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Abstract

Purpose: This study aimed to determine the safety, tolerability, and 

recommended phase II doses of trametinib plus uprosertib (GSK2141795) in 

patients with solid tumors likely to be sensitive to MEK and/or AKT inhibition.

Methods: This was a phase I, open-label, dose-escalation, and 

dose-expansion study in patients with triple-negative breast cancer or BRAF-

wild type advanced melanoma. The primary outcome of the expansion study 

was investigator-assessed response. Among 126 enrolled patients, 63 

received continuous oral daily dosing of trametinib and uprosertib, 29 

received various alternative dosing schedules, and 34 were enrolled into 

expansion cohorts. Doses tested in the expansion cohort were trametinib 1.5

mg once daily (QD) + uprosertib 50 mg QD. 

Results: Adverse events (AEs) were consistent with those reported in 

monotherapy studies but occurred at lower doses and with greater severity. 

Diarrhea was the most common dose-limiting toxicity; diarrhea and rash 

were particularly difficult to tolerate. Overall, 59% and 6% of patients 

reported AEs with a maximum severity of grade 3 and 4, respectively. Poor 

tolerability prevented adequate delivery of uprosertib with trametinib at a 

concentration predicted to have clinical activity. The study was terminated 

early based on futility in the continuous-dosing expansion cohorts and a lack 

of pharmacological or therapeutic advantage with intermittent dosing. The 

objective response rate was <5% (1 complete response, 5 partial responses).
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Conclusions: Continuous and intermittent dosing of trametinib in 

combination with uprosertib was not tolerated, and minimal clinical activity 

was observed in all schedules tested. 

Keywords: AKT inhibitor, BRAF-wild type melanoma, MEK inhibitor, 

trametinib, triple-negative breast cancer, uprosertib
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Introduction

The mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-

kinase (PI3K)/AKT pathways interact extensively and are involved in the 

regulation of cell proliferation, apoptosis, metabolism, and immunity [1]. 

These pathways share common signaling inputs, are activated by oncogenic 

RAS, and appear to provide reciprocal compensatory signaling when one 

pathway is inhibited [1-3]. Co-activation of both pathways occurs in 

melanoma, prostate cancer, and colorectal cancer [4-6], and dual inhibition 

may be required for complete inhibition of the downstream effector pathway 

[2, 7]. Preclinical studies suggest that co-targeting both pathways can result 

in additive or synergistic inhibition and can induce apoptosis [8, 9]. Recent 

clinical studies combining MAPK kinase (MEK) and AKT inhibitors provided 

evidence of antitumor activity, although with significant toxicity [10, 11]. 

This study was designed to determine whether alternative dosing schedules 

or careful patient selection would demonstrate a more favorable risk to 

benefit ratio.

Trametinib is an oral, reversible, noncompetitive MEK1/2 kinase inhibitor that

has been approved as a single agent for metastatic melanoma and in 

combination with dabrafenib (BRAF inhibitor) for BRAF V600–mutant 

unresectable or metastatic melanoma, adjuvant melanoma, non-small cell 

lung cancer (NSCLC), and anaplastic thyroid cancer [12, 13]. Uprosertib is an 

adenosine triphosphate–competitive, reversible pan-AKT inhibitor that binds 
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to the adenosine triphosphate–binding pocket of AKT1, 2, and 3 [14, 15]. 

Uprosertib, as monotherapy, showed modest clinical activity in an 

exploratory study in patients with platinum-resistant ovarian cancer, 

although RAS/RAF pathway mutations segregated with resistance to AKT 

inhibition [16], suggesting activation of the MAPK pathway. Preliminary 

pharmacokinetic data suggests that uprosertib (10 mg to 150 mg once daily 

dose levels) is rapidly absorbed with a median maximum observed 

concentration (Cmax) occurring 3 hours following multiple doses and a mean 

effective half-life of approximately 3 days. The likelihood of drug-drug 

interactions between trametinib and uprosertib is low because the in vitro 

IC50 values for inhibition and EC50 values for induction of CYP450 enzymes are

3- to 100-fold higher than the anticipated clinical Cmax values for either drug. 

In nonclinical studies, combining trametinib and uprosertib induced cytotoxic

responses, with additive or synergistic effects observed in colon, pancreatic, 

and lung cell lines, independent of RAS/RAF and PI3K/PTEN genotypes [15]. 

Additionally, the combination treatment enhanced the inhibition of tumor 

growth in pancreatic tumor xenografts compared with either single agent 

[17].

