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There is an urgent need for new antituberculosis (anti-TB) drugs, including agents that are safe and effective with concomitant
antiretrovirals (ARV) and first-line TB drugs. PA-824 is a novel antituberculosis nitroimidazole in late-phase clinical develop-
ment. Cytochrome P450 (CYP) 3A, which can be induced or inhibited by ARV and antituberculosis drugs, is a minor (�20%)
metabolic pathway for PA-824. In a phase I clinical trial, we characterized interactions between PA-824 and efavirenz (arm 1),
lopinavir/ritonavir (arm 2), and rifampin (arm 3) in healthy, HIV-uninfected volunteers without TB disease. Participants in
arms 1 and 2 were randomized to receive drugs via sequence 1 (PA-824 alone, washout, ARV, and ARV plus PA-824) or sequence
2 (ARV, ARV with PA-824, washout, and PA-824 alone). In arm 3, participants received PA-824 and then rifampin and then
both. Pharmacokinetic sampling occurred at the end of each dosing period. Fifty-two individuals participated. Compared to PA-
824 alone, plasma PA-824 values (based on geometric mean ratios) for maximum concentration (Cmax), area under the concen-
tration-time curve from 0 to 24 h (AUC0 –24), and trough concentration (Cmin) were reduced 28%, 35%, and 46% with efavirenz,
13%, 17%, and 21% with lopinavir-ritonavir (lopinavir/r) and 53%, 66%, and 85% with rifampin, respectively. Medications were
well tolerated. In conclusion, lopinavir/r had minimal effect on PA-824 exposures, supporting PA-824 use with lopinavir/r with-
out dose adjustment. PA-824 exposures, though, were reduced more than expected when given with efavirenz or rifampin. The
clinical implications of these reductions will depend upon data from current clinical trials defining PA-824 concentration-effect
relationships. (This study has been registered at ClinicalTrials.gov under registration no. NCT01571414.)

In 2012 there were 8.6 million cases of tuberculosis (TB) and 1.3
million tuberculosis-related deaths (1). Short-course treatment

of drug-sensitive tuberculosis requires 6 months of therapy. Mul-
tidrug-resistant (MDR) tuberculosis (i.e., resistant to isoniazid
and rifampin) is a growing public health threat, with therapeutic
options limited by drug availability, acceptability, and efficacy (2).
Current MDR-tuberculosis treatment requires �18 months of
multidrug therapy with at least 6 months of an injectable agent
(3), is poorly tolerated, and is successful in only 48% of patients
(2). Almost one-third of tuberculosis-related deaths globally are
in patients with HIV coinfection (1). There is an urgent need for
novel antituberculosis regimens to shorten treatment duration for
drug-sensitive tuberculosis and to improve the efficacy and safety
for MDR tuberculosis. The utility of novel drugs will be signifi-
cantly enhanced if they are safe and effective among patients who
require anti-HIV therapy.

The investigational nitroimidazole PA-824 has potent in vitro
activity against Mycobacterium tuberculosis and no cross-resis-
tance with marketed antituberculosis drugs (4, 5). Its activity
against metabolically active and nonreplicating M. tuberculosis (5)
suggests likely bactericidal and sterilizing activity. The latter is
critical for treatment shortening. In mouse models of tuberculo-
sis, PA-824 given with rifampin and pyrazinamide reduced cura-
tive treatment duration from 6 months to 4 months (6). In mice,
PA-824 with moxifloxacin and pyrazinamide was similarly po-
tent; in humans, this same three-drug combination reduced spu-

tum mycobacterial colony counts more effectively than standard
treatment over 2 weeks’ time when PA-824 was given at a dose of
200 mg once daily (7, 8). A phase 2B trial of PA-824 over 8 weeks
at doses of 100 mg and 200 mg with moxifloxacin and pyrazin-
amide finished recently (results pending). PA-824 has not been
tested clinically in a combination with rifampin plus pyrazin-
amide, the key sterilizing drugs in antituberculosis therapy. It is
not known whether PA-824 can reduce treatment duration when
it is given with first-line or second-line antituberculosis drugs.

