, the heli-

cal scatterer class is assigned five ideal feature vectors, [−2, 0, 0], [−1, 0, 0], [0, 0, 0],

[1, 0, 0], and [2, 0, 0]. The assumption is that helical scattering can be associated with

any value of α′. Next, the dihedral0 scatterer class is assigned three ideal feature vec-

tors, [0, 0, 1], [−1, 0, 1], and [−2, 0, 1]. Last, the cylinder0 scatterer class is assigned

two ideal feature vectors, [−1, 1, 0] and [−2, 1, 0].

The result is a set of seventeen ideal feature vectors, W , assigned within a set

of ten scatterer classes, C. Scatterer classification is accomplished, pixel-by-pixel, by

comparing each non-zero feature vector in the array of average feature vectors, V, to

the set of ideal feature vectors, W . The classification decision can be accomplished

using a likelihood ratio test informed by the statistical properties of each class and

parameter, if available. However, for illustrative purposes, a simple a least squares

classifier is preferred for demonstrating the SPLIT algorithm. A least squares classifier

assumes uniform costs for misclassification and equal prior probabilities of each class.

The least squares classifier and an associated, non-statistical measure of fitness is

presented in this section and used throughout the remainder of this dissertation.

5.3.1 Least Squares Classifier.

For least squares classification, each non-zero average feature vector is compared

to the set of seventeen ideal feature vectors, W , using the Euclidean norm. Hence,

each subimage pixel is declared a member of the class associated with the ideal feature

vector for which the Euclidean norm is a minimum. The feature vector decision is

succinctly represented as

d = argmin
k

||Wk − v||2, (84)
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Figure 25. Feature space partitioned into scatterer classes according to a least squares
classifier.

where k ∈ {1, 2, ..., 17} provides an ordinal list of the ideal feature vectors and d is

the index of the feature vector leading to the smallest norm in Equation (84). Hence,

Equation (84) divides the feature space into seventeen regions according to a least

squares “best fit” for the ideal canonical scatterers, as shown in Figure 25.

Finally, the scatterer classification decision is expressed using a scatterer classifi-

cation operator, S, as

S{v} = C(Wd), (85)

where the class associated with ideal feature vector Wd determines the assigned class.

For example, least squares classification using the array of average feature vectors in
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Equation (83) results in

V =





− − trihedral −

− − − −

tophat − − −

− − − −





. (86)

This is due to the fact that the average feature vectors v(3, 1) = [1.79, 0.82, 0.11] and

v(1, 3) = [1.07, 0.23, 0.63] are closest to the ideal feature vectors [2, 1, 0] and [1, 0, 1],

which in turn, are associated with the trihedral class and top hat class, respectively.

5.3.2 Measure of Fitness.

Some average feature vectors may reside near a boundary between two regions.

Therefore, it is instructive to provide an additional measure of fitness. The measure

of fitness is defined as

γ = 1 − ||Wd − v||2
min

Wk /∈C(Wd)
||Wk − v||2

, (87)

where the denominator is the Euclidean norm for the next best fit for ideal feature

vectors not associated with the declared class, C (Wd). Using a ratio of Euclidean

norms causes the measure of fitness to be in the range γ ∈ [0, 1].

For example, beginning with Equation (83), the measures of fitness are

γ(1, 3) = 1 − ||[1, 0, 1] − [1.07, 0.23, 0.63]||2
||[1, 0, 0] − [1.07, 0.23, 0.63]||2

= 0.35 (88)

and

γ(3, 1) = 1 − ||[2, 1, 0] − [1.79, 0.82, 0.11]||2
||[1, 1, 0] − [1.79, 0.82, 0.11]||2

= 0.69, (89)

where the next best fits are a helical, [1, 0, 0], and cylinder, [1, 1, 0], respectively. Thus,
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the array of measures of fitness for the example in Equation (83) is

Γ =





− − 0.69 −

− − − −

0.35 − − −

− − − −





, (90)

where Equations (86) and (90) represent example classification results produced by

the SPLIT algorithm.

5.4 Experimental Results

This section presents experimental results using measured and simulated SAR

data. The complexity of the scene increases with each experiment. First, isolated

canonical scatterers are classified to demonstrate and validate the usefulness of the

multi-peak model for scatterer classification. Then, inverse SAR (ISAR) radar mea-

surements of a smooth metallic body, called D2, are evaluated. Even though the

measurements are not fully-polarimetric, the D2 provides an excellent case study for

modeling a simple object as a compilation of canonical scatterers. Next, simulated

data of civilian vehicles provide a more challenging scenario for scatterer classification.

These illustrate both the benefits and limitations of scatterer classification by phase

domain decomposition for complex objects. Finally, the Gotcha multipass data, fea-

turing measured SAR data of a calibration targets, is examined. Because the Gotcha

data has only moderate bandwidth, poor coherency between pulses, and high clutter

energy, the classification results are marginal, as expected.

Arrays similar to those in Equations (86) and (90) are used to create an overlay

to display the classification results onto the SAR image. The classification results

are displayed using the symbols and colors for the ideal feature vectors in Figure 25,
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while the measure of fitness is displayed by symbol size. Note that the helical scatterer

is given a neutral color in the legend, but each of the five ideal feature vectors will

actually give a unique color in the overlay for each value of α′. The colors in ascending

order are magenta (α′ = −2), red (α′ = −1), yellow (α′ = 0), green (α′ = 1), and

cyan (α′ = 2).

The images presented in this Section were produced by integrating the SPLIT-

based scatterer classification algorithm with a fast convolution backprojection imaging

algorithm as described in the next chapter. The integrated algorithm employs domain

decomposition to produce coarse-resolution subimages for subsequent analysis by the

scatterer classifier. Then it interpolates, weights, and sums the subimages to form a

fine-resolution SAR image.

5.4.1 Accuracy of the Multi-peak Model.

It is desirable to succinctly present the accuracy of the new multi-peak model for

all canonical scatterer types and at several non-zero orientation angles. In addition, it

is helpful to illustrate how the multi-peak model in Equation (37) is useful for classi-

fication of canonical scatterers in SAR imagery. Consequently, this section illustrates

the applicability of the model to scatterer classification while reiterating some of the

benefits and limitations of the model which were discussed previously.

Because frequency parameter estimation in Equation (47) uses the new multi-

peak model parameterized by α′, it is instructive to re-evaluate the applicability of

the multi-peak model in Equation (37) for use with the SPLIT algorithm. From

Equation (31) and assuming θc = 0 without loss of generality, the ratio of integrated,
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Figure 26. Under wide-angle conditions, the ratio of integrated, windowed sinc func-
tions equals the inverse ratio of sinc frequencies. Here, f1 = 10-Ghz, f2 = 9-GHz, and
θ0 = 0◦.

windowed sinc functions must satisfy the relationship

∫ π

−π

HΘ(θ) sinc
(

2
c
f1L sin(θ − θ0)

)
dθ

∫ π

−π

HΘ(θ) sinc
(

2
c
f2L sin(θ − θ0)

)
dθ

=
f2

f1

, (91)

where Θ > Θmin and the minimum aperture width, Θmin, can be determined by

numerical integration. Numerical results for Equation (91) using a Hanning window

are shown in Figure 26, where f1 = 10 GHz and f2 = 9 GHz. The graph on the right

indicates that for Θ & 10◦ the relationship in Equation (91) is satisfied, where f2/f1 =

0.9. Earlier analyses indicate that this relationship holds for varying frequencies and

orientations angles as long as the aperture width is restricted to Θ & 10◦ and the

window function in azimuth is tapered.

Simulated phase histories were produced for fifteen canonical scatterers listed in

Table 8 using canonical scattering models from Reference [75]. This data set contains
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Table 8. Simulated Canonical Scatterer Specifications.

Index Description
Height Width Radius L τ

(m) (m) (m) (m) (deg)

(A) square trihedral 1 1 n/a 0 0
(B) dihedral90 1 1 n/a 0 90
(C) cylinder90 1 n/a 0.5 0 90
(D) top hat 1 n/a 0.5 0 0
(E) point scatterer n/a n/a n/a 0 n/a
(F) sphere n/a n/a 0.5 0 n/a
(G) plate, 15λ 1 0.5 n/a 0.5 0
(H) plate, 30λ 1 1 n/a 1 0
(I) plate, 60λ 1 2 n/a 2 0
(J) dihedral0, 15λ 1 0.5 n/a 0.5 0
(K) dihedral0, 30λ 1 1 n/a 1 0
(L) dihedral0, 60λ 1 2 n/a 2 0
(M) cylinder0, 15λ n/a 0.5 0.5 0.5 0
(N) cylinder0, 30λ n/a 1 0.5 1 0
(O) cylinder0, 60λ n/a 2 0.5 2 0

Table 9. Radar Measurement Data Parameters.

Parameter Value

Polarizations HH, VV, VH
LFM Frequencies 8.6061 : 0.0081 : 10.5939 GHz

Azimuth -5.0000 : 0.0859 : 4.9695 degrees
Elevation Angle 45 degrees

specific examples of the ideal canonical scatters in Table 5, to include six different

point scatterers and three different distributed scatterers of varying lengths. The

lengths were specifically chosen to illustrate the limitations of the high frequency ap-

proximation at X-band. The phase histories were simulated using a circular aperture

according to the specifications in Table 9. Here, the azimuth angle is referenced

counter-clockwise from the negative y-axis, and the frequency and azimuth are listed

as start:increment:end values.

Classification accuracy is dependent upon model accuracy, bandwidth, and inter-

ference from neighboring canonical scatterers, clutter, and noise. However, in order
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Figure 27. Classification results for Θ = 10◦. Scatterers (A) to (F) are point scatterers
and (G) to (O) are distributed scatterers of varying lengths.

to isolate the effect of model accuracy on classification accuracy, the simulations are

free of interference. The images and classification results below were produced using

the integrated algorithm with I = 3 subbands. Also, the images are truncated to

show only the top 45 dB of image intensity.

For the case of Θ = 10◦ shown in Figure 27, a single aperture is used to produce

the classification results and images. Here, the classification results are annotated on

the image using the symbology from Figure 25. For this case, all classification results

are correct because the multi-peak model is accurate when the wide-angle condition

is satisfied and all distributed scatterers are greater than ten wavelengths in length.
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(a) Θ = 5◦ (b) Θ = 2.5◦

Figure 28. Classification results for narrow-angles. For the distributed scatterers,
accuracy decreases as Θ or L decreases.

In this case, the longer distributed scatterers (I), (L) and (O), each produce a group

of in-line peaks. The in-line peaks are a manifestation of Gibbs phenomenon due

to the imaging operator, and illustrate a characteristic of distributed scatterers from

which the multi-peak model derives its name.

For the case of Θ = 5◦ shown in Figure 28(a), three evenly spaced, overlapping

subapertures were used to produce the classification results and images. In this case,

the classification results are correct for all point scatterers (A) to (F) and for the

longer distributed scatterers, as expected. Also as expected, the classification results
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Figure 29. Numerical results for Eq. (31) where HΘ is a Hanning function with region
of support equal to Θ. The distributed scatterer is of length L = 0.5-meter.

are incorrect for the shortest distributed scatterers, (G), (J), and (M), because the

accuracy of the new multi-peak model is degraded for the case of Θ = 5◦ and L = 15λ.

These results were predicted by numerical analysis, where Figure 26 reveals that the

model is only accurate when L . 25λ for the case of Θ = 5◦. The two peaks which

were correctly classified came from analysis of the subapertures at θ0 = [−2.5, 2.5].

It can be seen in Figure 29 that the model is valid at Θ = 5◦ because Â is essentially

independent of frequency for this case. However, the value at Â is very small when

Θ = 5◦, which results in low peak intensities. Low peak intensities are a well-known

characteristic of long scatterers imaged at off-broadside aspects [83].

