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Abstract

Purpose: Although antiangiogenic therapy for high-grade
glioma (HGG) is promising, responses are not durable. Cor-
relative clinical studies suggest that the SDF-1a/CXCR4 axis
may mediate resistance to VEGFR inhibition. Preclinical data
have demonstrated that plerixafor (a reversible CXCR4 inhib-
itor) could inhibit glioma progression after anti-VEGF path-
way inhibition.We conducted a phase I study to determine the
safety of plerixafor and bevacizumab in recurrent HGG.

Patients and Methods: Part 1 enrolled 23 patients with a
3 � 3 dose escalation design to a maximum planned dose of
plerixafor 320 mg/kg subcutaneously on days 1 to 21 and
bevacizumab10mg/kg intravenously ondays 1 and15of each
28-day cycle. Cerebrospinal fluid (CSF) and plasma samples
were obtained for pharmacokinetic analyses. Plasma and
cellular biomarkers were evaluated before and after treatment.
Part 2 enrolled 3patients andwas a surgical study to determine
plerixafor's penetration in tumor tissue.

Results: In Part 1, no dose-limiting toxicities were seen at the
maximum planned dose of plerixafor þ bevacizumab. Treat-
ment was well tolerated. After plerixafor 320 mg/kg treatment,
the average CSF drug concentration was 26.8 � 19.6 ng/mL.
Plerixafor concentration in resected tumor tissue from patients
pretreated with plerixafor was 10 to 12 mg/g. Circulating bio-
marker data indicated that plerixafor þ bevacizumab induces
rapid and persistent increases in plasma SDF-1a and placental
growth factor.Progression-free survival correlatedwithpretreat-
ment plasma solublemesenchymal–epithelial transition recep-
tor and sVEGFR1, and overall survival with the change during
treatment in CD34þ progenitor/stem cells and CD8 T cells.

Conclusions: Plerixafor þ bevacizumab was well tolerated
in HGG patients. Plerixafor distributed to both the CSF and
brain tumor tissue, and treatment was associated with bio-
marker changes consistent with VEGF and CXCR4 inhibition.
Clin Cancer Res; 24(19); 4643–9. �2018 AACR.

Introduction
High-grade gliomas (HGG) often develop resistance to treat-

ment targeting the VEGF/VEGF receptor (VEGFR) pathwaywithin
months of starting therapy (1). Once patients progress on one
bevacizumab regimen,median progression-free survival (PFS) on
a second bevacizumab regimen is only 30 to 38 days (2, 3). This
indicates that targeting VEGF pathway–driven angiogenesis alone
is not sufficient to achieve durable responses (4). Tumor vascu-
lature can also arise by colonization of bone marrow–derived
vascular progenitors (referred to as vasculogenesis; ref. 5).
Although the predominant mechanisms of resistance to antian-
giogenic therapies are still being elucidated, there is evidence that
signaling by the chemokine receptor CXCR4, a mediator of
progenitor/stem cell and inflammatory cell trafficking and reten-

tion in tissues, as well as a driver of cancer cell invasion, may be
important. In a phase II study of cediranib, an oral pan-VEGFR
small-molecule inhibitor, for recurrent HGG, plasma obtained at
the time of tumor recurrence showed statistically significant
increases in plasma levels of stromal cell–derived factor 1a
(SDF-1a; ref. 6). This suggested that this chemokine may help
mediate resistance to VEGFR inhibition. There was also a signif-
icant positive correlation between SDF-1a levels and tumor blood
vessel size as measured by MRI.