To include PA-824 in antituberculosis regimens in HIV-in-
fected patients, the safety and pharmacokinetics (PK) of drug
combinations must be assessed. PA-824 is extensively metabolized
via a combination of reductive metabolism and oxidative metab-
olism with no one single metabolic path that can be considered
major. In vitro studies suggest that cytochrome P450 (CYP) 3A
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contributes up to 20% to overall metabolism; PA-824 is not a
substrate of CYP2C9, -2C19, or -2D6 metabolizing enzymes (Ste-
phen Murray, TB Alliance, personal communication). Rifampin
induces many metabolizing enzymes including CYP3A (9). Efa-
virenz (EFV) is included in first-line regimens for HIV in many
settings, and lopinavir (LPV; with ritonavir, lopinavir/r) is the
most widely prescribed HIV-1 protease inhibitor globally. Efa-
virenz induces CYP3A enzymes, while lopinavir and ritonavir can
inhibit or induce CYP3A (10). In addition, the CYP2B6 genotype
is a key determinant of efavirenz concentrations (11–15), while
SLCO1B1 polymorphisms impact lopinavir exposures (16–18). In
this phase I trial, we investigated the safety and PK interactions of
PA-824 with efavirenz, lopinavir/r, and rifampin, taking into ac-
count pharmacogenetics.

MATERIALS AND METHODS
Study population. Healthy adults 18 to 65 years were recruited at AIDS
Clinical Trials Group (ACTG) sites in the United States. Eligible partici-
pants had negative HIV and hepatitis C antibody tests, normal alanine
aminotransferase (ALT) levels, and creatinine clearance values of �50
ml/min. Volunteers were excluded for hemoglobin of �12.0 g/dl (male)
or �11.0 g/dl (female), absolute neutrophil count of �1,250 cells/mm3,
platelet counts of �125,000 cells/mm3, electrocardiogram (ECG) with a
corrected QT (QTc) of �450 or PR of �200 ms, or active tuberculosis.

Frequent headaches was another exclusion criterion. The study was ap-
proved by institutional review boards of the participating sites. All partic-
ipants provided written informed consent. ACTG study A5306 was regis-
tered at ClinicalTrials.gov under registration number NCT01571414.

Experimental protocol. (i) Study design of the phase I, open-label
PK and safety study. PA-824 was dosed 200 mg once daily, efavirenz was
given at 600 mg once daily, rifampin was dosed at 600 mg once daily, and
lopinavir/r was given at 400/100 mg every 12 h. Efavirenz was taken in the
evenings. PA-824 and rifampin were taken in the mornings. All medica-
tions were taken on an empty stomach. Participants were sequentially
assigned to arm 1 (efavirenz), arm 2 (lopinavir/r), or arm 3 (rifampin)
(Fig. 1). In arm 1, participants were randomized to sequence 1, consisting
of PA-824 for 7 days, a 2-week washout period, efavirenz for 14 days, and
then efavirenz with PA-824 for 7 days, or sequence 2, consisting of efa-
virenz for 14 days, efavirenz with PA-824 for 7 days, a 2-week washout
period, and then PA-824 alone for 7 days. Arm 2 participants were ran-
domized to two sequences as follows: sequence 1, consisting of PA-824 for
7 days, a 2-week washout period, lopinavir/r for 14 days, and then lopi-
navir/r with PA-824 for 7 days, or sequence 2, consisting of lopinavir/r for
14 days, lopinavir/r with PA-824 for 7 days, a two-week washout period,
and PA-824 alone for 7 days. In arm 3, participants received PA-824 for 7
days, rifampin for 7 days, and then PA-824 with rifampin for 7 days.
Adherence was assessed by pill counts and medication diaries. All doses
prior to PK sampling were observed by study staff. Serial plasma sampling
for PK was performed at the end of each dosing period for PA-824, efa-