This open-label, phase I, dose-expansion clinical trial sought to determine the

maximum tolerated dose (MTD) and evaluate the safety and clinical efficacy 

of uprosertib in combination with trametinib in patients with solid tumors 

likely to be sensitive to MEK and/or AKT inhibition. The two pathways 

targeted—MEK and PI3K/AKT are commonly co-activated in cancer and 
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believed to be drivers. We explored different schedules and specific 

expansion cohorts to try and find a tolerable dose and/or a tumor type that 

would be responsive. As overlapping toxicities were expected and clinical 

experience with combinations of MEK and PI3K pathway inhibitors have 

highlighted tolerability concerns, starting doses were reduced to ≥50% of 

the MTD identified in previous phase I monotherapy dose-escalation trials 

[10, 11, 18-20]. Continuous trametinib dosing with intermittent uprosertib 

was also evaluated in this study, to potentially permit greater exposure and 

for more complete PI3K/AKT inhibition while maintaining tolerability.

Materials and Methods

This phase I, open-label study comprised a dose-escalation phase in patients 

with solid tumors, followed by an expansion phase in patients with 

unresectable or metastatic melanoma or triple-negative breast cancer 

(TNBC; estrogen receptor negative/progesterone receptor negative/human 

epidermal growth factor receptor-2 negative). Patients were enrolled from 

May 2010 to November 2014 at 8 study centers in the United States 

(GlaxoSmithKline study TAC113886; NCT01138085). This study was 

conducted in accordance with the provisions of the Declaration of Helsinki 

and Good Clinical Practice guidelines. The protocol was approved by the 

institutional review board or human research ethics committee at each study
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center. Written informed consent was obtained from each patient before any 

study-specific procedures were performed.

Study design and patients

Dose escalation for continuous daily dosing (part 1A) followed a zone-based 

approach, incorporating a modified 3+3 cohort design until an MTD or a 

recommended phase II dose (RP2D) of the combination regimen was 

identified (Figure 1a) [21]. Multiple MTDs could be identified from part 1A 

given the nature of the zone-based dose-escalation process. Six patients 

were initially enrolled in Cohort 1, Zone 1, and the starting dose was 

trametinib 0.5 mg once daily [QD] + uprosertib 25 mg QD, both on a 

continuous basis. MTD was defined as the highest dose at which 1 or fewer 

of up to 6 enrolled patients experienced a dose-limiting toxicity (DLT) at the 

specified dose and schedule of the combination therapy. A DLT was defined 

as any of the following occurring within the first 28 days of combination 

therapy and having a possible causal relationship to the study drug: (1) 

grade 4 neutropenia lasting ≥5 days, (2) febrile neutropenia of any grade or 

duration, (3) grade 4 thrombocytopenia or anemia, (4) grade 4 alanine 

aminotransferase >3 × upper limit of normal with bilirubin >2 × upper limit 

of normal, (5) grade 3 clinically significant nonhematologic toxicity (except 

grade 3 electrolyte disturbances that responded to correction within 24 

hours; grade 3 diarrhea, nausea, vomiting, or mucositis/esophagitis that 

responded to maximal supportive care within 48 hours; grade 3 hypertension
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that was adequately controlled within 2 weeks with up to 2 additional 

antihypertensive medications; or grade 3 rash that improved to grade 2 

within 7 days without a dose reduction within 2 weeks of restarting the study

treatment), (6) failure to receive ≥75% of the scheduled doses in the 

treatment period due to toxicity, or (7) ventricular ejection fraction below the

lower limit of normal, with an absolute decrease of >20% from baseline. The 

MTD was exceeded if ≥2 patients in a cohort of up to 6 patients experienced 

DLTs. 

Once the continuous daily MTD or RP2D was identified in part 1A, dose 

escalation with intermittent dosing schedules (part 1B) was initiated, in 

which the dosing schedule was adjusted for uprosertib while trametinib 2 mg

QD was administered on a continuous basis (Figure 1b). Dose escalation of 

uprosertib proceeded using a traditional 3+3 cohort design until an MTD or 

RP2D of the combination regimen was identified. For part 1B, 2 intermittent 

schedules of uprosertib were assessed: 4-days-on/10-days-off (with and 

without loading dose) and weekly dosing. 

Enrollment into planned expansion cohorts, including the continuous QD 

dosing (part 2A) and intermittent dosing (part 2B) schedules, began once the

recommended dosing regimens were identified in parts 1A and 1B. Part 2A 

included 2 separate tumor-specific cohorts of patients with TNBC or 

melanoma. A 2-stage design was used to allow for the enrollment of 

additional patients to better characterize the combination profile or to allow 
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for early termination if sufficient clinical activity was not demonstrated. An 

interim analysis was planned for part 2 on each schedule after 15 patients 

had either confirmed response data (available from 2 postbaseline scans) or 

withdrawn from the study before response was assessed (nonresponder), 

with early stopping rules for futility. At least 3 responses in 15 patients in the

TNBC cohort needed to be observed or the arm was terminated; at least 2 

responses in 15 patients in the melanoma cohort needed to be observed or 

the arm was terminated.