Preclinical data provided compelling evidence to support the
hypothesis that the SDF-1a/CXCR4 axis plays an important role
in HGG progression and treatment resistance (7–9). CXCR4 is
not known to be mutationally activated in cancer, and thus
receptor activation requires engagement of SDF-1a (also known
as CXCL12; ref. 8). CXCR4 RNA and protein are highly expressed
in HGG samples from patients (8, 9), and protein expression
correlates with tumor grade in astrocytomas (10). In vitro, CXCR4
activation promotes tumor cell proliferation, inhibits apoptosis,
and mediates cellular migration (8, 11). In preclinical models
and in patient-derived tumor samples, CXCR4-expressing tumor
cells distribute around SDF-1a–expressing endothelial cells,
a paracrine interaction that may be critical for tumor growth
(8, 9). Evidence from glioma models shows that SDF-1a is both
necessary and sufficient to induce vasculogenesis (12) and that
SDF-1a mediates the cross-talk between HGG and endothelial
cells to enhance tumor invasion (13). Inhibition of CXCR4 with
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plerixafor caused a 2.7-fold increase in apoptosis in HGG xeno-
grafts (8) and resulted in diminished growth of orthotopic tumors
(8, 14). In an irradiated HGG model, inhibition of SDF-1a/
CXCR4 axis using plerixafor (AMD3100) prevented the influx of
bone marrow–derived cells and inhibited tumor growth (14).
These findings show that CXCR4 is a potential target in HGG and
that prolonged inhibition of tumor neovascularization may
require combination therapy targeting both VEGF and CXCR4
pathways.

Plerixafor is an FDA-approved inhibitor of CXCR4. Preclinical
studies have shown that plerixafor can cross the blood–brain
barrier (BBB), and a small but measurable amount is detected in
the cerebrospinalfluid (CSF).However, no such studies havebeen
performed in patients with solid cancers. We performed a phase I
and biomarker study of plerixafor in combination with standard
anti-VEGF antibody treatment (bevacizumab) in patients with
recurrent HGG.

Patients and Methods
Patient eligibility

Adults (�18 years old) with histologically confirmed glio-
blastoma (GBM), gliosarcoma, anaplastic astrocytoma, ana-
plastic oligodendroglioma, or anaplastic oligoastrocytoma
with unequivocal tumor recurrence by MRI scans were eligible.
A baseline MRI was performed within 14 days of registration on
a stable or decreasing steroid dosage for �5 days. Any number
of prior relapses on non–anti-VEGF(R)-containing regimens
were allowed, although only one prior relapse on a bevacizu-
mab or anti–VEGF(R)-containing regimen was allowed. Addi-
tional eligibility criteria included Karnofsky performance score
(KPS) � 60, as well as adequate bone marrow, renal, and
hepatic function. Due to potential teratogenicity of plerixafor
and bevacizumab, all patients of childbearing potential were
required to use adequate birth control. Exclusion criteria
included pregnancy; uncontrolled intercurrent medical ill-
nesses such as uncontrolled hypertension; known coagulopa-
thy; history of a clinically significant hemorrhage; history of
myocardial infarction, unstable angina, stroke, or transient

ischemic attack (TIA) within 6 months; and history of gastro-
intestinal perforation, abdominal fistula, or intraabdominal
abscess. Patients whose MRI scan demonstrated intratumoral
or peritumoral hemorrhage were not eligible if deemed signif-
icant by the treating physician. For patients enrolled on the
surgical cohort, patients were required to be appropriate sur-
gical candidates. For the first 20 patients registered on trial, no
anticoagulation was allowed. However, for all subsequent
patients, patients requiring therapeutic or prophylactic therapy
with a low-molecular-weight heparin at baseline were allowed
to participate on study.

The study was approved by the Institutional Review Board of
Dana-Farber/Harvard Cancer Center and conducted in accor-
dance with institutional and federal guidelines for human inves-
tigations as well as the Declaration of Helsinki. Patients were
informed of the investigational nature of this study and provided
Institutional Review Board–approved informed written consent
before enrollment.