For the case of Θ = 2.5◦ shown in Figure 28(b), seven evenly spaced, overlapping

subapertures were used to produce the classification results and images. In this

case, the classification results are correct for all point scatterers (A) to (F) and for

the longest distributed scatterers, as expected. Also as expected, the classification

results are incorrect for the shorter distributed scatterers, (G), (H), (J), (K), (M),

and (N), because the accuracy of the new multi-peak model has further degraded for

this case. The reasons for this are analogous to the case of Θ = 5◦, and the results
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Table 10. Peak Intensity Classification Results, Θ = 10◦.
Index ( x, y ) ( x, y ) ( x, y ) ( x, y ) ( x, y )

θc α
′

σ α
′

σ α
′

σ α
′

σ α
′

σ

(A) - - (0,0) - -
0.0◦ - - - - 2.00 0 dB - - - -

(B) - - (0,0) - -
0.0◦ - - - - 2.00 0 dB - - - -

(C) - - (0,-0.76) - -
0.0◦ - - - - 0.97 0 dB - - - -

(D) - - (0,-0.46) - -
0.0◦ - - - - 1.00 0 dB - - - -

(E) - - (0,0) - -
0.0◦ - - - - 0.00 0 dB - - - -

(F) - - (0,-0.76) - -
0.0◦ - - - - -0.02 0 dB - - - -

(G) - - (0,0) - -
0.0◦ - - - - 0.01 0 dB - - - -

(H) - - (0,0) - -
0.0◦ - - - - 0.01 0 dB - - - -

(I) (-0.76,0) (-0.46,0) - (0.46,0) (0.76,0)
0.0◦ 0.05 0 dB -0.01 0 dB - - -0.01 0 dB -0.05 0 dB

(J) - - (0,0) - -
0.0◦ - - - - 0.01 0 dB - - - -

(K) - - (0,0) - -
0.0◦ - - - - 0.01 0 dB - - - -

(L) (-0.76,0) (-0.46,0) - (0.46,0) (0.76,0)
0.0◦ 0.05 0 dB -0.01 0 dB - - 0.05 0 dB -0.01 0 dB

(M) - - (0,-0.76) - -
0.0◦ - - - - -0.98 0 dB - - - -

(N) - - (0,-0.76) - -
0.0◦ - - - - -0.99 0 dB - - - -

(O) (-0.76,-0.76) - (0,-0.76) - (0.76,-0.76)
0.0◦ -0.94 0 dB - - -0.99 0 dB - - -0.94 0 dB

are as expected based on Figure 26. Evidently, the model is accurate for L = 60λ

when Θ = 2.5◦, as can be seen by examining (I), (L), and (O).

If desired, the classification process for this experiment can be verified by exam-

ining the extracted frequency parameters provided in Tables 10, 11, and 12. All

intensity values are normalized to the highest intensity sample for each scatterer,

individually. The Krogager parameters are not listed, because the simulated data

produced almost ideal Krogager values in each case.

In summary, all classification results, including incorrect classifications, were nicely

predicted using the multi-peak model. The classification results were correct for the

canonical point scatterers (A) to (F) and the longer distributed canonical scatterers
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Table 11. Peak Intensity Classification Results, Θ = 5◦.
Index ( x, y ) ( x, y ) ( x, y ) ( x, y ) ( x, y )

θc α
′

σ α
′

σ α
′

σ α
′

σ α
′

σ

(G) - (-0.31,0) (0,0) (0.31,0) -
−2.5◦ - - -0.23 -36 dB - - -0.23 -36 dB - -
0.0◦ - - - - 1.20 0 dB - - - -
2.5◦ - - -0.22 -36 dB - - -0.22 -36 dB - -
sum - - -0.23 -30 dB 1.20 0 dB -0.23 -30 dB - -

(H) - (-0.46,0) (0,0) (0.46,0) -
−2.5◦ - - -0.12 -40 dB - - -0.11 -40 dB - -
0.0◦ - - - - -0.01 0 dB - - - -
2.5◦ - - -0.12 -41 dB - - -0.12 -41 dB - -
sum - - -0.12 -34 dB -0.01 0 dB -0.12 -34 dB - -

(I) (-1.07,0) (-0.46,0) (0,0) (0.46,0) (1.07,0)
−2.5◦ -0.28 -41 dB - - - - - - -0.28 -41 dB
0.0◦ - - -0.04 0 dB 0.00 0 dB -0.04 0 dB - -
2.5◦ -0.27 -42 dB - - - - - - -0.26 -42 dB
sum -0.27 -35 dB -0.04 0 dB 0.00 0 dB -0.04 0 dB -0.27 -35 dB

(J) - (-0.31,0) (0,0) (0.31,0) -
−2.5◦ - - -0.23 -36 dB - - -0.23 -36 dB - -
0.0◦ - - - - 1.20 0 dB - - - -
2.5◦ - - -0.21 -36 dB - - -0.22 -36 dB - -
sum - - -0.22 -30 dB 1.20 0 dB -0.22 -30 dB - -

(K) - (-0.46,0) (0,0) (0.46,0) -
−2.5◦ - - -0.11 -40 dB - - -0.11 -40 dB - -
0.0◦ - - - - -0.01 0 dB - - - -
2.5◦ - - -0.11 -41 dB - - -0.11 -41 dB - -
sum - - -0.11 -34 dB -0.01 0 dB -0.11 -34 dB - -

(L) (-1.07,0) (-0.46,0) (0,0) (0.46,0) (1.07,0)
−2.5◦ -0.27 -41 dB - - - - - - -0.27 -41 dB
0.0◦ - - -0.04 0 dB 0.00 0 dB -0.04 0 dB - -
2.5◦ -0.26 -42 dB - - - - - - -0.26 -42 dB
sum -0.27 -35 dB -0.04 0 dB 0.00 0 dB -0.04 0 dB -0.27 -35 dB

(M) - (-0.31,-0.76) (0,-0.76) (0.31,-0.76) -
−2.5◦ - - -1.23 -37 dB - - -1.21 -37 dB - -
0.0◦ - - - - 0.21 0 dB - - - -
2.5◦ - - -1.19 -37 dB - - -1.21 -37 dB - -
sum - - -1.21 -31 dB 0.21 0 dB -1.21 -31 dB - -

(N) - (-0.46,-0.76) (0,-0.76) (0.46,-0.76) -
−2.5◦ - - -1.08 -40 dB - - -1.09 -40 dB - -
0.0◦ - - - - -1.00 0 dB - - - -
2.5◦ - - -1.10 -41 dB - - -1.08 -41 dB - -
sum - - -1.09 -34 dB -1.00 0 dB -1.09 -34 dB - -

(O) (-1.07,-0.76) (-0.46,-0.76) (0,-0.76) (0.46,-0.76) (1.07,-0.76)
−2.5◦ -1.26 -41 dB - - - - - - -1.22 -41 dB
0.0◦ - - -1.03 0 dB -0.99 0 dB -1.03 0 dB - -
2.5◦ -1.21 -42 dB - - - - - - -1.24 -42 dB
sum -1.23 -35 dB -1.03 0 dB -0.99 0 dB -1.03 0 dB -1.23 -35 dB

(I), (L), and (O), in every case. For the incorrect classifications, the experiment il-

lustrates how model accuracy decreases gradually as Θ or L decreases. These results

indicate that the multi-peak model can be used to classify distributed scatterers by

comparing the peak intensities of subimages produced by phase history decomposi-

tion. However, the aperture should be large (Θ & 10◦), particularly for distributed

scatterers of shorter physical length.
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Table 12. Peak Intensity Classification Results, Θ = 2.5◦.
Index ( x, y ) ( x, y ) ( x, y ) ( x, y ) ( x, y )

θc α
′

σ α
′

σ α
′

σ α
′

σ α
′

σ

(G) - (-0.46,0) (0,0) (0.46,0) -
−3.8◦ - - - - 0.02 -67 dB - - - -
−2.5◦ - - -0.44 -52 dB - - -0.41 -52 dB - -
−1.3◦ - - - - 0.02 -13 dB - - - -
0.0◦ - - - - 1.78 -5 dB - - - -
1.3◦ - - - - -0.02 -14 dB - - - -
2.5◦ - - -0.71 -51 dB - - -0.72 -51 dB - -
3.8◦ - - - - 0.37 -67 dB - - - -
sum - - -0.58 -46 dB 1.05 0 dB -0.57 -46 dB - -

(H) - (-0.46,0) (0,0) (0.46,0) -
−3.8◦ - - -0.36 -80 dB - - - - - -
−2.5◦ - - -0.22 -51 dB - - -0.22 -51 dB - -
−1.3◦ - - -0.04 -25 dB - - -0.03 -25 dB - -
0.0◦ - - - - 1.20 0 dB - - - -
1.3◦ - - -0.05 -26 dB - - -0.05 -26 dB - -
2.5◦ - - -0.24 -51 dB - - -0.24 -51 dB - -
3.8◦ - - -0.39 -80 dB - - -0.39 -80 dB - -
sum - - -0.05 -19 dB 1.20 0 dB -0.05 -19 dB - -

(I) (-1.07,0) (-0.92,0) (0,0) (0.92,0) (1.07,0)
−3.8◦ - - - - - - - - -0.14 -84 dB
−2.5◦ -0.01 -55 dB - - - - - - -0.01 -55 dB
−1.3◦ - - -0.09 -30 dB -2.54 -72 dB -0.09 -30 dB - -
0.0◦ - - - - -0.01 0 dB - - - -
1.3◦ -0.10 -31 dB - - - - - - -0.10 -31 dB
2.5◦ -0.08 -55 dB - - - - - - -0.08 -55 dB
3.8◦ -0.12 -84 dB - - - - - - - -
sum -0.10 -30 dB -0.09 -30 dB -0.01 0 dB -0.09 -30 dB -0.10 -30 dB

(J) - (-0.46,0) (0,0) (0.46,0) -
−3.8◦ - - - - 0.03 -67 dB - - - -
−2.5◦ - - -0.43 -52 dB - - -0.40 -52 dB - -
−1.3◦ - - - - 0.02 -13 dB - - - -
0.0◦ - - - - 1.78 -5 dB - - - -
1.3◦ - - - - -0.02 -14 dB - - - -
2.5◦ - - -0.70 -51 dB - - -0.72 -51 dB - -
3.8◦ - - - - 0.37 -67 dB - - - -
sum - - -0.57 -46 dB 1.05 0 dB -0.56 -46 dB - -

(K) - (-0.46,0) (0,0) (0.46,0) -
−3.8◦ - - -0.31 -80 dB - - - - - -
−2.5◦ - - -0.22 -51 dB - - -0.21 -51 dB - -
−1.3◦ - - -0.04 -25 dB - - -0.03 -25 dB - -
0.0◦ - - - - 1.20 0 dB - - - -
1.3◦ - - -0.05 -26 dB - - -0.05 -26 dB - -
2.5◦ - - -0.23 -51 dB - - -0.23 -51 dB - -
3.8◦ - - -0.34 -80 dB - - -0.35 -80 dB - -
sum - - -0.05 -19 dB 1.20 0 dB -0.05 -19 dB - -

(L) (-1.07,0) (-0.92,0) (0,0) (0.92,0) (1.07,0)
−3.8◦ - - - - - - - - -0.11 -84 dB
−2.5◦ -0.01 -55 dB - - - - - - -0.01 -55 dB
−1.3◦ - - -0.09 -30 dB -2.54 -72 dB -0.09 -30 dB - -
0.0◦ - - - - -0.01 0 dB - - - -
1.3◦ -0.10 -31 dB - - - - - - -0.10 -31 dB
2.5◦ -0.07 -55 dB - - - - - - -0.07 -55 dB
3.8◦ -0.08 -84 dB - - - - - - - -
sum -0.10 -30 dB -0.09 -30 dB -0.01 0 dB -0.09 -30 dB -0.10 -30 dB

(M) - (-0.46,-0.76) (0,-0.76) (0.46,-0.76) -
−3.8◦ - - - - -0.91 -67 dB - - - -
−2.5◦ - - -1.35 -52 dB - - -1.47 -52 dB - -
−1.3◦ - - - - -0.97 -14 dB - - - -
0.0◦ - - - - 0.79 -4 dB - - - -
1.3◦ - - - - -1.01 -15 dB - - - -
2.5◦ - - -1.75 -52 dB - - -1.66 -52 dB - -
3.8◦ - - - - -0.58 -67 dB - - - -
sum - - -1.55 -46 dB 0.10 0 dB -1.57 -46 dB - -

(N) - (-0.46,-0.76) (0,-0.76) (0.46,-0.76) -
−3.8◦ - - - - - - -1.37 -81 dB - -
−2.5◦ - - -1.16 -52 dB - - -1.21 -52 dB - -
−1.3◦ - - -0.99 -26 dB - - -1.02 -26 dB - -
0.0◦ - - - - 0.21 0 dB - - - -
1.3◦ - - -1.04 -27 dB - - -1.01 -27 dB - -
2.5◦ - - -1.23 -51 dB - - -1.18 -51 dB - -
3.8◦ - - -1.41 -81 dB - - - - - -
sum - - -1.03 -20 dB 0.21 0 dB -1.02 -20 dB - -

(O) (-1.07,-0.76) (-0.92,-0.76) (0,-0.76) (0.92,-0.76) (1.07,-0.76)
−3.8◦ -1.12 -84 dB - - - - -1.17 -84 dB - -
−2.5◦ -1.05 -55 dB - - - - - - -0.01 -55 dB
−1.3◦ - - -1.07 -30 dB -3.47 -72 dB -1.07 -30 dB - -
0.0◦ - - - - -1.00 0 dB - - - -
1.3◦ - - -1.08 -31 dB - - - - -1.06 -31 dB
2.5◦ - - - - - - - - -1.02 -55 dB
3.8◦ - - -1.17 -84 dB - - - - -1.09 -84 dB
sum -1.05 -55 dB -1.08 -24 dB -1.00 0 dB -1.07 -30 dB -1.05 -31 dB
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(a) Frontal aspect. (b) Rear aspect.

pedestal mount point

80-3/8”

40-1/8”

15-11/16”

30°

string support 

system mount point

(c) Dimensions.