Patient eligibility criteria

Key inclusion criteria for part 1A were patients aged ≥18 years with 

histologically or cytologically confirmed diagnosis of a solid tumor 

malignancy not responsive to standard therapies, for which there was no 

approved or curative therapy, or for which patients refused standard 

therapy; Eastern Cooperative Oncology Group performance status of 0 or 1; 

and adequate organ system function. In part 1B, patients were required to 

have a confirmed diagnosis of 1 of the following cancers: colorectal, NSCLC, 

pancreatic, endometrial, ovarian, squamous cell carcinoma of the head and 

neck, BRAF-wild type melanoma (as determined locally), melanoma resistant

to BRAF inhibition, or TNBC. Patients with colorectal cancer or NSCLC had to 

have KRAS mutation status confirmed by a local laboratory. PTEN genetic 

status was also assessed using Ventana Medical Systems, Tucson, Arizona, 

US at enrollment to facilitate further patient selection. In part 2A, patients 

10



were required to have a histologically or cytologically confirmed diagnosis of 

either TNBC or melanoma and known tumor PTEN status determined by a 

central laboratory. Patients were tested for the expression of PTEN in paired 

tumor biopsies (baseline and on treatment). An additional tumor biopsy at 

the time of disease progression was also required, if feasible. Any patient 

with type 2 diabetes mellitus must have been diagnosed ≥6 months before 

enrollment and had a glycated hemoglobin of ≤8% at screening.

Key exclusion criteria included treatment with anticancer therapy, including 

investigational drugs, within 28 days or 5 half-lives before the first dose of 

study drugs; prior exposure to an MEK inhibitor or an AKT inhibitor; presence 

of any condition that could affect gastrointestinal absorption or predispose to

gastrointestinal ulceration; type 1 or type 2 diabetes mellitus (part 1A or 1B 

only); human immunodeficiency virus infection positive status; history of 

positivity for hepatitis B virus surface antigen or positivity for hepatitis C 

virus antibody; leptomeningeal disease; brain metastases if symptomatic or 

treated (eg, surgery, radiation therapy) but not clinically and radiographically

stable 1 month after therapy or if asymptomatic and untreated but >1 cm in 

the longest dimension; cardiac QTcF interval of ≥480 ms; class II–IV heart 

failure as defined by the New York Heart Association functional classification 

system; or history or current evidence/risk of retinal vein occlusion or central

serous retinopathy.

Study endpoints and assessments
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The primary endpoints for part 1 were to determine the safety, tolerability, 

and RP2D using changes in the safety parameters, including laboratory 

values and vital signs. Adverse events (AEs), serious AEs (SAEs), and clinical 

laboratory data were graded according to the National Cancer Institute 

Common Terminology Criteria for Adverse Events (NCI CTCAE) v4.0. The 

primary endpoint for part 2 was the investigator-assessed tumor response, 

using Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 [22], 

including objective response rate (ORR). Tumor assessments for parts 1A 

and 1B were conducted at screening, at the start of week 9 (part 1B only) 

and every 8 weeks thereafter, and at the final study visit. 

Secondary a priori endpoints included pharmacokinetic (PK) parameters 

following repeat-dose administration of trametinib and uprosertib alone and 

in combination, including area under the curve to the end of the dosing 

interval, predose (trough) concentration at the end of the dosing interval, 

maximum concentration, and time to maximum concentration; duration of 

response and progression-free survival (PFS); change from baseline levels of 

pharmacodynamic (PD) parameters, biomarkers downstream of AKT and MEK

pathways (eg, pERK, pAKT, pPRAS40, and pS6RP) in tumor biopsies; and 

change from baseline levels in glucose insulin or 1,5-anhydroglucitol values. 

RNA-Seq was used to identify somatic mutations in the pretreatment tumor 

biopsy samples from the TNBC cohort. Each sample was paired-end 

sequenced using Illumina HiSeq 2500 (Illumina Inc, San Diego, CA).
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Statistical methods

Part 1 sample size was determined by the number of patients required to 

adequately characterize the safety and tolerability of the trametinib and 

uprosertib combination and was not driven by statistical considerations. Part 

2 sample size was determined using the Green-Dahlberg design [23]. A 

maximum of 140 patients were planned to be enrolled in parts 2A and 2B, 

estimating up to 70 patients per tumor type in the 2 dosing schedules 

(n = 35 patients per schedule).

The all-treated population included all patients who received ≥1 dose of 

trametinib or uprosertib, and safety analyses were performed on this 

population. The PK population comprised all patients in the all-treated 

population from whom a PK sample was obtained and analyzed. PK 

parameters were calculated by standard noncompartmental analysis using 

WinNonlin Pro v5.2 or higher (Pharsight Corp, Mountain View, CA). The PD 

population comprised all patients in the all-treated population from whom 

evaluable paired biopsies were available for ≥1 candidate biomarker.