Treatment plan
The study was divided into two parts: a nonsurgical cohort

(Part 1) and a surgical cohort (Part 2). In Part 1, plerixafor was
administered once daily subcutaneously on days 1 to 21 of each
28-day cycle, (i.e., 3 weeks on, 1 week off) together with bev-
acizumab 10 mg/kg intravenously on days 1 and 15. Dose
escalation of plerixafor occurred in a standard 3 � 3 design and
evaluated 3 planned dose levels (160, 240, and 320 mg/kg). The
FDA indication for plerixafor is for 240mg/kgoncedaily for up to4
consecutive days for hematopoietic stem cell mobilization in
autologous transplantation. Since this study was the first inves-
tigation of continuous plerixafor treatment in any tumor, there
was very limited experience with prolonged administration of the
agent. In addition, vasovagal reactions can occur at plerixafor
doses above 240 mg/kg (15). Therefore, the maximum planned
dose was 320 mg/kg. The adverse event (AE) grade was defined by
the National Cancer Institute Common Terminology Criteria for
Adverse Events (version 4.0). Dose-limiting toxicity (DLT) was
determined during the initial 4 weeks of therapy and defined as
any drug-related grade 3 nonhematologic toxicity despite maxi-
mal medical therapy lasting >7 days with the exception of grade 3
proteinuria (which was considered a DLT if lasting >14 days); any
grade 4 related toxicity with or without maximal therapy; any
grade 3 thrombocytopenia lasting more than 7 days; grade 4
thrombocytopenia of any duration; grade 4 anemia lasting more
than 7 days; grade � 3 neutropenia complicated by fever or
infection; grade 4 neutropenia lasting more than 7 days; and
failure to recover from toxicities to be eligible for retreatment with
plerixafor and bevacizumab within 28 days of the last dose of
either drug.

Once the maximum dose from Part 1 was established, Part 2
(surgical cohort) opened. These patients received plerixafor
monotherapy for 5 to 9 days prior to surgery at the maximum
dose established in Part 1 of the study. Following recovery from
surgery, they resumed treatment with plerixafor at the maximum
dose from Part 1 on days 1 to 21 together with bevacizumab 10
mg/kg administered on days 1 and 15 of each 28-day cycle.

All patients underwent clinical evaluation weekly for the first 4
weeks and then every 4 weeks thereafter. Brain MRI with contrast
was performed at baseline and then after every 2 cycles (8 weeks)
thereafter; when feasible, dynamic contrast-enhanced and diffu-
sion MRI were also obtained at these same imaging time-points.

Translational Relevance

Responses to anti-VEGF therapies such as bevacizumab in
high-grade glioma (HGG) are not durable. Signaling by
CXCR4 may play an important role in resistance to anti-VEGF
therapies. Prolonged inhibition of tumor neovascularization
may require combination therapy targeting both VEGF and
CXCR4 pathways. In addition, CXCR4 inhibition by plerixafor
in preclinical HGG models resulted in diminished tumor
growth. Therefore, we performed a phase I and biomarker
study of plerixafor in combination with bevacizumab in
patients with recurrent HGG. This is the first clinical trial of
a CXCR4 inhibitor with extensive biomarker data in a solid
tumor. We demonstrate that plerixafor distributes into
the cerebrospinal fluid and brain tumor tissue at CXCR4-
inhibitory concentrations. Although treatment was well-tol-
erated, efficacy was limited. The role of VEGF-independent
pathways (HGF/MET) and immune evasion in treatment
resistance will need to be established in future studies.
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Local investigators used RANO-GBM criteria (16) for response
assessment.

Pharmacokinetic and pharmacodynamic biomarker studies
Serial plasma pharmacokinetics (PK) assessments for measure-