Figure 30. D2 airframe [4].

5.4.2 D2 Measurements.

This section presents experimental results obtained from measurements of a smooth

metallic body called D2. The measured data was obtained from the AFIT indoor RCS

measurement range described in Appendix A. Photographs and dimensions of the D2

are provided in Figure 30, and a photo of the measurement configuration is provided

in Figure 31. Additional information regarding D2 and its measured data can be

found in Reference [4].

The parameters for an ISAR measurement are given in Table 13, and a 2D im-

age overlaid with classification results combined from both HH and VV channels is

shown in Figure 32. Note how the straight edges of the D2 are correctly classified as

horizontal edges and how the D2-pedestal-D2 interactions are consistently classified

as trihedrals (or horizontal dihedrals). These correct classifications occur in spite

of the fact that these measurements are in the near field, which violates one of the

assumptions of the multi-peak model.

The near field distortion creates an artificial curvature that may explain the ‘cylin-

der’ classifications along the back edge near (x = 0.9, y = 0.1) m in Figure 32. Like-
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Figure 31. Photo of D2 airframe from a rear aspect [4]. The D2 is on the target
pedestal at the AFIT Indoor RCS measurement range with the radar antennas shown
in the background.

Table 13. Experimental Parameters for ISAR Measurements of D2.

Parameter Value

Polarizations VV and HH
LFM Frequencies (GHz) 6.528 : 0.023 : 18.005
Fractional bandwidth β = 0.936

Elevation 0◦

Azimuth 0.2◦ : 0.2◦ : 360.0◦

Azimuth subwindow 10◦ Hanning
Frequency subwindow halfband Hanning
Number of subbands I = 5
Intensity threshhold top 25 db

Subaperture summation coherent
Oversampling none

wise, the curved edges near (0.5,±0.75) m are likely classified as cylinders for similar

reasons. As described in Section 2.2.1, it has been shown that curved edges create

point scatterers having a frequency response parameterized by α = −1 [62, 84, 121].

The curved edge canonical scatterer is not included in the SPLIT algorithm because
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Figure 32. 2D ISAR measurement with superimposed HH and VV images and classi-
fication data.

its low RCS makes it likely to be unresolved in most SAR applications. However, for

low RCS airframes where smaller RCS mechanisms are prevalent, the ideal feature

vector [α′, κo, κe] = [−1, 0.5, 0.5] could easily be included to account for curved edges.

Unfortunately, it is not entirely clear why the front tip at (−1, 0) m is classified

as a sphere or other scatterer with α′ = 0. It may be due to a traveling wave down

the long edge [83]. Note also, that interference from neighboring scatterers in the

center of the pedestal seems to have caused some confusion in the classifier. This

interference is evident by the random classification results within a circle of radius

0.1 m in the center of the image. Interference from the pedestal is also likely to have

impacted the classification results near (0.1, 0.5) m. Overall, the classification results

in Figure 32 could prove useful to an analyst, particularly the trihedral and edge

classifications which appear symmetric. It is also likely that an experienced analyst

will be able to disregard classification results in areas deemed likely to produce high

levels of interference based on knowledge of the image context.
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Figure 33. Facet model of Toyota Tacoma 2-door from 120-degrees azimuth and 30-
degrees elevation.

Table 14. Experimental Parameters for Toyota Tacoma Data Dome.

Parameter Value

Polarizations VV, HH, and HV
Bandwidth (GHz) 6.9226 : 0.01046 : 12.2774

Fractional bandwidth β = 0.558
Elevation 45◦

Azimuth 0.0625◦ : 0.0625◦ : 360.0◦

Azimuth subwindow 10◦ Hanning
Frequency subwindow halfband Hanning
Number of subbands I = 5
Intensity threshhold top 40 db

Subaperture summation multilook
Oversampling none

5.4.3 Civilian Vehicle Data Domes.

The SPLIT classification algorithm was also run for a simulated data set of civilian

vehicles, which are structurally more complex than D2. A facet model of the Toyota

Tacoma vehicle from the Air Force Research Laboratory civilian vehicle (CV) data

domes [124] is shown in Figure 33 and the classification results are given in Figure

34. The associated data parameters are listed in Table 14. The truck bed,

in particular, provides a scatterer rich environment, creating interference to stress

the classification algorithm. In addition, an the elevation angle of 45◦ combined
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Figure 34. Annotated SAR image of a simulated Toyota Tacoma pointed in the −x

direction.

with ground plane imaging was chosen so that layover would separate some of the

prime scattering mechanisms from potential sources of interference. Generally, the

primary scattering mechanisms on civilian vehicles are cylindrical returns from the

top edges of the vehicle and dihedral returns from the sides of the vehicle and the

ground, as depicted in Figure 35 [44, 49]. Figure 36 shows the cylinder0 and dihedral0

classifications separately in Figures 36(a) and 36(b), respectively, to highlight these

primary scattering mechanisms.

Despite the complexity of the target and the simplicity of the scatterer classifier,

three dominant scattering mechanisms are identifiable as well classified. First, the

cylindrical edges of the cab roof produce a large circular footprint with a radius of

about 2.3 m centered at point (−0.3, 0) m. The large circle appears in the image

due to layover effect [76]. Most of the image peaks associated with this mechanism

are correctly classified as a cylinder with a tilt angle of zero degrees. Second, the

105



Figure 35. The dominant backscatter mechanisms for passenger vehicles are a single
bounce from the top edge (solid lines) and double bounce from the dihedral formed
with the ground plane (dotted lines).

(a) Horizontal cylinders only (b) Horizontal dihedrals only

Figure 36. Classification results for the Toyota Tacoma for specific scatterers.

right angle formed between the rear bumper and tailgate produces a vertical line

about 1.5 m long centered at point (2.9, 0). The displacement from the tailgate

located at x ≈ 2.2 m is due to layover effect. Most of the image peaks associated

with this mechanism are correctly classified as a dihedral with a tilt angle of zero

degrees. Third, the right angles formed between the truck body and the ground plane

produce a rectangular footprint about 1.5 m along the y-axis and 4.5 m along the
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(a) Sentra (b) Avalon

(c) Maxima

Figure 37. Annotated SAR images of three automobiles, each pointed in the −x direc-
tion.

(x)-axis centered at (0, 0). Many of the image peaks associated with this mechanism

are correctly classified as a dihedral with a tilt angle of zero degrees; however, a

preponderance of clutter, particularly from the wheels and wheel wells compromise

the classification results. All three mechanisms are examples of distributed canonical

scatterers found in the geometry of the target which are well classified using the

multi-peak model. These scattering mechanisms are also identifiable for the sedans

featured in Figure 37, where an inner rectangle of horizontal dihedrals is ringed by

horizontal cylinders.
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Table 15. Experimental Parameters for Gotcha Data Set.

Parameter Value

Polarizations HH, VV, HV, and VH
LFM Frequencies (GHz) 9.2881 : 0.0014 : 9.9105
Fractional bandwidth β = 0.0648

Mean Elevation 43◦

Ground Range Resolution 0.17 meters
Azimuth −179.9934◦ : 0.0084◦ : 179.9982◦

Azimuth subwindow 10◦ Hanning
Frequency subwindow halfband Hanning
Number of subbands I = 3
Intensity threshhold top 45 db

Subaperture summation coherent
Oversampling 2x

Autofocus yes, given in data set

5.4.4 Gotcha Public Release Data.

In 2007, the Air Force Research Laboratory publicly released a challenge data

set featuring several circular SAR measurements of a parking lot scene [25]. One of

these measurements, called pass number six, appeared to have superior stability in

the circular aperture as evidenced by images with better focus. The radar data from

pass number six is used exclusively in the following analysis, and its parameters are

listed in Table 15. Note that the LFM Frequency and Azimuth values are listed as

start:increment:end values from the Gotcha data.

Ideally, the SAR system collects data at regular intervals along the circular flight

path so that the spectral domain is uniformly sampled in azimuth. However, this

is generally not the case. Flight dynamics and variable winds cause the ground

speed and altitude of the airborne radar to vary throughout the flight path. These

conditions are controlled to the best extent possible, resulting in azimuth sampling

that is pseudo-uniform and an elevation angle which varies slightly around the mean.

Such variances are typical in circular SAR data and are not expected to adversely
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Figure 38. Gotcha calibration target types and locations taken from Gotcha data set
documentation [25].

affect the suitability of the data for use in the following empirical studies, as long as

the distance from the antenna phase center to the scene center is known for every

sample in azimuth.

One notable benefit of the parking lot scene featured in this data set is that it

includes fifteen calibration targets, as depicted in Figure 38 and listed in Table 16.

There is one large top hat, shown in Figure 39, as well as seven trihedrals and seven

dihedrals of varying sizes and orientations. The calibration targets were placed in a

field near the parking lot as shown in Figure 40. These calibration targets are useful

for evaluating the classification accuracy of the SPLIT algorithm.

Figure 41 presents scatterer classification results for the fifteen calibration targets

of the Gotcha data set. The only scatterers that appear to be well classified are

27TR1 near (−7, 52) m, DR3 near (−18, 33) m, DR5 near (−13, 32) m, and DR7
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Table 16. Calibration Targets for Gotcha Data Set [25].

Calibration Target ID# x (m) y (m) z (m)

15 in Trihderal 15TR-01 -32.14 42.54 -0.53
15 in Trihderal 15TR-03 -28.09 38.67 -0.42
15 in Trihderal 15TR-04 -13.86 37.70 -0.05
15 in Trihderal 15TR-05 -24.39 32.96 -0.33
15 in Trihderal 15TR-06 -32.50 33.41 -0.57
15 in Trihderal 15TR-07 -5.12 22.98 -0.05
27 in Trihderal 27TR-01 -7.51 51.47 -0.09

12 in 12 in Dihedral DR-01 -15.55 42.96 -0.13
12 in 12 in Dihedral DR-02 -26.16 45.64 -0.43
12 in 12 in Dihedral DR-03 -18.58 33.53 -0.18
12 in 12 in Dihedral DR-04 -20.88 27.10 -0.23
12 in 8 in Dihedral DR-05 -13.24 32.09 -0.09
12 in 12 in Dihedral DR-06 -29.27 24.48 -0.48
12 in 8 in Dihedral DR-07 -26.15 17.50 -0.44

Figure 39. Photo of top hat calibration target from Gotcha data set. [25].

near (−26, 17) m, where trihedral and dihedral classifications dominate. Overall, the

classifier showed little confusion in determining the polarimetric response of scatterers,

but it showed some confusion in determining the frequency response of scatterers. For

instance, none of the trihedrals is classified as even-bounce, and none of the dihedrals

or top hat is classified as odd-bounce.

For this data set, the confusion in determining frequency response is most likely

due to a combination of poor coherency, stray clutter energy, unknown system biases,

and small fractional bandwidth. Errors in measuring the distance between the scene

center and the antenna phase center disrupts coherency of the SAR signal and vio-
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Figure 40. Photo of Gotcha scene [25]. The calibration targets were placed inside the
area marked with a black square.

lates the assumptions of the imaging operator. This, in turn, violates assumptions of

the multi-peak model and SPLIT algorithm. While pass number six showed superior

coherency when compared to the other passes, there still appeared to be significant

errors affecting coherency, even after using the autofocus corrections made available

in the data set. Furthermore, the parking lot scene was extracted using digital spot-

lighting [135] from a 5 km spotlight SAR collection, and it appeared that significant

energy from moving vehicles and other clutter far removed from the parking lot had

leaked into the data. Also, it is unclear how best to normalize the data for possible

system induced biases in the data, such as power differences due to the antenna gain

pattern. Finally, fractional bandwidth of 6.5-percent will likely lead to good classi-

fication results for simple calibration targets under ideal conditions. However, this

fractional bandwidth was far too narrow to overcome the significant deficiencies of

poor coherency, stray clutter energy, and unknown biases.

These non-ideal conditions provided an opportunity to stress the scatterer classi-

fier in way that the previous two data sets did not. The classification results for the
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Figure 41. Scatterer classification results for the Gotcha calibration targets. Targets
are drawn onto the image using white lines, where the trihedrals and dihedrals are at
three times normal scale for visibility. The top 40 dB of pixel intensities are shown in
the image.

Gotcha data set demonstrate some of the limitations of the SPLIT algorithm as well

as the concept of scatterer classification by phase history decomposition, in general.

Note that these non-ideal conditions greatly affect classification accuracy using image

segmentation methods, and no satisfying scatterer classification results using image

segmentation methods have been published for the Gotcha Public Release Data Set.

112



In order to understand how bandwidth, clutter, and interference affect classification

accuracy, the following section presents some additional analyses and experiments.