Patients with unknown or missing tumor assessments were treated as 

nonresponders, and exact 95% confidence intervals (CIs; Clopper-Pearson) 

were computed. For part 2A, PFS was defined as the time between the first 

dose and disease progression or death due to any cause. 
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To allow for early termination of the part 2 cohorts, interim data were 

evaluated based on the Green-Dahlberg design [23] after 15 patients per 

schedule had either confirmed response data or withdrawn from the study 

before assessment of response (nonresponder). At least 3 responses (TNBC 

cohort) or ≥2 responses (BRAF-wild type cohort) from the 15 patients were 

needed at the interim analysis to continue enrolling patients in part 2.

Results

Patient characteristics

Overall, 126 patients were enrolled. Of these, 63 patients received 

continuous trametinib and uprosertib in part 1A, 29 received an alternative 

dosing schedule with continuous trametinib and intermittent uprosertib in 

part 1B, and 34 were enrolled into the part 2A expansion cohort. Across all 

cohorts, the median duration of therapy was 56.5 days (range, 3–557 days) 

with trametinib and 52 days (range, 2–370 days) with uprosertib. Enrollment 

for the BRAF-wild type cohort was halted early for futility, and study part 2B 

was never opened for enrollment. 

Table 1 presents patient demographics, baseline characteristics, and 

disposition by treatment cohorts. The most common primary tumor types at 

screening were breast (25%), melanoma (23%), and colon/rectum (11%). 

Most patients (90%) had stage IV, IVb, or IVc disease, and almost all patients 
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(96%) had received prior anticancer therapy, including 11% of patients who 

received prior targeted therapy. Overall, the most common reasons for 

treatment discontinuation were disease progression (61%), AEs (19%), and 

investigator discretion (12%).

DLTs and MTD

A total of 28 DLTs were reported in 14 patients; the most commonly reported

were diarrhea (n = 5), fatigue (n = 3), vomiting (n = 2), mucosal 

inflammation (n = 2), and stomatitis (n = 2) (Supplementary Table S1). Most 

DLTs (n = 23 [82%]) resolved with dose interruption, dose reduction, or 

treatment withdrawal; 5 DLTs (18%) remained unresolved despite these 

interventions.

Dose escalation—part 1A

In part 1A with continuous QD dose escalation, 8 patients experienced 17 

DLTs. All but 1 DLT (anemia in cohort 10) were considered treatment related 

by the investigator. Most DLTs (n = 11) resulted in dose interruption, and 2 

DLTs led to dose reduction. Two DLTs in 1 patient in cohort 7 (chest pain and

ventricular tachycardia) resulted in treatment discontinuation. No DLTs were 

of grade 4 or 5. Using the zone-based approach, which allowed concurrent 

enrollment of cohorts (Figure 1), 3 MTDs were identified with QD dosing for 

both drugs: trametinib 0.5 mg + uprosertib 75 mg, trametinib 1.5 mg + 

uprosertib 50 mg, and trametinib 2 mg + uprosertib 25 mg. Based on the 

minimal dose needed for trametinib activity and an intermediate active and 
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tolerable dose of uprosertib, the regimen selected for evaluation in the 

expansion cohorts was trametinib 1.5 mg QD + uprosertib 50 mg QD.

Dose escalation—part 1B

In part 1B, alternative intermittent-dosing schedules of uprosertib were 

evaluated with continuous dosing of trametinib (2 mg; Figure 1). Six patients 

experienced 11 DLTs (Supplementary Table S1). All DLTs in cohorts 12 

through 16 were considered treatment related and resulted in 5 dose 

interruptions, 5 dose reductions, and 1 treatment discontinuation (grade 2 

fatigue). No DLTs were of grade 4 or 5. Two MTDs were identified: (a) 

uprosertib 100 mg loading dose on days 1 and 15, and uprosertib 50 mg on 

days 2 to 4 and days 16 to 18 of a 28-day cycle + trametinib 2 mg QD, and 

(b) uprosertib 225 mg on days 1, 8, 15, and 22 of a 28-day cycle + 

trametinib 2 mg QD. None of the schedules were evaluated further due to 

study closure.

Safety and tolerability

Across all cohorts, the most common AEs regardless of causality included 

diarrhea (67%), fatigue (46%), nausea (45%), vomiting (35%), and dermatitis

acneiform (33%) (Table 2). Rash AEs were unresolved (at study closure) in 

40% of patients, and the median duration of the first occurrence of rash was 

88 days (range, 68–113 days). Grade 3–5 AEs (all causality) occurred in 87 

patients (69%; grade 3, 59%; grade 4, 6%; grade 5, 4%). Causes of death 
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included failure to thrive, hypoxia, sepsis, fall, craniocerebral injury, and 

cardiac arrest; none were treatment related.

Overall, 70 patients (56%) experienced ≥1 AE that required dose 

interruption. The most commonly reported AEs leading to dose interruptions 

were diarrhea (14%), nausea (7%), vomiting (6%), rash maculopapular (6%), 

and increased aspartate aminotransferase levels (5%). 