ment of plerixafor were performed on days 1 before and after
treatment, 2, 16, 21, and 22 of cycle 1. Plasma and cellular
biomarker studies were performed in the Clinical Laboratory
Improvement Amendments–certified core of the Steele Labora-
tories, Massachusetts General Hospital. Plasma for circulating
biomarkers and whole blood for circulating lymphocyte and
myeloid cell populations and circulating precursor cells were
obtained on days 1 before treatment, 2, and 15 of cycle 1 as well
as on day 1 of subsequent cycles and off treatment. Plasma
measurements were performed for free VEGF, placental growth
factor (PlGF), sVEGFR1, basic fibroblast growth factor (bFGF),
VEGF-C, VEGF-D, and sTIE2using theHumanAngiogenesis Panel
1 V-PLEX Kit (catalog number K15190D; Meso-Scale Discovery;
ref. 17); for IL1b, TNFa, IL6, and IL8 using the Human ProIn-
flammatory II 4-Plex Ultra-Sensitive Kit (catalog number
K15025C; MesoScale Discovery); and single analyte ELISA for
SDF-1a and CAIX (R&D Systems), collagen IV (USCN/Cloud-
Clone Corp.), and soluble mesenchymal–epithelial transition
receptor (sMET; Invitrogen). Cell biomarkers were evaluated by
flow cytometry using antibodies for the following cell surface
markers: CD3, CD4, CD8, CD11b, CD14, CD25, CD31, CD34,
CD45, CD56, CD127, and CD133 and an LSR-II cytometer (BD).
At each dose level in Part 1, if deemed safe by the treating
physician, CSF was collected on day 15 (�7 days) of the first
and second cycles, approximately 2 to 3hours after the last dose of
plerixafor, for measurement of plerixafor levels. For the surgical
cohort, there were additional PK assessments while on plerixafor
monotherapy prior to surgery on day 1 before and after treatment,

day 2, and day of surgery. Plasma PK, CSF PK, and tissue PK
samples were analyzed by sensitive (LLOQ 5 ng/mL) and vali-
dated LC/MS/MS methods developed by Covance.

Statistical analysis
The primary objective of Part 1 was to determine the recom-

mended phase II dose of plerixafor, 3 weeks on and 1 week off, in
combination with bevacizumab, 10 mg/kg every other week in
patients withHGG. For Part 2, the primary objectivewas to obtain
preliminary information about whether plerixafor penetrates
tumor tissue in HGG patients. Descriptive statistics were used
for safety, tumor response, PK, and PD. The Kaplan–Meier meth-
od was used for estimating overall survival (OS) and PFS values.
Percent change from baseline in biomarkers values was evaluated
using the Sign-Rank test. Relationship between biomarker values
at baseline or percent changes from baseline and OS and PFS
outcomes were tested with the Cox Proportional Hazard model.

Plerixafor PK parameters were determined using standard
noncompartmental methods. Peak concentrations (Cmax) were
determined by inspection of each patient's concentration–time
curve. Elimination rate constants were estimated by linear regres-
sion analysis of the last two time-points of the log-concentration
versus time curve. Terminal half-lives (t1/2) were calculated by
dividing 0.693 by the elimination rate constant. The AUC was
estimated using the linear trapezoidal rule up the last sampling
time (AUC0–24), then extrapolated to infinity (AUC). Systemic
clearance (CL/F) was determined by dividing dose by AUC.
Volume of distribution (Vd/F) was calculated by dividing CL by
the elimination rate constant. Changes in kinetic parameters over
timewere evaluated using the Sign-Rank test. Linear relationships
were determined by the Spearman rank correlation.

Results
Patient characteristics

The trial accrued 26 subjects (23 in Part 1 and 3 in Part 2)
betweenDecember 2011 and January 2016. The study closed early
during Part 2 (surgical cohort) due to poor enrollment. Patient
characteristics are summarized in Table 1. Median age was 59
(range, 23–73), and median KPS was 90 (range, 70–100). Most
patients had ahistologic diagnosis ofGBM(65.45%). Themedian
number of prior therapies was 1 (range, 1–7) with 5 patients
having received prior bevacizumab (3 in Cohort 1).