5.5 Sensitivity to Bandwidth, Clutter, and Interference

To further illustrate some of the limitations of scatterer classification by phase

history decomposition, the section concludes with experiments examining the effects

of bandwidth, clutter, and interference on frequency parameter estimation. Clas-

sification accuracies for ideal scatterers are derived from Monte Carlo simulations

based on a signal model that accounts for statistical interference from neighboring

canonical scatterers, clutter, and noise. The fractional bandwidth is shown to be a

primary contributor to classification accuracy, and for typical SAR applications, frac-

tional bandwidths of 10-percent or more are recommended as a rule-of-thumb. The

following studies focus on the frequency parameter α′ because it is more sensitive to

bandwidth than the polarimetric parameters. The assumption is that signal condi-

tions which favor a good α′ estimate also produce excellent polarimetric parameter

estimates.

5.5.1 Signal Model.

SAR imaging is a coherent process that can be interpreted as matched filtering

the received signal to the expected signal due an ideal point scatterer centered at

each pixel location [76, 93]. Therefore, by replacing the integrals in Equation (37) of

Section 4.4 with summations and normalizing the integrand by 1
HB(f−fc)HΘ(θ−θc)

, the

subimage peak intensity due to a single canonical point scatterer is approximated by

Psignal = |s̃q(xq, yq)|2 ≈
(
Ns|A′(jfc)

α′/2||fc|
)2

, (92)
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where the narrow-band approximation, f = fc, is used, and Ns is the number of

frequency and azimuth samples. For wide-angle and wide-band systems, the number

of samples is expected to be quite large. For instance, in the case of 128 frequency

samples and 128 azimuth samples the total number of samples is Ns = 16384. Note

that Equation (92) assumes a sampling loss of zero, whereby the location of the

scatterer is exactly in the center of a pixel [133]. The zero sampling loss assumption

corresponds with use of the SPLIT algorithm, whereby canonical scatterers located at

or near the center of a pixel have a greater chance of passing the stable peak criterion.

In practice, the subimage peak intensity also includes contributions due to inter-

ference from neighboring scatterers, clutter, and noise. Therefore, the subimage peak

signal model is given as

y = Ns

[
A′(jfc)

α′/2 + sinterference + sclutter + snoise

]
|fc|, (93)

where the interference, clutter, and noise are modeled as random variables (RVs).

These are discussed next, starting with the noise term.

5.5.1.1 Noise Model.

It is common to model SAR system noise as additive white Gaussian noise (AWGN)

[133, 93]. The noise has a circular symmetric complex normal distribution expressed

as [133, 116]

snoise = W, W ∼ CN (0, σ2
W ), iid, (94)

where samples of the AWGN are independent and identically distributed (iid). The

magnitude is Rayleigh distributed with variance, VAR(W ) = 4−π
2

σ2
W , so that the
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subimage peak intensity due to noise alone is

Pnoise = NsE
[
|W |2

]
|fc|2 = Ns

[
4 − π

2
σ2

W

]
f 2

c , (95)

where E[·] is the expected value of the RV.

As a result, the signal-to-noise ratio (SNR) is

SNR =
Psignal

Pnoise

≈ Ns
2|A′|2fα′

c

(4 − π)σ2
W

. (96)

It can be seen that coherent integration serves to greatly increase the SNR. For

instance, in the case of large Ns, even scattering centers with very weak amplitudes

can obtain a high SNR.

5.5.1.2 Clutter Model.

Clutter is caused by backscatter from the natural environment [133]. Examples

include surface clutter from the ground and volume clutter from rain [133]. The

definition of clutter depends upon the unwanted signal, as determined by the specific

application. For the purposes of these experiments, the clutter is modeled as surface

clutter from a large region of unresolved scatterers, where none of the individual

scatterers is significantly stronger than the others [133].

Under these assumptions, the clutter has a circular symmetric complex normal

distribution expressed as [133, 116]

sclutter = |X|ejφX , |X| ∼ Rayleigh(σX), φX ∼ U [−π, π], X ⊥⊥ φX , (97)

where the magnitude has a Rayleigh distribution and the phase difference between the

signal and clutter, φX , is iid and has a uniform distribution. Here, the magnitude and

115



phase are independent RVs. Samples of clutter are identically distributed, but unlike

noise, they are correlated. Therefore, the subimage peak intensity due to clutter alone

is greater than that for uncorrelated samples

Pclutter > NsE
[
abs

(
|X|ejφX

)2
]
|fc|2 = Ns

[
4 − π

2
√

2
σ2

X

]
f 2

c (98)

and less than that for perfect correlation

Pclutter < N2
s E

[
abs

(
|X|ejφX

)2
]
|fc|2 = N2

s

[
4 − π

2
√

2
σ2

X

]
f 2

c . (99)

Here the factor 1√
2

produces an RMS value due to the random phase.

Because of this wide range of possible values, the clutter power is parameterized,

with the parameter being measured or approximated for a given type of surface. Fol-

lowing Reference [133], the parameterized clutter model assumes perfect correlation,

and then simply scales the power using an effective clutter RCS, σc, for the clutter

occupying the area, Ac, illuminated by a single range cell of the radar. These are com-

bined to provide a normalized clutter RCS, σ0 = σc

Ac
, with values generally ranging

from -10 dB for mountains and urban terrain to -40 dB for grassland, depending upon

depression angle and operating frequency [133]. The signal-to-clutter ratio (SCR) is

[133].

SCR =
Psignal

Pclutter

≈ N2
s |A′|2fα′

c f 2
c

σc

, (100)

where using Equation (99), the relation to the clutter RV is

σc = Acσ
0 = N2

s

[
4 − π

2
√

2
σ2

X

]
f 2

c . (101)
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5.5.1.3 Interference Model.

For these experiments, interference is caused by the sidelobes of the PSFs of

strong neighboring scatterers in the scene. These sidelobes are coherently summed to

produce the interference term for a given sample. The difference between interference

and clutter is that the clutter model assumes none of the individual scatterers are

significantly stronger than the others, while the interference model does not assume

uniformity among scatterers [133, 116].

Under these assumptions, the interference is modeled as having a magnitude with

a gamma distribution and a phase, φZ , with a uniform distribution. The interference

is modeled as

sinterference = |Z|ejφZ , |Z| ∼ Γ(Ni, σZ), φZ ∼ U [−π, π], Z ⊥⊥ φZ . (102)

According to Reference [116], the gamma distribution parameters can be interpreted

as Ni being equal to the number of dominant interfering scatterers with mean RCS

equal to σZ . The samples of interference are identically distributed and, for simplicity,

assumed to be perfectly correlated in magnitude and iid in phase. Therefore, the

subimage peak intensity due to interference alone is

Pinterference < N2
s E

[
abs

(
|Z|ejφZ

)2
]
|fc|2 = N2

s

[
Niσ

2
Z√

2

]
f 2

c , (103)

where the factor 1√
2

produces an RMS value due to the random phase.

Thus, the corresponding signal-to-interference ratio (SIR) is

SIR =
Pinterference

Pnoise

≈
√

2|A′|2fα′

c

Niσ2
Z

. (104)

117



5.5.2 Scatterer Classification Accuracy Experiments.

The curve fitting algorithm described in Section 5.1.3.1 allows the frequency pa-

rameter to assume a value in the continuous interval α′ ∈ [−4, 4]. This was done

to facilitate weighted averaging of α′ from multiple subapertures and co-polarization

channels. In contrast, the experiments presented in this section are restricted to a

single aperture, where the correlation is unspecified between subapertures and co-

polarization channels for the signal model in Equation (93). In this case, it is simpler

to allow the frequency parameter to assume a discrete value, α′
p = p, in the set

p ∈ {−5,−3,−2,−1, 0, 1, 2, 3, 5}. In this way, the classification decision is made ac-

cording to the minimum total least squares metric between the simulated observation

vector and the seven ideal curves given by f(p) from Equation (62) of Section 5.1.3.1,

for a given fractional bandwidth, β = B
fc

. In this case, a classification decision at

the extremes of p ∈ {−5, 5} causes the SPLIT algorithm to erroneously reject the

canonical scatterer as non-canonical, that is α′ /∈ [−4, 4]. Such an event can be in-

terpreted as a missed detection due to a high level of interference, clutter, noise, or a

combination of these in the simulated observation vector.

Referring to Equation (63) of Section 5.1.3.1 and to Equation (93), the mth sim-

ulated observation vector for a given α′, SIR, SCR, and SNR is given by

σm =
[
|y|21m, |y|22m, . . . , |y|23m

]T

=





(
|A′|f 1+α′/2

c1 + ZmejφZ1fc1 + XmejφX1fc1 + W real
1m fc1

)2

(
|A′|f 1+α′/2

c2 + ZmejφZ2fc2 + XmejφX2fc2 + W real
2m fc2

)2

...
(
|A′|f 1+α′/2

cI + ZmejφZI fcI + XmejφXI fcI + W real
Im fcI

)2





, (105)

where Zm and Xm are the values of the RVs Z and X, respectively, for the mth
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observation. Likewise, φZi
and φXi

are the values of the RVs φZ and φX for the ith

subband. Finally, the real component of the noise is taken to be in-phase with the

signal, without loss of generality, so that W real
im is the value of the in-phase component

of the RV W for the ith subband and mth observation. Note that the normalization

factor, νm, includes the factors N2
s f 2

c , which assumes that the number of phase history

samples is identically equal to Ns for each subdomain.

The experiments in this section normalize |A′| and fc to unity, without loss of

generality. Also, to normalize the signal power, the frequency parameter is set to

α′ = 0, which represents an average value assuming equal prior probabilities for each

class of scatterer. As a result, the variances are normalized to

σ̄2
Z =

√
2

Ni(SIR)
, σ̄2

X =
2
√

2

(4 − π)(SCR)
, σ̄2

W =
2Ns

(4 − π)(SNR)
. (106)

Because AWGN is uncorrelated, the SNR is usually much larger than SIR or SCR.

Therefore, it is ignored in these experiments by setting SNR = ∞. This allows the

primary effects of bandwidth, SCR, and SIR to be examined in more detail. The

classification accuracy for varying fractional bandwidths, SIR, and SCR0 are shown

in Figure 42. These were produced from Monte Carlo simulations of ten thousand

observation vectors for each combination of fractional bandwidth, SIR, and SCR0.

The use of SCR0 accounts for the fact that SCR is actually dependent upon subimage

pixel area, Ac, which in turn is dependent upon bandwidth. In order normalize the

SCR for each fractional bandwidth, SCR0 was chosen according to the Gotcha data

set, where Ac = 0.45 m2 and β0 = 0.065. Hence, in order to account for changing

subimage pixel area, the SCR for each fractional bandwidth varied as

SCR(β) = SCR0(β
2
0/β

2). (107)

119



(a) β = 0.02 (b) β = 0.04

(c) β = 0.08 (d) β = 0.16

(e) β = 0.32 (f) β = 0.64

Figure 42. Classification accuracies for the case of I = 3 subbands, β0 = 0.065, Ni = 2
interferers, and SNR = ∞ for varying fractional bandwidth, β, SIR, and SCR0.
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In addition, the number of subbands was set to I = 3, and the number of neighboring

scatterers was set to Ni = 2 for these experiments.

Correct classifications occurred when the declared α′ was equal to the true α′,

that is when α′ = p. Alternately, note that the canonical range, α′ ∈ [−4, 4], means

that a declared value of α′ = −3 for true α′ = −2 and a declared value of α′ = 3

for true α′ = 2 could both be recategorized as correct classifications, if desired. In

these cases, the extracted feature vector contributes to the average feature vector so

as to produce a correct classification, but with slightly lower measure of fitness. In

this alternate case, the classification accuracies in Figure 42 would increase.

Figure 42 reveals that classification accuracy is greatly impacted by fractional

bandwidth, regardless of SIR or SCR. For instance, Figure 42(a) reveals that for

very low fractional bandwidth, β = 0.02, SIR and SCR0 must both be at 60 dB

or greater before the classification results are even above 25-percent. Any point

where classification accuracy is above 20-percent can be loosely interpreted as a case

where the least squares classifier produces better results than a random classifier

resembling to a ‘coin toss.’ However, the inclusion of p ∈ {−5,−3, 3, 5} complicates

the interpretation.

Note, that the Euclidean norm varies slightly between the adjacent pairs of ideal

curves, ||f(p) − f(p + 1)||2. For example, in the case of I = 3 and β = 0.5,

||f(−2) − f(−1)||2 = 0.1768,

||f(−1) − f(0)||2 = 0.1782,

||f(0) − f(1)||2 = 0.1849,

||f(1) − f(2)||2 = 0.1967.

(108)

This is one factor that will cause classification accuracy to vary slightly for different

values of α′. These can be adjusted to become more equal by adjusting the normal-
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ization factor, fc, used in (f) = p. With a small adjustment, it is possible that overall

classification accuracy can be slightly improved for these experiments. However, the

signal model includes assumptions, such as non-dispersive clutter and interference,

which reduce the value of such fine precision adjustments, in practice. Furthermore,

the optimal normalization frequency is expected to be closer to fc, in general, for

rectangularly shaped phase histories where the Jacobian, |fc|, is removed from the

imaging operator, as discussed in Section 5.1.3.