The proportion of patients reporting a treatment-related AE with a maximum 

severity grade of 3 was 30% in part 1A, 55% in part 1B, and 44% in part 2A 

(Supplementary Tables S2–S4). The most commonly reported (≥10% of all 

patients) treatment-related grade 3 AE was diarrhea (10%, 14%, and 12%, in

parts 1A, 1B, and 2A, respectively). Ten of the 14 grade 3 diarrhea events 

were considered SAEs. Dermatitis acneiform was the most common grade 3 

treatment-related AE in the melanoma cohort. Of the 96 nonfatal SAEs 

reported in 43 patients (34%), 29 were considered treatment related, most 

commonly diarrhea (7%), nausea (3%), vomiting (3%), and dyspnea (3%). 

Fatal SAEs were reported in 5 patients: 4 in part 1A and 1 in part 2A (all 

unrelated to treatment). 

Pharmacokinetics

Limited observations from continuous dosing in part 1A suggested that there

was increased exposure to both trametinib and uprosertib with increasing 

dose (Supplementary Table S5). Due to study termination, a formal analysis 

17



of the drug interaction between trametinib and uprosertib was not 

performed. In part 1B, both 7-day and 10-day washout periods were 

sufficient to return uprosertib concentrations to negligible levels 

(Supplementary Table S6). Limited sampling of the continuous dosing 

expansion cohort in part 2A suggested steady-state predose (Ctrough) 

concentrations were similar in the TNBC and melanoma cohorts following 

administration of trametinib 1.5 mg QD + uprosertib 50 mg QD and ranged 

between 0 and 277 ng/mL and 0 and 24 ng/mL, respectively. No PK analysis 

was performed in part 2A due to limited sample availability.

Pharmacodynamics

Twelve patients (4 melanoma and 8 TNBC) enrolled in part 2A had evaluable 

pretreatment and on-treatment tumor tissue biopsies available for biomarker

analysis. Two additional patients with TNBC had pretreatment or 

posttreatment evaluable samples, which were also included for biomarker 

analysis (Figure 2). There was a ≥5-fold decrease from baseline in the 

phosphorylated/total protein ratio for ERK (3/14 patients [21%]; TNBC, n = 2;

melanoma, n = 1), PRAS40 (21%; TNBC, n = 2; melanoma, n = 1), and S6RP 

(21%; TNBC, n = 1; melanoma, n = 2). All patients with decreased protein 

phosphorylation were treated at the RP2D of trametinib 1.5 mg QD + 

uprosertib 50 mg QD. A ≥2-fold increase from baseline in the phosphorylated

AKT/total AKT ratio was observed in 5 of 14 patients (36%), indicating AKT 

inhibition by uprosertib (Supplementary Table S7).
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Clinical activity

The ORR was 4.8% (6/126) across all cohorts, with 1 complete response (CR) 

and 5 partial responses (PRs). In part 2A, CR was observed in 1 patient, a 76-

year-old woman with TNBC, who remained on treatment (trametinib 1.5 mg 

QD + uprosertib 50 mg QD) for >11.3 months (Supplementary Table S8). PR 

was observed in 2 patients in part 1A (with endometrial cancer and 

adenocarcinoma of unknown primary), 2 patients in part 1B (with melanoma 

and thyroid cancer), and 1 patient in part 2A (with melanoma). In patients 

with PR, duration of response ranged from 3.7 months (at the last follow-up 

due to study closure) to 12.6 months. 

Median PFS (95% CI) was 69 days (56–105 days) in part 1A (n = 63), 114 

days (57–253 days) in part 1B (n = 29), 54 days (33–116 days) in patients 

with TNBC in part 2A (n = 20), and 106 days (54–164 days) in patients with 

melanoma in part 2A (n = 14).

PTEN tumor status

The cohort expansion portion of the study (part 2A) preferentially enrolled 

patients with treatment-refractory TNBC or melanoma. Of the 59 evaluable 

archived specimens from unique patients with detectable cytoplasmic 

staining (TNBC, n = 24; melanoma, n = 35), the average H-score was 169 

(range, 5–300) and the majority (67%) had midrange scores (101–200). Of 

the 53 specimens with detectable nuclear H staining, the average score was 

61 (range, 1–280) and the majority (79%) had low H-scores (range, 1–100). 
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The correlation coefficient between the cytoplasmic and nuclear H-scores for 

the evaluable specimens was 0.5908. Only 2 TNBC specimens were PTEN-

null, as defined by <30% of tumor cells staining at 1+ intensity and <10% 

tumor cells staining at 2+ or 3+ intensity. All melanoma samples tested 

were positive for PTEN expression; in general, PTEN levels were higher in the 

melanoma specimens than in the TNBC specimens.