Safety
Treatment with plerixafor in combination with bevacizumab

was administered at the three planned dose levels. There were no
DLTs at the maximum planned dose of plerixafor (320 mg/kg) 3
weeks on, 1 week off combined with bevacizumab (10 mg/kg)

Table 1. Patient characteristics

Patient characteristic N ¼ 26

Median age, years (range) 59 (23–72)
Median KPS (range) 90 (70–100)
Gender, female 11 (42.3%)
Race/ethnicity
Caucasian 26 (100%)

Histology
GBM 17 (65.4%)
AA 5 (19.2%)
AO 1 (3.9%)
AOA 3 (11.5%)

Number of prior therapies, median (range) 1 (1–7)
Previously received bevacizumab 5 (19.2%)

Abbreviations: AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma;
AOA, anaplastic oligoastrocytoma.

Table 2. Number of patients experiencing each AE at least possibly related to bevacizumab and/or plerixafor

Bevacizumab Plerixafor
Toxicity Grade 2 Grade 3 Grade 4 Grade 2 Grade 3 Grade 4

aPTT prolonged 1 – – – – –

Fatigue – – – 1 – –

Headache 1 – – 1 – –

Hypertension 4 – – – – –

Hypophosphatemia 2 1 – 2 1 –

Increased WBC – – – 1 – –

Insomnia – – – 1 – –

Intracranial hemorrhage 1 – – – – –

Rectal fistula – 1 – – – –

Wound complication 1 – – – – –

VEGF and CXCR4 Inhibition in HGG
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every 2 weeks. The cohort was expanded to ensure a total 12
patientswere treated at this dose level. Treatment-related toxicities
are summarized in Table 2. One grade 3 hypophosphatemia and
one grade 3 rectal fistula were reported. Four patients were taken
off study due to unacceptable toxicity: 1 due to the grade 3 rectal
fistula, 1 due to a grade 1 stroke, 1 due to grade 2 dysphasia
(initially believed related to a TIA by the treating investigator but
later deemed unrelated to study treatment), and 1 due to grade 2
intracranial hemorrhage.

Pharmacokinetics
The PK profiles for plerixafor were characterized in 26 patients

(Table 3). Dose proportional increases in Cmax (R ¼ 0.70, P <
0.002) and AUC (R ¼ 0.663, P < 0.002) were observed between
160 and 320 mg/kg. Clearance was independent of dose (R ¼
�0.64, P > 0.20). There was a small but statistically significant
difference (P¼ 3.0e–5) between day 1 clearance values (4.0� 0.81
L/h) and day 21 (2.9� 0.65 L/h) resulting in a 1.5-fold increase in
AUC values between days 1 and 21. At the 320 mg/kg dose level,
the 24-hour trough levels were consistently above the IC50 for
CXCR4 inhibition (18).

In Part 1, CSF was collected by LP approximately 2 to 3 hours
after patient's last dose on C1D15 and C2D15 with concomitant
plasma levels on C1D15 (Fig. 1). At the recommended phase II
dose (320 mg/kg), the average CSF concentration was 26.8 ng/mL
(SD� 19.6). Therewas a good relationship between dose andCSF
concentration (R ¼ 0.76), but there was no relationship between

dose to the CSF/plasma ratio (P > 0.2). The CSF levels between
C1D15 and C2D15 were comparatively similar (Fig. 1).

In part 2, patients were pretreated with plerixafor (320 mg/kg)
for 5 to 9 days prior to tumor resection. Tumors were resected
approximately 3 hours after their last dose with a concurrent
plasma level obtained. Data obtained from 2 patients revealed
tumor-to-plasma ratios of 15.9 and 16.5, respectively. Adequate
tumor tissue was not available for this assessment from the third
patient.