The confusion matrices in Table 17 are provided to illustrate how classification

accuracy varies between different values of α′ for the cases of interference only (top)

and clutter only (bottom). The values in red italics indicate the number of correctly

classified scatterers out of one-hundred thousand trials for each value of α′. There

seems to be competing trends in the data. While in some cases classification accuracy

tends to improve as α′ increases, in other cases, accuracy improves as α′ decreases.

The inflexion points for these trends depend upon the amount of clutter or interference

present. In theory, these trends can be modified by adjusting the normalization factor

in (f) = p, but since the SCR and SIR are not usually known a priori, this is not

very practical.

The confusion matrix in the bottom left-hand corner of Table 17 for SCR = 30 dB

seems to mimic the marginal classification accuracy for the Gotcha data experiment

of Figure 41 of Section 5.4.4. However, the SCR for the top hat and six smaller

trihedrals can be readily calculated as

SCR =
σtophat

σ0Ac

≈ 800 m2

(−10 dB)(0.455 m2)
= 42 dB, (109)

where σtophat ≈ 800 m2 is approximated using the equation for cylinder RCS given

in Figure 8 of Section 2.2.1 and σ0 ≈ −10 dB is taken from table 7.11 of Reference

[133]. The difference between an SCR of 42 dB and a classification performance that
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Table 17. Simulated Confusion Matrices for the Case of β0 = 0.065, I = 3 subbands,
Ni = 2 interferers, and SNR = ∞.

True α′ value
SIR = 30 dB, SCR = ∞ SIR = 50 dB, SCR = ∞

-2 -1 0 1 2 -2 -1 0 1 2

D
ec

la
re

d
α
′
v a

lu
e

-5 21883 15463 11130 7906 5863 64 4 - 1 -
-3 16654 10607 7210 5202 3706 8067 334 18 - -
-2 22886 12389 7808 5374 3612 83929 7904 328 20 1
-1 12470 22764 12540 7832 5325 7579 83722 7728 372 26
0 7632 12467 22771 12500 7845 343 7701 83729 7792 327
1 5301 7804 12333 22517 12593 18 322 7857 83604 7723
2 3707 5341 7775 12545 22682 - 12 323 7859 83713

3 3606 5127 7259 10754 16847 - 1 17 350 8132
5 5861 8038 11174 15370 21527 - - - 2 78

Classification Accuracy = 22.7240% Classification Accuracy = 83.7394%

True α′ value
SIR = ∞, SCR = 30 dB SIR = ∞, SCR = 50 dB

-2 -1 0 1 2 -2 -1 0 1 2

D
ec

la
re

d
α
′
v a

lu
e

-5 28514 22183 17310 13022 10194 59 1 - - -
-3 13599 10041 7797 6455 5059 13213 499 2 - -
-2 15940 10052 7190 5630 4454 73425 12723 529 6 -
-1 9965 15796 9997 7162 5624 12789 73500 12915 525 6
0 7151 9875 15787 10195 7073 512 12769 73144 12824 496
1 5492 7049 9891 15766 10320 2 502 12899 73233 12774
2 4323 5570 7237 9991 15566 - 6 508 12863 73262

3 5049 6344 7785 10072 13762 - - 3 549 13404
5 9967 13090 17006 21707 27948 - - - - 58

Classification Accuracy = 15.771% Classification Accuracy = 73.3128%

mimics an SCR of 30 dB indicates that there is approximately a 12 dB loss factor

in the Gotcha data due to poor coherency and stray clutter, as discussed earlier in

Section 5.4.4.

5.5.3 Coupling Between Bandwidth and Interference.

As a simplification, the signal model and experiments treat bandwidth and inter-

ference as independent factors affecting classification accuracy. However, in reality,

these are actually interdependent factors. The amount of sidelobe interference af-

fecting the subimage pixel peak intensity is dependent upon the size of the pixel.
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This coupling of interference power and bandwidth was not explicitly accounted for

earlier, but can have a significant impact on classification accuracy, as illustrated in

the following experiments.

Figure 43 illustrates the impact of bandwidth-interference coupling on classifica-

tion accuracy for D2. All data parameters from Table 13, including center frequency,

are held constant except for fractional bandwidth. The main source of interference

is due to target-pedestal interactions in the center of the image. As the fractional

bandwidth decreases, the SIR decreases for pixels at and near the center of the image.

As a result, the classification accuracy for these pixels suffers. A most obvious exam-

ple appears in Figure 43(d), where the ring of tri/dihedral classifications from Figure

43(e) disappears. Because this object is so simple and the edge scatterers are rela-

tively isolated from neighboring scatterers, the edge classifications remain accurate

even for smaller fractional bandwidths.

Figure 44 illustrates the impact of bandwidth-interference coupling for the Toyota

Tacoma. The Toyota Tacoma is a more complex target than D2, causing a lower

SIR for many of the scatterers. As a result, the major features described in Section

5.4.3 are evident in Figure 44(c), but dissipate at smaller fractional bandwidths.

Note that the SCR and SNR are approximately infinite in Figures 43 and 44,

so that the impact of interference could be examined in isolation. Based on these

and previous examples, it is recommended that the SPLIT algorithm be used only

for fractional bandwidths of 10-percent or more for typical SAR applications, where

targets are comprised of multiple canonical scatterers in close proximity.

5.5.4 Multiple Observations and Oversampling.

Classification accuracy is expected to improve as multiple observations of the scat-

terer are available. Recall that multiple observations are combined through a weighted
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(a) β ≈ 0.06 (b) β ≈ 0.12

(c) β ≈ 0.23 (d) β ≈ 0.47

(e) β ≈ 0.94

Figure 43. Classification results for D2 with changing fractional bandwidth.
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(a) β ≈ 0.07 (b) β ≈ 0.14

(c) β ≈ 0.28 (d) β ≈ 0.56

Figure 44. Classification results for the Toyota Tacoma with changing fractional band-
width.

average of feature vectors, as described in Section 5.2. For the frequency parameter,

multiple observations are potentially available through the two co-polarization chan-

nels, HH and VV, and through multiple subapertures. For co-polarization channels,

the observations are considered completely independent, while for multiple subaper-

tures, the observations are correlated because the clutter and interference contribu-

tions are correlated. For two independent observation vectors of equal weight, the

benefit to classification accuracy can be equated to a doubling of the SIR and SCR

for the single observation case. Although multiple observations are common in prac-

tice, these usually do not produce independent observation vectors of equal weight.

Therefore, improvements to classification accuracy can be expected when multiple
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observations are available, but usually less than that for the ideal scenario of dou-

bling of the effective SIR and effective SCR as the number of observations doubles.

The confusion matrices in Section 5.5.2 considered only a single observation, while

the annotated images in Section 5.5.3 include all available opportunities for multiple

observations.

Another way to increase the number of observations is by decomposing the phase

history into an increasing number of subbands. In this case, the clutter and inter-

ference is expected to be highly correlated among the subimages, but the effective

SIR and effective SCR are expected to improve slightly none the less. For example,

Figure 45 shows the classification accuracy for the case of I = 5 and reveals that

classification accuracy only slightly improves compared to the case of I = 3 in Figure

42. The model used in this experiment does not include the expected increase in cor-

relation between interference and clutter samples when I = 5; so any improvements

in classification accuracy represent a best case scenario.

The last consideration for classification accuracy is the effect of pixel oversampling.

Pixel oversampling is defined as increasing the number of pixels in each resolution cell,

and can be interpreted as an interpolation of the image samples. Because the SPLIT

algorithm extracts feature vectors on a pixel-by-pixel basis, the size and number of

the pixels could potentially have an impact on classification accuracy. The following

is only a cursory discussion on classification accuracy trends due to oversampling

because it is difficult to express the impact of oversampling analytically. Furthermore,

the use of oversampling is often limited in practice because it results in an exponential

increase in processing costs.

Oversampling limits the amount of interference energy in a given pixel and is

therefore expected to increase the effective SIR. However, with oversampling there

are more pixel boundaries and greater opportunity for a scatterer to be located very
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(a) β = 0.02 (b) β = 0.04

(c) β = 0.08 (d) β = 0.16

(e) β = 0.32 (f) β = 0.64

Figure 45. Classification accuracies for the case of I = 5 subbands, β0 = 0.065, Ni = 2
interferers, and SNR = ∞ for varying fractional bandwidth, β, SIR, and SCR0.
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near a pixel boundary. When a scatterer is located very near a pixel boundary,

there is a chance that noise and clutter interference may cause the subimage peak

to migrate into a neighboring pixel, thereby causing the scatterer to fail the stable

peak criterion of the SPLIT algorithm, as discussed in Section 5.1.1. Therefore,

oversampling increases the probability of missed detections, which in turn, decreases

the number of observations. Alternately, for scatterers near a boundary, the sampling

loss may vary for each subband, thereby skewing the estimation of the frequency and

polarimetric parameters during feature vector extraction. As a result, experience

shows that classification accuracy may show only a slight overall improvement with

increased oversampling, but usually not enough to warrant the increased processing

cost.

As an example, classification results for 2× oversampling are given in Figure 46

for D2. When these classification results are compared to those in Figure 43, there

does not seem to be a significant increase in classification accuracy due to oversam-

pling. Furthermore, missed detections due to oversampling are evident, particularly

in comparing Figure 46(e) to Figure 43(e).
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(a) β ≈ 0.06 (b) β ≈ 0.12

(c) β ≈ 0.23 (d) β ≈ 0.47

(e) β ≈ 0.94

Figure 46. Classification results for D2 with 2× oversampling and changing fractional
bandwidth.
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VI. Integrated Domain Decomposition and Scatterer

Classification Algorithm

This chapter explains how the subimages used for scatterer classification can be

efficiently combined to approximate a conventional SAR image reconstructed from the

original phase history. Alternately, it is always possible to perform SPLIT-based scat-

terer classification separate from conventional SAR imaging, but this is less efficient.

Therefore, it is of interest to reconstruct the SAR image directly from the subimages,

using domain decomposition imaging techniques. This integrated approach increases

the overall computational efficiency and usefulness of SPLIT-based scatterer classifi-

cation. Although domain decomposition imaging introduces some imaging error due

to interpolation and subwindow summation, the error is controllable.

The discussion and evaluation of the integrated algorithm is organized as follows.

Section 6.1 explains how the coarse resolution subimages are be interpolated and

combined to approximate a conventional, fine resolution image. The imaging error

due to interpolation is shown to be controllable, and example SAR images illustrate

how the order of the imaging operator is expected to affect imaging accuracy. Section

6.2 presents subwindow design principles for approximating full band and full aperture

windows used in conventional imaging. Additional analysis reveals that the imaging

error due to the approximation is especially well-controlled for full 360◦ apertures,

and I ≥ 5 subbands. However, for other cases, some imaging artifacts may be visible.

Section 6.3 introduces SAR surveillance applications and the idea of coverage area as

a performance metric. It presents analysis of the computational cost of the integrated

algorithm and concludes with an efficiency study using the Gotcha data set. As a

result, surveillance SAR applications are given specific consideration throughout this

chapter.
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Figure 47 provides an overview of the integrated algorithm. Starting in the upper

left-hand corner, the subaperture windows divide the phase history into J uniformly-

spaced, overlapping subapertures. Next, in the upper right-hand corner, the halfband

windows divide each subaperture into I = 3 uniformly-spaced, overlapping subbands.

In the largest, dotted-line box three coarse-resolution subimages are reconstructed

from the subdomains in each subaperture. Two processing paths proceed downward

from the subimages. To the extreme left, the SPLIT algorithm consists of feature

vector array extraction, summation, and classification, as described in Chapter V. In

the center, domain decomposition imaging consists of an interpolation and weighted

sum of the subimages to form a subaperture image. Then, the subaperture images

are summed to form the final image. Finally, in the bottom left-hand corner, the

image is annotated with scatterer classification results. The steps in the domain

decomposition imaging path are discussed in more detail below.

6.1 Subimage Interpolation

This section presents a detailed interpolation operator for the integrated algo-

rithm. The interpolation operator assumes overlapping subimages in accordance with

a SPLIT-based decomposition of the phase history, as described in Chapter V. Refer-

ring to Equation 3 of Section 2.1.2.2, a discrete version of the interpolation operator

is given as

̂̃g(x,y) =
∑

j

cj

∑

i

ciI {g̃ij(x
′,y′;x,y)} , (110)

where I{·} is the interpolation operator and the ̂ symbol indicates that the result

is an approximation to the fine resolution image reconstructed conventionally from

the full domain of the phase history. Here, the subimage pixel coordinates are (x′,y′)

and the conventional image pixel coordinates are (x,y). Note that in this section,

images are no longer expressed as continous functions.
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Figure 47. A detailed diagram of the integrated scatterer classification and imaging
algorithm. The diagram allows visualization of the effects of subdomain windowing for
a full 360◦ aperture and I = 3 subbands.
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One complication of SAR image interpolation is that SAR images exhibit rapid

phase variations between pixels due to the fact that SAR imagery is recovered from

band limited, frequency offset data [113]. Hence, the interpolation operator must

remove the rapid phase variations between subimage pixels in order to promote accu-

rate interpolation [12]. Recall that the radar system collects samples of the scattered

electric field at different aspect angles and frequencies as it moves along its flight path.