FIG 1 Schematic of the dosing regimen and pharmacokinetic sample collection: arm 1, PA-824 with efavirenz (EFV) (A); arm 2, PA-824 with lopinavir/ritonavir
(LPV/r) (B); arm 3, PA-824 with rifampin (RIF) (C).
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virenz, and lopinavir. For PA-824, plasma was obtained predose and at 1,
2, 3, 4, 5, 6, 8, 10, 12, and 24 h postdose. For efavirenz, plasma was ob-
tained predose and at 1, 2, 3, 4, 8, 12, and 24 h postdose. For lopinavir,
plasma was obtained predose and at 1, 2, 3, 4, 5, 6, 8, 10, and 12 h postdose.
Rifampin concentrations were not measured in this small PK study be-
cause the effects of PA-824 on rifampin PK were expected to be small. In
addition, since rifampin concentrations are highly variable and since that
variability is not well explained by known genetic polymorphisms, even
large changes would be unlikely to be detected.

(ii) Safety monitoring. Participants underwent weekly safety evalua-
tions. ECG evaluations were performed at baseline and on the final day of
PA-824 dosing periods, given that some nitroimidazole antibiotics can
cause QT prolongation. Adverse events were graded according to the Di-
vision of AIDS Table for Grading the Severity of Adult and Pediatric
Adverse Events, version 1.0 (19).

Drug concentration analysis. (i) Plasma assay for PA-824. PA-824
and the internal standard, triazolam, were isolated from EDTA-plasma by
liquid-liquid extraction. The organic phase was removed, transferred to a
clean test tube, and evaporated under nitrogen. The residue was reconsti-
tuted in MeOH-water (1:1), transferred to autosampler vials for injection
onto a Chromolith SpeedROD-18 high-performance liquid chromato-
graph (HPLC) column, and eluted with a linear gradient of 10 mM am-
monium acetate and methanol (30:70). The ion pairs 359.8/174.7 for PA-
824 and 342.8/307.7 for triazolam were selected for tandem mass
detection in multiple reaction monitoring (MRM) mode. Quantification
of PA-824 was performed with a liquid chromatography-tandem mass
spectrometer (LC-MS/MS) system comprising two PerkinElmer series
200 micro-LC pumps and a series 200 autosampler coupled with an AB
Sciex API 2000 tandem mass spectrometer. For calibration curves, spiked
concentrations and peak area ratios of PA-824 and the internal standard
were fitted by linear least-squares regression, weighted by 1/x. The
method was validated over a linear range of 10 to 10,000 ng/ml with a
correlation value, R, of 0.9984. For the measurements of PA-824, the
interassay precision (percent coefficient of variation [CV]) ranged from
2.65 to 4.71% and the percent deviation ranged from 0.8 to 5.2% of the
nominal values of the control concentrations. The intra-assay precision
(percent CV) ranged from 1.58 to 6.29%, and the percent deviation
ranged from �0.40 to 11.19% of the nominal values of the control con-
centrations. The lower limit of quantification (LLOQ) and upper limit of
quantification (ULOQ) were 10 and 10,000 ng/ml, respectively. Plasma
aliquots of 50 �l were sufficient for analysis.

(ii) Plasma assays for efavirenz and lopinavir. Efavirenz was quanti-
fied by reversed-phase HPLC following extraction from human plasma by
simple protein precipitation. Detection involved a photodiode array de-
tector, scanning at a wavelength of 247 nm, and reserpine as the internal
standard. The calibration curve concentration range was 100 ng/ml to
6,000 ng/ml. For calibration curves, spiked concentrations and peak
height ratios of efavirenz and the internal standard were fitted by linear
least-squares regression, weighted 1/x. Efavirenz concentrations were cal-
culated from regression parameters using peak height ratios. The method
was validated over a linear range of 100 to 10,000 ng/ml with a correlation
value, R, of 0.9995. For the measurements of EFV, the interassay precision
(percent CV) ranged from 2.4 to 4.5%, and the percent deviation ranged
from �0.4 to 3.3% of the nominal values of the control concentrations.
The intra-assay precision (percent CV) ranged from 0.6 to 5.4%, and the
percent deviation ranged from �1.7 to 6.1% of the nominal values of the
control concentrations. The lower limit of quantification (LLOQ) and
upper limit of quantification (ULOQ) were 100 and 10,000 ng/ml, respec-
tively.