Clinical outcomes
For all patients enrolled in Part 1 (nonsurgical cohort), median

OSwas 7.11months [95% confidence interval (CI), 5.6–9.2], and
median PFSwas 2.87months (95%CI, 1.9–3.8). PFS6was 14.5%
(95% CI, 3.9–32.9). For the GBM subset enrolled in Part 1,
median OS was 6.4 months (95% CI, 3.2–7.4), and median PFS
was 1.9 months (95% CI, 1.7–6.4). Of the 20 patients with
evaluable measurable enhancing tumor in Part 1, 3 patients (all
of whom were bevacizumab-na€�ve at enrollment) had a partial
response and 9 patients had stable disease (SD) as their best
response. Of the 3 patients in Part 1 who had received prior
bevacizumab, only 1 patient (with an anaplastic astrocytoma)
achieved SD but progressed after 4 cycles of treatment. Of the 3
patients enrolled inPart 2 (surgical cohort),OS timeswere 1.78, 8,
and 10.3 months, and times to progression were 1.09, 3.2, and
7.43 months, respectively.

Circulating cellular and protein biomarkers
Plerixafor plus bevacizumab treatment induced a significant

but transient increase in the fraction of circulating CD3þ

lymphocytes (at day 2) and CD14þ monocytes (at day 15)
and induced a persistent increase in plasma PlGF and SDF-1a
(at all time-points; Table 4). Combination treatment also
persistently decreased plasma-free VEGF (unbound to bevaci-
zumab, at all time-points) and transiently decreased plasma
Ang-2, sMET, bFGF, and IL8 (Table 4). The other molecular
and cellular biomarkers did not show any significant changes
after combination treatment. When analyzed for correlation
with survival outcomes, a longer PFS correlated with lower
sVEGFR1 and IL6 and higher sMET at baseline, greater increases
in PlGF (at day 2) and IL6 (at all time-points), and decreases
in Ang-1 (at day 60; Table 5). In addition, a longer OS
correlated with lower CAIX and higher sMET at baseline,
and greater increases in PlGF, IL6, and bFGF (at days 2 and
15; Table 5). For cellular biomarkers, although there was no
correlation with PFS, a longer OS correlated with lower

Table 3. Plasma PK parameters in recurrent HGG patients after plerixafor and bevacizumab

Dose level
PK parametersa average (�SD) 160 mg/kg (n ¼ 3) 240 mg/kg (n ¼ 8) 320 mg/kg (n ¼ 15)

Cmax (ng/mL) 452 (�56.0) 709 (�162) 974 (�271)
Medium Tmax (h) (range) 1 (0.5–1) 0.5 (0.5–1.5) 0.5 (0.5–1)
T1/2 (h)

b 6.17 (�1.68) 7.40 (�2.40) 7.07 (�2.42)
AUC0–24 (mgxh/mL) 2.52 (�0.300) 4.17 (�0.541) 5.72 (�0.968)
AUC (mgxh/mL) 2.68 (�0.225) 4.66 (�0.671) 6.44 (�1.22)
AUC D21/AUC D1 ratio 1.28 (�0.242) 1.39c (�0.318) 1.54d (�0.578)
CL/F (L/h) 4.29 (�0.716) 3.79 (�0.544) 3.91 (�1.03)
Vd/F (L) 40.83 (�15.6) 43.17 (�12.3) 42.28 (�10.70)
aCycle 1, day 1.
bHarmonic mean.
cn ¼ 6.
dn ¼ 11.
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Figure 1.

CSF concentrations of plerixafor in recurrent HGG patients receiving plerixafor
plus bevacizumab.
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fractions of CD34þ progenitor cells and NKT cells, and greater
increases in CD8þ T cells (at day 2) and decreases in CD34þ

progenitor cells (at day 15; Table 5). Tissue analysis in the
tumor specimens collected in Part II of this study from patients
treated preoperatively with plerixafor showed high expression
of CXCR4 and SDF-1a.

Discussion
This is the first study, to our knowledge, evaluating continuous

dosing of plerixafor to target CXCR4 as amechanism of resistance
to antiangiogenic therapy in any solid tumors. Treatment at the
maximum planned dose of plerixafor (320 mg/kg 3 weeks on, 1
week off combined with standard bevacizumab) was well-toler-
ated without any DLTs. The PK parameters measured after 1 cycle
of plerixafor are consistent with previously published studies in
patients with varying degrees of renal impairment (19) and
patients with non-Hodgkin lymphoma or multiple myeloma
(20). At the 320 mg/kg dose level, the 24-hour trough levels were
consistently above the IC50 for CXCR4 inhibition (18). CSF
studies from Part 1 and surgical resection specimens in patients
pretreatedwith plerixafor fromPart 2 demonstrate distribution of
plerixafor into the CSF and brain tumor tissue at CXCR4-inhib-
itory concentrations.