For any single point scatterer in the surveillance area, the returned phase history is

exp(−j2kd(θ)), where k = 2πf/c is the wavenumber, c is the speed of light, and d(θ)

is the distance to the airborne radar for a given aspect angle, θ [76]. Considering

that each image pixel corresponds to a point in the surveillance area, the grid of pixel

locations produces an array of distances, dxy. Thus, for a given subdomain, an array

of central phase factors is given by Aij = exp(−j2kcidx′y′(θcj)), where kci = 2πfci/c

is the central wavenumber of the ith subband and dx′y′(θcj) is an array of distances

between the airborne radar and the pixels located at positions (x′,y′), as measured

at the central angle, θcj, of the jth subaperture.

Following [12], the interpolation operator multiplies each subimage pixel array by

its corresponding array of central phase factors to smooth-out the phase variations

between pixels before 2D interpolation. After 2D interpolation is complete, the rapid

phase variations are reestablished by multiplying by the conjugate of the array of

central phase factors, A∗
ij = exp(j2kcidxy(θcj)), where (x,y) are the positions of the

interpolated pixels. Thus, the resultant produced by the interpolation operator, I{·},

is succinctly expressed as

̂̃gij(x,y) = I{g̃ij(x
′,y′);x,y} = A∗

ijIAij g̃ij(x
′,y′), (111)

where I performs a 2D interpolation which effectively increases the sampling rate

in both coordinates of the spatial domain. For example, recalling that the SPLIT
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(a) Conventional
Image.

(b) Nearest
Neighbor
Interp.

(c) Linear Interp. (d) Cubic Interp. (e) Ideal Interp.

Figure 48. SAR imagery for multilook conventional CBP imaging (left) and domain
decomposition CBP imaging with a subaperture width Θ = 2◦. The order of the in-
terpolation increases to the right. It appears that cubic interpolation is required to
reduce image artifacts to an indiscernable level compared to the conventional image.

algorithm uses halfband subwindows in frequency and assuming that the full aperture

is at least twice the size of the subapertures; the interpolation operator effectively

doubles the sampling rate in each dimension so that the resultant has four times

more pixels than the subimages. The ̂ symbol in Equation (111) indicates that the

interpolation operator introduces a controllable error [12].

6.1.1 Imaging Error Due to Interpolation.

The imaging error due to interpolation is controllable by increasing the amount of

oversampling, increasing of the order of the interpolator, or both [12, 7]. Experience

shows that for very narrow subapertures, linear interpolation is both efficient and

sufficient to control interpolation error in the integrated algorithm [12]. However, for

larger subapertures, higher order interpolators may be required. For example, Figure

48 shows the results of multilook images for conventional imaging and domain de-

composition imaging with varying orders of interpolation. By comparing the domain

decomposition images to the conventional image on the left, it is possible to visualize

image artifacts. The results show that for a 2◦ subaperture, cubic interpolation is

required to reduce image artifacts to a visually indiscernible level. In addition, Figure
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(a) Conventional
Image.

(b) Nearest
Neighbor
Interp.

(c) Linear Interp. (d) Cubic Interp. (e) Ideal Interp.

Figure 49. SAR imagery for multilook conventional CBP imaging (left) and domain
decomposition CBP imaging with a subaperture width Θ = 10◦. It appears that ideal
interpolation is required to reduce image artifacts to an indiscernable level.

(a) Conventional
Image.

(b) Nearest
Neighbor
Interp.

(c) Linear Interp. (d) Cubic Interp. (e) Ideal Interp.

Figure 50. SAR imagery for conventional CBP imaging (left) and domain decompo-
sition CBP imaging with a subaperture width Θ = 2◦. It appears that even nearest
neighbor interpolation may be sufficient for some applications.

49 reveals that for a 10◦ subaperture, ideal interpolation is required. In this case,

ideal interpolation for band limited signals is performed by taking the IFFT of the

zero-padded resultant of an FFT.

It turns out that coherent summation imaging, as expressed in Equation (4) of

Section 2.1.2.4, may be more tolerant to interpolation error than multilook imaging,

as expressed in Equation (5) of Section 2.1.2.4. For example, Figures 50 and 51 reveal

that even nearest neighbor interpolation may be sufficient for some applications.

Note that all domain decomposition images in this section used I = 5 subbands.
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(a) Conventional
Image.

(b) Nearest
Neighbor
Interp.

(c) Linear Interp. (d) Cubic Interp. (e) Ideal Interp.

Figure 51. SAR imagery for conventional CBP imaging (left) and domain decompo-
sition CBP imaging with a subaperture width Θ = 10◦. It appears that even nearest
neighbor interpolation may be sufficient for some applications.

6.2 Subwindow Design and Weighting

In addition, tapered subwindows in azimuth improve the sidelobe conditioning of

subaperture images used in video SAR, while tapered subwindows in both azimuth

and frequency provide sidelobe conditioning to improve SIR for scatterer classification.

However, for the integrated algorithm, these subwindows cause artifacts in the final

image when their summations do not well-approximate the desired full domain win-

dows. The effects of data windowing can be visualized in the detailed diagram of the

integrated algorithm provided in Figure 47. Fortunately, the error due to subdomain

windowing is controllable through careful design and use of Hanning subwindows.

The following discussion addresses the controllable error in each spectral dimen-

sion, separately. The approximation is expressed as a summation of subwindows

HΦ(ξ − ξc) ≈
M∑

m=1

cmHΦ′(µξ + ξcm), (112)

where HΦ(ξ − ξc) is either the full aperture window in azimuth or the fullband win-

dow in frequency with region of support Φ. In this case, M ∈ N is the number of

subwindows with region of support, Φ′ ⊂ Φ, in that dimension. The subwindows are

weighted, scaled, and shifted by cm ∈ R, µ ∈ R, µ > 1, and ξcm ∈ R, respectively.
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The window error for Equation (112) is defined using the Euclidean norm,

ǫ = ||HΦ(ξ − ξc) −
M∑

m=1

cmHΦ′m||2, (113)

and is a function of the type, number, spacing, and weighting of the subwindows.

For simplicity of notation, the mth shifted window is HΦ′m = H(µξ + ξcm) from

Equation (112). Because the spectral and spatial domains form a Hilbert space, a

solution which minimizes the window error in the spectral domain will likewise min-

imize artifacts in the image [15]. Raised cosine family of window functions, such as

Hanning, Hamming, and Taylor, are often used in SAR imaging [76], but other sym-

metric, tapered windows, such as those described in the seminal paper by Harris [67],

could also be used. Because of the summation in Equation (113), the window error

is best controlled when the subwindows are free of discontinuities. As an example,

the Hanning window produces a low window error compared to Hamming and Taylor

windows, which have a discontinuity at the boundaries of the region of support. The

continuous Hanning window is a raised cosine

H̄(ζ) =






(cos ζ + 1)/2, ζ ∈ [−π, π],

0, otherwise,

(114)

where ζ is the region of support. The next two sub-subsections analyze the window

error caused by using the sum of scaled, shifted, and weighted Hanning subwindows to

approximate a fullband window in frequency and a full aperture window in azimuth.

6.2.1 Frequency Subwindows.

In frequency, the design goal is to approximate a fullband Hanning window of

width, B, centered at fc. Thus, the fullband Hanning window is succinctly expressed

138



as HB = H̄
(

B
2π

ζ − fc

)
. Due to symmetry, an odd number of subwindows produces a

smaller window error than does an even number of subwindows. As such, the number

of subwindows, I, is equal to 2L + 1, L ∈ N. Under these conditions, the error due to

the frequency window approximation is

ǫB = ||H̄
(

B

2π
ζ − fc

)
−

L∑

l=−L

clHB′l||2, (115)

where HB′l are the frequency subwindows with weights, cl. Here, the region of sup-

port for each Hanning subwindow represents a subband of the radar data. In order to

obtain processing efficiency in the integrated algorithm, the subwindows in frequency

are scaled to exactly half of the width of the fullband Hanning window. This choice

agrees with the fast CBP algorithm presented in [12]. Although additional process-

ing efficiency is gained by narrowing these subwindows even further, this causes a

significant decrease in both classification and imaging accuracy due to the reciprocal

relationship between bandwidth and resolution. As the subbands narrow, subimage

resolution becomes coarser, causing decreased localization in the scattering center

classifier and increased errors during subimage interpolation.

Therefore, the weighted, halfband Hanning subwindows in frequency are expressed

as

clHB′l = clH̄

(
B

4π
ζ +

lB

4L
− fc

)
, (116)

where the weights, cl are given by the solution to the system of equations





〈HB′(−L), HB′(−L)〉 · · · 〈HB′(−L), HB′L〉
...

. . .
...

〈HB′L, HB′(−L)〉 · · · 〈HB′L, HB′L〉









c−L

...

cL




=





〈HB, HB′(−L)〉
...

〈HB, HB′L〉




,

(117)

where 〈·, ·〉 denotes the inner product [120]. In summary, when designing subwindows
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in frequency for circular SAR, the number is odd, the spacing is given by Equation

(116), and the weights are given by Equation (117).

6.2.2 Azimuth Subwindows.

In azimuth, the error due to the azimuth window approximation is

ǫΘ = ||HΘ(θ − θc) −
J∑

j=1

cjHΘ′j||2. (118)

This error is best controlled, in general, for an odd number, J , of halfway overlapping,

uniformly spaced, Hanning subwindows, so that

J ≤ 2Θ

Θ′ − 1. (119)

This condition determines the scaling of the subaperture windows so that

cjHΘ′j = cjH̄

(
Θ′

2π
ζ + θj

)
, (120)

where HΘ′j are the frequency subwindows with weights, cj. The weights and shifts

that reduce the error due to the azimuth window approximation will depend upon

the type of aperture window to be approximated.

For surveillance SAR applications or ISAR radar range measurements, 360◦ aper-

tures are common. In this case, the full aperture window is flat, as shown in the

bottom right-hand corner of Figure 47 of the intro to Chapter VI. Fortunately, the

use of Hanning subwindows produces low window approximation error in azimuth

because two equally weighted Hanning windows, shifted by a difference of π, sum to

unity in the region of mutual support. This useful property is a consequence of the

trigonometric relationship (cos ζ + 1)/2 + (cos(ζ − π) + 1)/2 = 1, as illustrated in
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Figure 52. A Hanning window (left) has the property that the sum of equally weighted,
halfway overlapping Hanning windows (right) is unity over the region of mutual sup-
port.

Figure 52. By this property, a set of properly shifted and scaled Hanning subwindows

of equal weighting will sum to a flat window in azimuth. Therefore, for a flat window,

HΘ = 1, cj = 1,∀j, and θj = j2π
J

in Equations (118) and (120).

For apertures less than 360◦, the full aperture window is HΘ = H̄
(

Θ
2π

ζ − θc

)
. In

this case, the window approximation error is best controlled when the windows are

uniformly spaced by θj = j2π
J+1

− π − θc and when the weights follow the envelope

of a Hanning window in order to mimic the envelope of the full aperture window

with cj = H̄
(

j2π
J+1

− π
)
. Alternately, the weights can be determined by adapting the

procedure used for subwindows in frequency expressed in Equation (117).

Finally, note that for stripmap Mode SAR, the available aperture is limited by the

antenna beamwidth, as described in Section 4.5. In fact, the available aperture is often

so limited that only one subaperture can be used per image. In this degenerate case,

J = 1, and no efficiency can be obtained by decomposition in the azimuth direction.

However, subband windowing in frequency is still viable, and the subimages can still

be weighted and summed to produce a domain decomposition image.

6.2.3 Imaging Accuracy.

In general, the imaging accuracy improves as the number of subwindows increases.

For instance, frequency subwindows for the cases of I = 3 and I = 5 are depicted in

Figure 53, where the window error is visually indiscernible for the case of I = 5. In
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Figure 53. In frequency, a fullband Hanning window (thick, dashed line) is approxi-
mated by the sum (thick, solid line) of an odd number of weighted, shifted, halfband
Hanning windows (thin, dotted lines). The weights for the narrow Hanning windows
were determined using Eq. (117) for I = 3 (left) and I = 5 (right).

Figure 54. Point spread functions in the range dimension are oversampled to show
sidelobe structure. The PSF for the case of I = 5 is visually similar to that of the ideal
Hanning function down to approximately -40 dB. In contrast, the PSF for the case of
I = 3 is only visually similar down to approximately -20 dB.

order to determine how the window approximation error will affect the image, it is

helpful to calculate the point spread function (PSF). The PSF predicts the response

of a single, isotropic, non-distributed, non-dispersive scatterer located at the zero-

phase reference. In other words, it illustrates how an ideal point scatterer located

in the center of the image will appear. The PSF in the range dimension is simply

the absolute value of the inverse discrete Fourier transform of HB(f) [76]. Figure

54 compares the ideal PSF for a Hanning window to the PSFs for the approximated

Hanning windows when I = 5 and I = 3. For the case of I = 5, the PSF is visually
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Figure 55. The window approximation error in azimuth using discrete Hanning sub-
windows. For a given aperture, fewer subwindows results in more digital samples per
subwindow.

similar down to approximately -40 dB, but for the case of I = 3, this is only true down

to approximately -20 dB. As a result, the circular SAR image artifacts due to window

error in frequency for the integrated algorithm are likely to be visually indiscernible

for the case of I = 5, but may be noticeable for the case of I = 3. Section 6.2.3.1

presents empirical evidence to support these predictions.