Lopinavir and its deuterated internal standards were extracted from 50
�l of EDTA-human plasma by protein precipitation with acetonitrile,
followed by centrifugation. The clear supernatant was transferred into
autosampler vials for a 10-�l injection onto an Agilent Zorbax XDB-C8

(5-�m particle size; 2.1- by 50-mm HPLC column). The mobile phase
comprised 10 mM ammonium formate buffer (pH 4.0) and acetonitrile

containing 0.1% formic acid. Elution was performed using a gradient flow
rate of 400 �l/minute with MS/MS detection on an ABSCIEX API 2000
mass spectrometer (MS) using electrospray in positive-ion mode. The ion
pairs 629.2/429.0 for lopinavir and 637.2/429.0 for LPV-D8 were selected
for tandem mass detection. For calibration curves, spiked concentrations
using peak area ratios of lopinavir were fitted by 1/x linear regression. The
method was validated over a linear range of 50 to 8,000 ng/ml with a
correlation R of 0.9988. For the measurements of LPV, the interassay
precision (percent CV) ranged from 4.50 to 5.11%, and the percent devi-
ation ranged from �8.15 to 0.037% of the nominal values of the control
concentrations. The intra-assay precision (percent CV) ranged from 2.35
to 6.39%, and the percent deviation ranged from �9.33 to 2.72% of the
nominal values of the control concentrations. The lower limit of quanti-
fication (LLOQ) and upper limit of quantification (ULOQ) were 50 and
8,000 ng/ml, respectively.

Pharmacogenetic testing. Genetic polymorphisms reported to pre-
dict plasma PK of efavirenz (11–15), rifampin (20, 21), and lopinavir (17,
18) were genotyped in duplicate. For efavirenz, CYP2B6 516 G¡T
(rs3745274), 983 T¡C (rs28399499), and 15582 C¡T (rs4803419) were
assayed using MassARRAY iPLEX Gold (Sequenom Inc., San Diego, CA,
USA). The composite CYP2B6 genotype was defined as follows (15): an
extensive metabolizer contains 516 G/G and 983 T/T, with either 15582
C/C or C/T; an intermediate metabolizer contains 516 G/T or 983 T/C but
not both, or homozygosity for 15582 T/T; and a slow metabolizer contains
516 T/T, 983 C/C, or the combination of 516 G/T and 983 T/C. SLCO1B1
C¡T (rs4149032) (for rifampin) and SLCO1B1 521 T¡C (rs4149056)
(for lopinavir/r) were genotyped by TaqMan (Applied Biosystems, Inc.,
Foster City, CA). The CYP3A5*3 6986 A¡G variant (rs776746) (22) was
genotyped by MassARRAY iPLEX Gold.

Pharmacokinetic and statistical analyses. (i) Sample size. Thirteen
volunteers per arm were estimated to provide 80% power to detect a 20%
mean difference in the area under the concentration-time curve from 0 to
24 h (AUC0 –24 h) for PA-824 when it was coadministered with companion
drug versus being given alone, using a two-sided t test at a significance
level of 0.05. We targeted enrollment of 16 participants per arm.