Somatic mutation analysis

Results of an analysis of the RNA-Seq tumor transcriptome sequencing data 

from the TNBC cohort identified 96 mutations (nonsynonymous, stop 

gain/loss, indel [DNA base insertion or deletion], and nonsynonymous + 

indel) in a total of 84 genes (Supplementary Table S9). The majority of the 

identified genes appeared in only 1 patient. The highest incidence of 

mutations was noted for TP53 (5/12 patients) and RBL2 (5/12 patients). 

Numerous mutations were identified in the patient with TNBC who had a CR 

(patient 17), including nonsynonymous mutations in ERBB2 (including L755S)

and indel mutations in PIK3R1.

Discussion

This study aimed to determine an acceptable dose and schedule for the 

combination of the MEK1/2 inhibitor trametinib and pan-AKT inhibitor 

uprosertib, and to evaluate the preliminary activity of this combination in 
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patients selected for predicted likelihood of responding to this dual pathway 

inhibition. Because some toxicities were expected to overlap, numerous 

combinations of doses and schedules were explored; however, continuous 

dosing of trametinib and uprosertib was not well tolerated, and minimal 

clinical activity was observed at the achievable doses. The planned cohort 

expansion of an alternative dosing schedule testing intermittent uprosertib 

with continuous trametinib was not completed. Co-targeting MAPK-

dependent and MAPK-independent BRAF inhibitor resistance may be 

effective in some settings, as demonstrated by a phase I trial evaluating 

dabrafenib (150 mg twice daily) with dose escalation of uprosertib (50 mg 

QD starting) alone or with trametinib (1.5 mg QD starting) in patients with 

BRAF V600E/K–mutant advanced solid tumors [24]. With a DLT observed only

at the highest dose of the triple combination, dual pathway inhibition was 

well tolerated and objective responses were observed. 

The most commonly reported AEs in this study were consistent with those 

reported in monotherapy studies, albeit at much lower doses than those with

either single agent [18, 19]. Gastrointestinal side effects, particularly 

diarrhea, and skin-related AEs were frequently observed in uprosertib plus 

trametinib and monotherapy trials in patients with solid tumors and BRAF-

mutant melanoma, respectively. In the current trial, diarrhea was the most 

common DLT, reported as a grade 3 AE in 11% of patients. Diarrhea, nausea 

and vomiting, and maculopapular rash were the most common AEs causing 

dose interruptions. These AEs were managed adequately with prophylactic 
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treatment, dose reductions and interruptions. The patient population had 

advanced disease; 90% of patients had stage IV disease and 53% had 

received ≥3 prior regimens. A better tolerability profile could have been 

achieved in patients with less advanced disease, potentially allowing for 

higher dosing or a longer treatment duration. 

Our results are largely consistent with those of other trials that evaluated 

combinations of drugs targeting both the MAPK and PI3K/AKT pathways [10, 

11, 20, 24-27]. Evaluation of trametinib plus the pan-AKT inhibitor afuresertib

in 20 patients was terminated owing to poor tolerability at doses well below 

the MTD of each single-agent [11]. In another trial evaluating dual MAPK and 

PI3K/AKT inhibitors, toxicities limited escalation to the doses needed to 

achieve clinical activity [25]. Similar to our study, gastrointestinal, hepatic, 

dermatologic, and hematologic AEs most commonly resulted in dose 

interruptions, dose reductions, or treatment discontinuations [11, 20, 25]. 

Another study evaluating a combination of vemurafenib and everolimus also 

demonstrated clinical activity across histologies, with partial responses noted

in advanced NSCLC, melanoma, optic nerve glioma, and xanthoastrocytoma, 

including patients who previously experienced progression on BRAF and/or 

MEK inhibitor therapy. The vemurafenib-everolimus combination was well 

tolerated in this patient population [28].

Median trough concentrations of trametinib and uprosertib were mostly in 

the range of steady-state trough concentrations reported in monotherapy 
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studies [18, 19]; however, with uprosertib continual dosing, its MTD in 

combination with trametinib was at most 67% of the target dose identified in

the monotherapy trial [19]. To potentially achieve higher drug exposure with 

better tolerability, alternate schedules with intermittent uprosertib dosing 

were evaluated. Intermittent dosing regimens of MEK and PI3K/AKT inhibitors

in preclinical mouse cancer models have resulted in similar in vitro/in vivo 

activity to continuous dosing schedules and may be better tolerated [29]. 

Alternate dosing schedules could potentially allow more complete PI3K/AKT 

pathway inhibition in combination with MEK inhibition, which may result in 

tumor cell death, while maintaining tolerability of the combination. However, 

in this study, intermittent dosing did not achieve higher uprosertib exposure 

than the steady-state concentrations achieved with continuous dosing. 

Uprosertib concentrations returned to negligible levels after 7-day washouts. 