For the case of approximating a flat window in azimuth, the window error in

azimuth is zero for continuous Hanning subwindows, that is ǫΘ = 0. Consequently,

for the case of discrete Hanning subwindows, the window error approaches zero as the

number of samples for each subwindow approaches infinity. Figure 55 illustrates this

with results produced using the hanning function in Matlab R©. For a given aperture,

fewer subwindows results in more digital samples per subwindow. Note also how the

absolute window error decreases as the number of samples for each of the Hanning

subwindows increases. A typical implementation of the integrated algorithm features

dozens of subapertures, each with hundreds of samples. In this case, the per sample

window error in azimuth is very low, and the resulting image artifacts are likely to
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Figure 56. In azimuth, a wide Hanning window (thick, dashed line) can be approx-
imated by the sum (thick, solid line) of an odd number of weighted, shifted narrow
Hanning windows (thin, dotted lines). The approximation error is reduced as the
number of narrow windows, J, increases.

be visually indiscernible. Section 6.2.3.1 presents empirical evidence to support this

prediction.

In contrast, for the case of approximating a Hanning window in azimuth, the

imaging accuracy will improve as the number of subwindows increases, as indicated

in Figure 56. The PSFs for this case are shown in Figure 57. Note, that there must

be at least J = 7 subwindows in order to keep the sidelobes in azimuth below -30 dB.

Recall that the wide-angle approximation in the multi-peak model requires Θ′ & 10◦.

Also note that according to Equation (119), a full aperture of 40◦ is required in

order to create J = 7 subapertures of width Θ′ = 10◦ each. This suggests that the

integrated algorithm requires a very wide aperture, Θ & 40◦, in order to reduce image

artifacts to a visually indiscernible level.

Last, note that the subwindow design principles presented earlier are not unique to

Hanning windows and are easily adapted for use with other types of windows. How-

ever, it’s worth restating that windows with no discontinuities, such as the Hanning

window, produce a lower window error than other popular windows which feature

discontinuities, such as Hamming and Taylor windows.
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(a)

(b)

(c)

Figure 57. The PSFs in the cross-range dimension are oversampled to show sidelobe
structure. The sidelobe levels in cross-range are reduced as the number of subaperture
windows, J , increases.

6.2.3.1 Empirical Studies of Imaging Accuracy.

This section compares the imaging accuracy of the integrated algorithm to that

of conventional CBP for a surveillance SAR application. As previously discussed, an

image produced by the integrated algorithm contains image artifacts due to errors in

interpolation and window approximation. Additional analysis revealed that the errors
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Figure 58. SAR images of a parking lot scene (bottom row) with call-out boxes fea-
turing top-hat and dihedral calibration targets (top row). The images produced by
conventional CBP (left column) serve as a baseline for evaluating the imaging accuracy
of the integrated algorithm. The errors introduced by the integrated algorithm for
the case of I = 5 (middle column) are imperceptible. However, the errors introduced
for the case of I = 3 (right column) cause a visible increase in sidelobe energy, which
causes the appearance of a slightly stronger and broader halo around objects with high
scattering intensity.

were quite small and likely to be visually indiscernible for the case of a flat window

in azimuth and I = 5 subbands. However, for the case of I = 3, the error due to

window approximation in frequency is appreciable and is likely to be noticeable due to

increased PSF sidelobes. The following examples verify these conclusions empirically.

Figure 58 shows SAR images of the Gotcha data described in Table 15 of Section

5.4.4. Note that the aperture is 360◦ so that a flat aperture window is approximated

in azimuth. For brevity, only the data from the horizontal transmit, horizontal receive
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(HH) channel is shown. Also, in order to emphasize differences between imaging

methods, a coherent subaperture sum with 2× oversampling is used. The SAR images

are reconstructed using conventional CBP, the integrated algorithm with I = 5,

and the integrated algorithm with I = 3. The call-out boxes in the top row reveal

additional detail for the top hat and one trihedral taken from the full-scene images in

the bottom row. By using the conventional CBP images (left column) as a baseline,

one can visually confirm the impact of the image artifacts introduced by the integrated

algorithm. For the case of I = 5 (middle column), the artifacts are imperceptible,

and the images in the left and middle columns are virtually identical. In contrast, for

the case of I = 3 (right column), some image artifacts are noticeable. The increase

in PSF sidelobe energy causes a slightly stronger and broader halo to appear around

objects with high scattering intensity. As a result, some of the pixel values are visibly

different when compared to conventional CBP, especially those in the center and

along the edge of the top hat and those surrounding the trihedral. Similar results

(not shown) were obtained for varying amounts of oversampling in the integrated

algorithm.

Results in Figure 58 are valuable for analyzing the usefulness of the integrated

algorithm and for gaining practical insight into the engineering trade space between

imaging accuracy and processing efficiency. For the case of I = 5, the imaging accu-

racy is very good and any processing gain makes it a superior choice to conventional

CBP. However, for the case of I = 3, the SAR system engineer must evaluate the

noticeable loss in imaging accuracy against the benefits of associated processing gain.

The cases for I > 5 are not presented because the processing cost increases linearly

with no appreciable improvement in imaging accuracy. The next section analyzes the

processing cost of the integrated algorithm and demonstrates its potential efficiency.
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6.3 Efficiency Study

Scattering center classification by phase history decomposition is operationally

efficient when compared to existing image segmentation methods. This is because

image segmentation requires human supervision, as discussed in Sections 1.2 and

3.1. Although the expected gains in operational efficiency are likely to be substantial,

these are difficult to analyze mathematically. In contrast, the computational efficiency

gains afforded by the integrated algorithm are more readily analyzed.

The integrated algorithm allows gains in computational efficiency with a control-

lable reduction in imaging accuracy. Use of this trade-space is desirable for highly re-

source constrained scenarios, such as SAR surveillance applications. Imaging accuracy

was discussed in the preceding sections, while computational efficiency is discussed

in this section. The section begins by introducing the concept of SAR surveillance

and the processing constraints that limit maximum coverage area. Then, it presents

analytical analysis of the expected efficiency of the integrated algorithm assuming

a convolution backprojection imaging algorithm. Finally, it uses coverage area as

a metric, to present empirical studies of computational efficiency for the integrated

algorithm.

6.3.1 SAR Surveillance.

SAR systems are useful for wide-area surveillance, provided that these systems

can produce images in near real-time [118, 18, 99, 25]. Example applications include

all-weather, day and night monitoring of borders, roads, or cities to protect popula-

tions from illicit activities. As a result of the growing demand for SAR surveillance

imagery, developers of airborne SAR systems have begun to incorporate a extensive

circular SAR modes into their designs [23, 22, 35, 151, 89]. Surveillance via circu-

lar SAR imaging is depicted in Figure 2 of Section 2.1.1. The operating parameters
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and capabilities of specific surveillance SAR systems vary, but typical performance

parameters include a resolution of 0.15-m to 0.5-m and a coverage area of 0.5-km2

to 1-km2. Current efforts seek to increase the available coverage area for a given res-

olution under time and resource constraints. The maximum coverage area depends

on the complexity of the imaging algorithm, the speed of the image processor, and

the computational burden for optional post-processing of the SAR data, and serves

as the performance metric for the efficiency studies in Section 6.3.3.

First, coverage area depends upon the complexity of the imaging algorithm. The

imaging algorithms suitable for circular SAR are CBP and PFA [76]. In theory,

both algorithms produce equivalent images with controllable error [82]. Furthermore,

for an image consisting of N × N pixels, each has a computational complexity of

O(N2 log N) when fast Fourier transforms and fast CBP techniques are considered

[103, 12]. Last, both algorithms are scalable to allow accelerated processing through

distributed and parallel architectures [82, 68]. However, despite these and other gen-

eral similarities, CBP has one significant advantage over PFA: it allows for greater

flexibility in selecting the image pixel locations and spacing, which can be used to fo-

cus the image to a previously-obtained digital elevation map [76, 40]. For this reason,

the CBP algorithm is generally preferred in surveillance SAR applications, where the

desired imaging plane often varies significantly with changes in aspect angle. The

computational complexity varies from O(N3) for conventional CBP to O(N2 log N)

for fast CBP techniques, depending upon the implementation. As imaging algorithms

are mature, significant increases in real-time (or near real-time) coverage area will be

achieved by increased processing capability and efficiency.

Second, coverage area depends upon the speed of the image processor. Advances in

parallel processors have lowered cost and increased performance of near real-time SAR

imaging systems [65, 68, 41]. However, the coverage area of current systems is still
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quite limited. For example, Gorham et al. reported on the processing time required

to produce circular SAR images using a specialized processor suitable for surveillance

aircraft [65]. The processor produces a 2048 × 2048-pixel circular SAR image for one

polarization channel in approximately 23 seconds. This provides a 0.25-km2 coverage

area for a single polarization channel at 0.25-m resolution. Assuming systematic

scaling, the processor produces a fully-polarized circular SAR image with similar

resolution over a 4-km2 coverage area in approximately 45 minutes. For comparison,

a separate implementation using four graphics processing units produces the same

result in approximately 90 minutes [68]. Because a typical airborne radar system

circumnavigates its entire flight path in under 45 minutes, a 4-km2 coverage area

exceeds what these solutions can provide in real-time. As processing advances are

incremental, even with fast imaging algorithms, increases in real-time coverage area

are expected to remain incremental.

Third, the information within the coverage area depends upon the computational

burden for optional post-processing of the SAR data. Upon receipt of a SAR image,

an analyst must subsequently scrutinize the image, but often requires automatic anal-

ysis tools to meet time constraints. The time required for image analysis is difficult

to parameterize. However, it is generally accepted that people can better prioritize

surveillance resources and improve image analysis with the aid of additional SAR

data processing [116]. Proposed methods range from simple scatterer filters or clas-

sifiers, which help identify regions containing objects of interest, to automatic target

classifiers, which provide specific target information [116]. While the advantages and

limitations of such classifiers vary, almost all of them execute significant amounts of

signal processing after a SAR image is formed [116]. For instance, some advanced

methods employ iterative model-matching techniques, which require repetitive imag-

ing of the scene [101, 122]. In addition, many signal estimation methods require
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evaluation of a full-rank correlation matrix, which drives computational complexity

as high as O(N6) [39]. Unfortunately, a dramatic increase in processing costs occurs

when such classifiers are appended to a SAR imaging process. While researchers of-

ten propose efficient implementations for classifiers with high orders of computational

complexity, these are tailored to the particular classifier, and research to survey the

processing costs of all such classifiers is nascent. As a result, current evaluations of

the near-real time capability of circular SAR systems do not usually consider op-

tional post-processing of the SAR data as part of the equation. Therefore, advances

in optional post-processing of the SAR data alone have not translated into increased

coverage area for circular SAR systems, to date. However, the integrated algorithm

has the potential to reduce or even eliminate the post-processing costs of some clas-

sifiers and produce a significant increase in coverage area for circular SAR systems,

as discussed in Sections 1.2 and 3.1.

6.3.2 Analysis of Computational Cost.

Because domain decomposition imaging has a lower order of computational com-

plexity than conventional CBP imaging, the integrated algorithm has the potential

to produce a SAR image annotated with scatterer classification in less time than it

takes to produce the same image by conventional CBP, without scatterer classifica-

tion. This section analyzes the computational costs of both the integrated algorithm

and conventional CBP to determine under what conditions this efficiency is achieved.

A first-order analysis of computational cost scales linearly with an increase in the

number of available polarization channels. Therefore, the following analysis is re-

stricted to a single polarization channel. Also, to facilitate discussion, primed math-

ematical constants refer to the integrated algorithm, while unprimed constants refer

to conventional CBP. Note that the equation for conventional CBP imaging using
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overlapping subapertures is given by Equation (4) of Section 2.1.2.4, whereas the in-

tegrated algorithm uses phase history decomposition as expressed in Equation (3) of

Section 2.1.2.2. For both, the imaging operator has a computational complexity of

O(N3) for an N × N image, while other processes have a computational complexity

of O(N2) [76].

The computational cost for CSAR image formation by conventional CBP is

Cost = J(bN3 + sN2), (121)

where b is an unspecified coefficient for the imaging operator and s is an unspecified

coefficient for other processes. These O(N2) processes include subaperture image

summation and various data conditioning operations. Examples of data conditioning

operations are two-dimensional (2D) windowing of the subaperture data and compu-

tation of pixel intensities for use in displaying an image.