Biomarker evaluations confirmed potential pharmacodynamic
changes for the two targeted therapies, including an increase in
plasma PlGF and decreases in free VEGF and Ang-2 (as expected
after efficient VEGF blockade). Interestingly, dual inhibition of
VEGF and CXCR4 induced significant changes in inflammatory
biomarkers such as sustained increases in plasma SDF-1a, tran-
sient increases in circulating CD3þ lymphocytes and CD14þ

monocytes, and decreases in IL8. Of note, chronic bevacizumab
þ plerixafor treatment did not result in a significant increase in
circulating progenitor/stem cells at any time-point. Finally, com-
bination treatment transiently decreased plasma Ang-2 and bFGF
(both proangiogenic markers), and sMET (an endogenous inhib-
itor of the HGF/MET pathway involved in cancer invasion).
Several biomarkers and their changes associated with survival
outcomes. Interestingly, although high baseline levels of biomar-
kers of inflammation (IL6) and hypoxia (CAIX) associated with
poor PFS andOS, respectively, an increase in these biomarkers on
treatment was associated with more favorable outcomes. In a
preclinical study in liver cancer, we previously showed that
CXCR4 inhibition can prevent the changes in the immunemicro-
environment that lead to evasion from antiangiogenic therapy
(21). In addition, inGBMmodels inmice,we showed that CXCR4
inhibition decreases cancer cell invasion and vessel cooption
without increasing survival with anti-VEGFR agents alone (22).
Thus, the effects of CXCR4 inhibition may explain the lack of
correlation with a poor outcome for biomarkers usually associ-
ated with inflammation and anti-VEGF treatment resistance such
as CAIX, IL6, or SDF-1a (which was increased at all time-points).

Our correlative studies also offered new insight into why the
combination may have failed to produce better outcomes. High
pretreatment plasma sMET (an inhibitor of HGF pathway) and
low sVEGFR1 (an inhibitor of VEGF pathway) were associated
with longer PFS. In addition, a shorter OS was associated with
higher baseline fractions of circulating CD34þ progenitor/stem
cells and NKT cells, with an increase in CD34þ progenitor/stem
cells at day 15 and a decrease in CD8þ T cells at day 2. HGF/MET
and progenitor cells have been linked with hypoxia-inducedTa
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increase inGBM invasion inmousemodels (23, 24). sVEGFR1 is a
potential biomarker of inherent resistance to anti-VEGF therapy
(25). The potential roles of HGF/MET pathway, pretreatment
sVEGFR1, and immune evasion mechanisms related to changes
in progenitor/stem cells and CD8þ T cells in treatment resistance
will need to be established in future studies as these pathways and
cells are clinically actionable with existing drugs. These insights
will be critical for future combination studies of anti-CXCR4
agents with antiangiogenics or other therapies, such as chemo-
therapy (26).

The CXCR4 pathway has long been studied and is a target of
interest in several human solid and hematologic tumors, includ-
ing HGG. This is the first clinical trial of a CXCR4 inhibitor with
extensive biomarker data in a solid tumor. Combination treat-
ment with bevacizumab and plerixafor was well tolerated, and
plerixafor distributed to both the CSF and brain tumor tissue. The
biomarker data indicate significant changes in PD biomarkers
consistent with anti-VEGF and anti-CXCR4 activity, as well as an
association of certain potential biomarkers of treatment response
and resistance, which should be validated in larger studies.
However, the clinical outcomes in these small number of patients
were limited, with median OS and PFS were similar to prior
studies of bevacizumab-containing regimens (27).
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