Limited sampling with the continuous dosing indicated that steady-state 

predose (Ctrough) concentrations were similar in the TNBC and melanoma 

cohorts. Furthermore, >50% of patients required dose modifications and/or 

interruptions of trametinib and/or uprosertib.

PD results using paired tumor biopsies from patients with TNBC or melanoma

showed a >2-fold change in the phosphorylation rate of several markers in 

the MEK and AKT pathways in only a small subset of patients, including 

increases in pAKT (Supplementary Table S7). These results suggest that the 

drug concentrations achieved in part 2A may not have been sufficient for a 

robust pathway inhibition, and because the intermittent schedule in part 1B 
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did not show any increase in drug concentration relative to QD dosing at the 

respective MTDs, the planned expansion cohorts were not opened.

Identification of somatic mutations in tumor samples from the TNBC cohort 

showed that the majority of genes with mutations appeared only once in 

individual patients. TP53 represented 1 of 2 genes occurring at a higher 

frequency (5/13) in the tumors assessed. This was expected considering the 

high TP53 mutation rate (78%) in TNBC [30]. Mutations in ERBB2 and PI3KR1 

were identified in the patient with a CR and may warrant further study. The 

ERBB2 L755S mutation is known to be recurrent in breast cancer [31].

Of note, the clinical activity of uprosertib plus trametinib in this study (ORR, 

4.8%) was not better than that previously reported with monotherapy [18, 

19], despite patient selection based on predicted likelihood of responding to 

dual pathway inhibition. PTEN loss is associated with increased AKT 

activation [32]; however, none of the patients in part 2A had tumors that met

the study definition of PTEN low/null. One limitation of the study was that 

tumor samples were not uniformly available.

In conclusion, trametinib plus uprosertib was associated with a high 

incidence of AEs at the doses and schedules tested. Diarrhea was the most 

common DLT, and diarrhea, nausea, vomiting, and maculopapular rash were 

the most common AEs leading to dose interruptions. Minimal antitumor 

activity was observed despite the enriched patient population. Since co-
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activation of MAPK and PI3K/AKT pathway signals are common in cancer, it 

will be important for future studies to determine if these pathways can be 

simultaneously suppressed by alternative drug combinations.
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Tables and Figures

Table 1 Patient demographics, baseline characteristics, and disposition (all-

treated population, N = 126)

Continuous dose-

escalation cohorts

Expansion

cohorta

Total

(N =

126)Parameters

Part 1A

(n = 63)

Part 1B

(n = 29)

Part 2A

TNBC

(n = 20)

Part 2A

melanom

a

(n = 14)
Age, years, median (min–

max)

60 (24–

82)

65 (38–81) 49 (33–76) 54 (35–73) 58 (24–

82)
Gender, n (%)

Male 22 (35) 10 (34) 0 9 (64) 41 (33)
Female 41 (65) 19 (66) 20 (100) 5 (36) 85 (67)

Tumor stage, n (%)
IV 58 (92) 27 (93) 18 (90) 11 (79) 114 (90)
III 5 (8) 1 (3) 1 (5) 3 (21) 10 (8)
Ic or II 0 1 (3) 1 (5) 0 2 (2)

Ethnicity, n (%)
Hispanic or Latino 2 (3) 3 (10) 2 (10) 1 (7) 8 (6)
Not Hispanic or Latino 61 (97) 26 (90) 18 (90) 13 (93) 118 (94)

Race, n (%)b

White/Caucasian/

European

57 (92) 26 (90) 17 (89) 13 (100) 113 (92)

African American 5 (8) 0 2 (11) 0 7 (6) 
Asian 0 3 (10) 0 0 3 (2)

Primary tumor type, n
Melanoma 11 4 - 14 29
Colon/rectum 11 3 - - 14
Otherc 8 3 - - 11
Ovary 7 3 - - 10
Pancreas 6 4 - - 10
Breast 4 7 20 - 31
Endometrium/uterus 3 2 - - 5
Thyroid 3 2 - - 5
Non-small cell lung 2 1 - - 3
Prostate 2 - - - 2
Fallopian tube 1 - - - 1
Head and neck 1 - - - 1
Kidney 1 - - - 1
Liver 1 - - - 1
Neuroendocrine 1 - - - 1
Small intestine 1 - - - 1
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Prior anticancer therapy, n (%)
Any 60 (95) 28 (97) 20 (100) 13 (93) 121 (96)
Chemotherapy 52 (83) 24 (83) 20 (100) 8 (57) 106 (84)
Biologic therapy 30 (48) 16 (55) 4 (20) 5 (36) 47 (37)
Hormonal therapy 9 (14) 8 (28) 6 (30) 0 16 (13)
Immunotherapy 3 (5) 1 (3) 0 3 (21) 8 (6)
Radiotherapy 24 (38) 9 (31) 13 (65) 6 (43) 55 (44)
Small-molecule–

targeted therapy

7 (11) 3 (10) 4 (20) 1 (7) 14 (11)