In contrast, the integrated algorithm creates potential savings by producing subim-

ages that are N
2
× N

2
in size while adding an additional 2D interpolation process and

a feature extraction process both of which are O(N2). The number of subimages is

I × J , and the computational cost to produce an annotated CSAR image using the

integrated algorithm is

Cost′ = IJ ′
(
b′

(
N
2

)3
+ s′

(
N
2

)2
+ a′ (N

2

)2
)

, (122)

where a′ is an unspecified coefficient which accounts for the additional 2D inter-

polation and feature extraction processes, and where b′ and s′ are the fast CBP

counterparts to b and s.

Assuming overlapping subapertures and subimage dimensions with equal resolu-

tion, the widths of the subapertures for conventional CBP are twice the width of
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the subapertures for the integrated algorithm. This occurs because the integrated

algorithm recovers subimages from halfband data, where B′ = B
2
. As a result, the

integrated algorithm requires twice as many subaperture images as does conventional

CBP, and J ′ = 2J . It can be shown under the preceding assumptions, that the

relationship

N >
2I(s′ + a′) − 4s

4b − Ib′
=⇒ Cost′ / Cost (123)

holds. When I ≥ 3, the numerator is likely to be positive. Therefore, as long as

4b > Ib′, there exists some threshold, N > Nthresh, at which the cost of integrated

algorithm is less than conventional CBP. The conditions which cause the denominator

of (123) is positive, warrant further scrutiny. Intuitively, it seems safe to assume that

b ≥ b′ because the subimages are of a coarser resolution for the integrated algorithm.

Based on this assumption, Nthresh, exists for the case of I = 3. However, it is unclear

whether or not Nthresh exists for the case of I ≥ 5. In general, Nthresh must be

determined empirically because a′, b, and b′ are unspecified. For instance, b is affected

by the computational complexity of the interpolation in the imaging operator, B{·},

while a′ is affected by the computational complexity of the 2D interpolation in the

interpolation operator, I{·}.

In summary, first-order comparison of the computational cost of the integrated

algorithm to that of conventional CBP showed that for large, high-resolution images

with large N , the integrated algorithm has a lower processing cost than conventional

CBP for the case of I = 3, but not necessarily for the case of I ≥ 5. In addi-

tion, the integrated algorithm produces scatterer classification information, whereas

conventional CBP does not. The next section presents empirical studies of the net

computational savings and imaging accuracy of the integrated algorithm.
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Figure 59. Processing times required to produce a circular SAR image. For large N ,
conventional CBP has a higher processing cost than the integrated algorithm for the
case of I = 3.

6.3.3 Empirical Studies of Processing Efficiency.

This section evaluates the processing efficiency of the integrated algorithm, as

compared to conventional CBP. The discussion in Section 6.3.2 revealed that there

is a theoretical image size, N > Nthresh, above which the integrated algorithm has a

lower processing cost than conventional CBP. Additional analysis revealed that this

threshold exists for the case when I = 3, but it is unclear if it exists for the case when

I = 5. The following examples verify these conclusions empirically.

For near real-time surveillance, the time required to produce an N ×N image is of

interest. The following empirical studies use the Gotcha data set described in Table

15 of Section 5.4.4 to simulate a SAR surveillance scene. To simulate different values

of N , the number of samples in the Gotcha data set is adjusted by an appropriate

amount of decimation or interpolation. Based on this procedure, Figure 59 reports

the processing times for a series of simulations of varying image sizes. The longer
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run-times were approximated by processing only a portion of the data set. For the

case of I = 3, the integrated algorithm has a lower processing time than conven-

tional CBP for N & 200. In contrast, for I = 5, the integrated algorithm always

has a higher processing time than conventional CBP. For large N , all three curves

display a computational complexity of O(N3), as expected. These simulations were

conducted using a 64-bit version of MatlabR© on a quad-core Intel R© Xeon R© 5160,

3-GHz processor.

A useful metric for evaluating the integrated algorithm in a time constrained sce-

nario is the amount of coverage area either gained or lost, as compared to conventional

CBP. Figure 60 presents this comparison for the three cases shown in Figure 59. To

construct Figure 60, it is noted that the curves in Figure 59 were interpolated by a

piecewise cubic hermite interpolating polynomial provided in the pchip function of

Matlab R©. Based on this procedure, Figure 60 shows the estimated coverage area for

the integrated algorithm as a percent of the coverage area for conventional CBP. The

coverage area for the integrated algorithm is approximately 20-percent greater than

conventional CBP for the case of I = 3 and about 10-percent less than conventional

CBP for the case of I = 5.

The best results for the integrated algorithm occur for N ≈ 565, and so the

performance of the algorithm near this operating point deserves additional evaluation.

Of particular interest from Equation (122) is the condition under which 4b > 5b′,

where the processing cost of conventional CBP is greater than the processing cost of

the integrated algorithm (shown for the case of I = 5). The relationship between

b and b′ is primarily affected by the processing cost of the one-dimensional (1D)

interpolation in the imaging operator. For each backprojection, the image pixels

accumulate interpolated samples of the 1D range-compressed, filtered radar data [76].

In order to obtain acceptable imaging accuracy and efficiency, the imaging operator
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Figure 60. Estimated circular SAR coverage areas for the integrated algorithm as a
percent of the coverage area for conventional CBP. For large N , where processing times
are large, the integrated algorithm provides approximately 20-percent more coverage
than conventional CBP when I = 3, and it provides approximately 10-percent less
coverage when I = 5.

usually performs 1D interpolation by a two-step process of ideal sinc interpolation

followed by a much less computationally complex linear interpolation [64]. In practice,

ideal sinc interpolation is accomplished by zero-padding the radar data in the spectral

domain before performing an IFFT to obtain an oversampled signal in the spatial

domain. Typically, the amount of oversampling is on the order of 10×, or more

[64, 135]. For instance, approximately 9× oversampling was used in these studies.

Additional experiments revealed that simply reducing oversampling in both con-

ventional CBP and the integrated algorithm to 4× caused the computational cost of

traditional CBP to become nearly equivalent to the processing cost of the integrated

algorithm for the case of I = 5 and N = 565. However, reducing oversampling to

such a low amount produced image artifacts that are usually undesirable. Therefore,
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these studies suggest that for typical SAR surveillance implementations, the process-

ing cost for conventional CBP will be less than the processing cost for the integrated

algorithm for the case of I = 5.

Finally, note that these efficiency studies assumed that the integrated algorithm

required twice as many subaperture images as conventional CBP, where J ′ = 2J in

Equation (123). If this requirement is relaxed, so that the subaperture width for

the integrated algorithm is equal to that for conventional CBP, then computational

efficiency will improve. However, the efficiency is not likely to double when J ′ = J

because larger subapertures may demand a higher order interpolator, as discussed

previously in Section 6.1.1. However, when J ′ = J , it is likely that there exists a

threshold, Nthresh, whereby the coverage area is larger for both cases of I = 3 and

I = 5 when compared to the coverage area for conventional CBP.
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VII. Conclusion

In conclusion, this dissertation presented a new theory for SAR scatterer classifi-

cation by phase history decomposition. More specifically, the hypotheses presented in

Section 3.2 have been proven. First, canonical scatterers can be located and classified

in subimages. This is accomplished using the multi-peak model and SPLIT algorithm.

Second, the process is efficient. Operational efficiency is improved by eliminating the

need for human supervision associated with existing scatterer classification methods

based on image segmentation. Furthermore, computational efficiency is improved

through use of the integrated algorithm.

The benefits of the new theory are significant. First, it provides a solid theoret-

ical basis by which to predict imaging and classification performance. Second, it is

flexible, with a controllable efficiency versus accuracy trade-space that can be used

to optimize desired performance for resource constrained scenarios. Third, the new

theory provides a general tool for queuing analysts or precision algorithms for high

precision, post-processing of SAR images. Finally, note that this research has resulted

in the publication of three conference papers, the submission of two journal articles,

and the production of computer programs for use with real SAR data.

7.1 Notable Limitations

While there are many significant benefits of the new theory for SAR scatterer

classification by phase history decomposition, there are some notable limitations to

keep in mind as well. The notable limitations of the multi-peak model are listed

in decreasing order of importance. First, model accuracy is limited by a wide-angle

approximation that restricts apertures or subapertures to be greater than or equal

to 10◦. Fortunately, wide-angle SAR imaging systems do exist and their continued
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development makes wide-angle SAR applications likely to be common in the future.

Second, for stripmap SAR applications, the multi-peak model is restricted for use

with the Omega-K algorithm. Fortunately, the Omega-K algorithm is mature and

even commonly used for P-band stripmap SAR systems. Third, also for stripmap

SAR, the multi-peak model is accurate for scatterers with effective lengths greater

than or equal to 1.6 times the physical length of the antenna. Fourth, a small-angle

approximation restricts the multi-peak model to apertures or subapertures less than

20◦ for rectangularly formatted phase histories. Although rectangularly formatted

phase histories are very common for spotlight mode SAR, this restriction is already

often observed, in practice. Fifth, the multi-peak model is limited by a high-frequency

approximation for perfect electrical conductors in the far field. In particular, this

requires that the effective length of scatterer to be ten wavelengths long or longer.

Fortunately, these conditions are met for many objects of interest in typical SAR

applications. Furthermore, these restrictions are common among existing scatterer

models and classification methods, and therefore, are not unique to the multi-peak

model. Sixth, the multi-peak model requires the use of a tapered window in azimuth.

Fortunately, windowing of the phase history is already a common practice in SAR

imaging.

The notable limitations of the SPLIT algorithm are listed in decreasing order of

importance. First, classification accuracy is limited by subimage resolution, which

is half of the system resolution. The SPLIT algorithm obtains the required spectral

information by reducing spatial resolution. As expected, such trade-offs are unavoid-

able in SAR image processing due to the principle of time-frequency reciprocity.

Second, the SPLIT algorithm is generally inaccurate for fractional bandwidths be-

low 10-percent. The SIR due to neighboring scatterers must be well-controlled to

ensure good classification accuracy. Experimental results indicate that a fractional

159



bandwidth of at least 10-percent is needed to reduce the SIR for typical man-made

structures. Third, the least squares classifier is not optimized for clutter or interfer-

ence limited scenarios. It is well-suited for classifying canonical scatterers on simple

targets in free-space, but when interference from neighboring strong scatterers or

clutter are a concern, the performance of the least squares classifier is expected to

be suboptimal. Fourth, the SPLIT algorithm requires a normalized phase history.

Fortunately, the necessary normalization factors are typically available for most SAR

systems. Fifth, the SPLIT algorithm assumes a stationary scattering center. As

expected, some objects, such as resonant cavities, and moving vehicles or windmill

blades appear unfocused in the SAR image. Fortunately, these objects are typically

rejected by SPLIT algorithm using the stable peak criterion and are not expected to

cause undue confusion in the classifier.

There are three notable limitations of the integrated algorithm. Fortunately, if

these limitations prove unacceptable in practice, then scatterer classification can be

accomplished separately and results can be overlaid on a SAR image reconstructed

using a conventional imaging process. First, rapid phase variations in the subimages

require either a high order interpolator or restricted subdomain in order to reduce

image artifacts to imperceptible levels. Second, the integrated algorithm is limited to

the use of Hanning windows to limit discontinuities which increase window approxi-

mation error. Third, the window approximation error can introduce noticeable image

artifacts for apertures under 40◦ and a number of subbands less than five.

7.2 Future Work

This dissertation creates a solid foundation for future research in the following

areas. First, recent trends in legal restrictions on use of the electromagnetic spectrum

have spurred interest in SAR collections over discontinuous frequencies. Fortunately,
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the new theory in this dissertation can be extended for use with discontinuous phase

histories, as needed. Second, classification accuracy can be improved beyond that of a

least squares classifier by use of standard signal detection and estimation techniques.

For example, the use of generalized likelihood ratio tests for specific scenarios could be

of interest. Alternately, adaptive filters for clutter cancellation can be incorporated

into the algorithm. Third, the theory can be extended beyond monostatic, 2D SAR

to include 3D SAR and bi-static SAR. Fourth, domain decimation imaging featuring

a mosaic of subimages can provide computational efficiency equivalent to domain

decomposition imaging. These techniques can be blended rather easily, but the effect

on classification accuracy is uncertain and would need to be researched. Finally,

there are potentially additional uses for related versions of the multi-peak model and

SPLIT algorithm in other topics and areas of research, such as the CLEAN algorithm

modified by the stable peak criterion [53, 100, 141].
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Appendix A. AFIT Indoor RCS Measurement Range

The AFIT indoor RCS measurement range consists of a large anechoic chamber,

target support system, and a radar system featuring a Lintek gating box. Specific

information regarding these systems can be found in the course notes for EENG 627 -

RCS Analysis, Measurement, and Reduction [34]. Diagrams of the range are provided

in Figure 61.
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Figure 61. AFIT indoor RCS measurement range [104].
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