Prior anticancer regimens, n (%)
None 5 (8) 1 (3) 0 4 (29) 10 (8)
1–2 17 (27) 12 (41) 3 (15) 4 (29) 36 (28)
3–4 20 (32) 6 (21) 10 (50) 3 (21) 42 (33)
>4 18 (29) 10 (34) 7 (35) 3 (21) 38 (30)

Patients discontinued treatment for any reason, n (%)
Adverse event 10 (16) 6 (21) 5 (25) 3 (21) 24 (19)
Disease progression 46 (73) 14 (48) 11 (55) 6 (43) 77 (61)
Study 

closed/terminated

0 1 (3) 1 (5) 0 2 (2)

Investigator discretion 4 (6) 4 (1) 2 (10) 5 (36) 15 (12)
Withdrew consent 3 (5) 4 (14) 1 (5) 0 8 (6)

aThe study design included an expansion cohort part 2B. No patients were enrolled in part 

2B

bn = 123; race was not known for 3 patients (1 patient in part 1A and 2 patients in part 2A)

cPart 1A “other” included peripheral nerve sheath tumor, uterine cancer, uveal and ocular 

melanoma, radiation-associated sarcoma of the left posterior, nasopharyngeal cancer, 

adenoma of unknown primary; part 1B “other” included mucinous adenocarcinoma, 

appendix cancer, and non-small cell lung cancer

TNBC triple-negative breast cancer
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Table 2 Most common adverse events reported in ≥10% of patients across 

all cohorts (all-treated population, N = 126)

AE, n (%) All grades Grade 3 or 4a

Patients with any event 126 (100) 82 (65)
Diarrhea 84 (67) 14 (11)
Fatigue 58 (46) 8 (6)
Nausea 57 (45) 5 (4)
Vomiting 44 (35) 5 (4)
Dermatitis acneiform 42 (33) 4 (3)
Decreased appetite 35 (28) 1 (<1)
Maculopapular rash 32 (25) 4 (3)
Mucosal inflammation 31 (25) 4 (3)
Peripheral edema 29 (23) 1 (<1)
Stomatitis 26 (21) 5 (4)
Increased AST 24 (19) 10 (8)
Hypokalemia 22 (17) 7 (6)
Rashb 21 (17) 1 (<1)
Anemia 21 (17) 9 (7)
Constipation 20 (16) 0
Dry skin 20 (16) 1 (<1)
Dizziness 19 (15) 0
Dyspnea 18 (14) 5 (4)
Dehydration 17 (13) 3 (2)
Hypomagnesemia 17 (13) 0
Abdominal pain 16 (13) 1 (<1)
Dry mouth 16 (13) 0
Pyrexia 16 (13) 0
Pruritus 15 (12) 2 (2)
Hyponatremia 14 (11) 9 (7)
Increased blood alkaline

phosphatase 
13 (10) 8 (6)

Cough 13 (10) 0
aGrade 4 AEs included hypoglycemia (n = 1), increased AST level (n = 2), increased blood 

alkaline phosphatase level (n = 1), increased alanine aminotransferase level (n = 1), 

increased blood creatinine level (n = 1), decreased neutrophil count (n = 1), anemia (n = 1),

and retinal tear (n = 1)

bRash includes all AEs of rash, with the exception of dermatitis acneiform and rash 

maculopapular.

AE adverse event, AST aspartate aminotransferase
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Figure Legend

Figure 1 Dose-escalation schedules of trametinib (T) and uprosertib (U). 

(a) In part 1A, a zone-based dose-escalation model with a modified 3+3 

cohort design with a continuous QD dosing schedule of trametinib and 

uprosertib was used. Dose escalation was based on tolerability, and dose 

escalation proceeded until the maximum tolerated dose or the 

recommended phase II dose of the combination regimen was identified. 

Cohorts along each axis were enrolled simultaneously. 

(b) In part 1B, an alternate escalation dosing schedule was used to evaluate 

a continuous daily dosing regimen of trametinib 2 mg QD with a 

4-days-on/10-days-off schedule of uprosertib with or without a loading dose 

or a once weekly dose of uprosertib. aCohort 10 (not shown in diagram): 

trametinib 2 mg + uprosertib 50 mg

QD once-daily

Figure 2 Change from baseline in AKT and MEK pathway biomarkers. Total 

phosphorylated/total H-score ratios of pERK, pAKT, pPRAS40, and pS6RP 

were determined from available tumor tissue biopsies obtained before and 

after treatment. A ratio of >1 indicated an increase in phosphorylation, a 

ratio of 1 indicated no change, and a ratio of <1 indicated a decrease in 

phosphorylation. 

ERK extracellular signal–regulated kinases, MEK mitogen-activated protein 

kinase kinase, S6RP S6 ribosomal protein
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