(ii) Pharmacokinetic and statistical evaluation. PK parameters for
PA-824, efavirenz, and lopinavir, including AUC, maximum plasma con-
centration (Cmax), time of maximum plasma concentration (Tmax), half-
life (t1/2), and oral clearance (CL/F) were determined using standard non-
compartmental methods performed in SAS (SAS Institute, Inc., Cary,
NC). Statistical analyses were based on nonparametric tests. The P values
evaluating changes in PK of PA-824 coadministered with efavirenz, lopi-
navir/r, or rifampin to PA-824 alone determined using a Wilcoxon
signed-rank test and comparing changes in PK parameters of these drugs
among metabolizer groups using a Wilcoxon rank sum test or Kruskal-
Wallis test are reported. Calculated geometric means of ratios (GMR) and
90% confidence intervals based on log-transformed PK parameters were
also used for PK comparisons. Associations between genotypes and PK
parameters were assessed using the Jonckheere-Terpstra trend test and
assuming additive genetic models.

RESULTS
Study subjects. Fifty-two participants enrolled. Median age was
34 years (range, 19 to 63 years), median weight was 83 kg (range,
47 to 119 kg), median body mass index was 27 kg/m2 (range, 18 to
41 kg/m2), and 30 (58%) were male. Thirty-one (60%) were white,
17 (33%) were African-American or black, and 2 were Asian, and
2 were not reported. Of 52 participants, 48 completed all PK visits.
There were two early discontinuations each in arms 1 and 2. In
arm 1, one individual had efavirenz-related side effects, and an-
other was a passenger in a motor vehicle accident. In arm 2, two
participants self-administered a lower-than-prescribed lopina-
vir/r dose and so were discontinued. Thus, 48 participants were
eligible for PK analyses.
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Pharmacokinetics of PA-824, efavirenz, and lopinavir. Com-
pared to PA-824 alone, plasma exposures (AUC0 –24) of PA-824
(based on GMR) were reduced by 35% with efavirenz, 17% with
lopinavir/r, and 66% with rifampin (Table 1). Plasma concentra-
tion-time curves for PA-824 alone versus PA-824 with efavirenz,
lopinavir/r, and rifampin are shown in Fig. 2 and in color in Fig. S1
in the supplemental material. Plasma efavirenz and lopinavir con-

centrations were not appreciably affected by PA-824 (Table 2). In
a post hoc nonlinear mixed-effects modeling analysis of our phase
1 trial data plus raw data from phase 1 and 2 trials of PA-824
supplied by TB Alliance, we found that PA-824 exposures were
similar for a 200-mg dose taken together with efavirenz and a
100-mg dose taken without efavirenz. The same was true for PA-
824 coadministered with rifampin, except that while overall expo-

TABLE 1 Pharmacokinetic parameters of PA-824 when PA-824 is administered alone or coadministered with steady-state efavirenz, lopinavir/r, or
rifampin

Companion drug
(treatment group)a

Pharmacokinetic parameter
for PA-824

Median (IQR) for the parameterc

GMRb 90% CId P valueePA-824 alone PA-824 and companion drug

Efavirenz (arm 1) AUC0–24 (ng · h/ml) 36,495 (30,853, 53,857) 24,917 (19,094, 34,257) 0.65 (0.56, 0.76) �0.001
Cmax (ng/ml) 2,035 (1,805, 2,840) 1,510 (1,225, 2,025) 0.72 (0.62, 0.83) 0.001
Cmin (ng/ml) 1,110 (892, 1,650) 653 (502, 936) 0.54 (0.45, 0.64) �0.001
Tmax (h) 4.0 (4.0, 5.0) 4.0 (3.5–5.0) 0.88 (0.65, 1.20) 0.383
t1/2 (h) 24.8 (18.9, 27.1) 16.2 (14.9, 21.0) 0.74 (0.68, 0.80) �0.001
CL/F (liters/h) 5.48 (3.71, 6.48) 8.03 (5.87, 10.6) 1.53 (1.31, 1.78) �0.001

Lopinavir/r (arm 2) AUC0–24 (ng · h/ml) 39,035 (24,295, 42,187) 29,899 (20,691, 37,949) 0.83 (0.71, 0.98) 0.02
Cmax (ng/ml) 2,130 (1,440, 2,425) 1,770 (1,285, 2,245) 0.87 (0.75, 1.0) 0.03
Cmin (ng/ml) 1,085 (708, 1,320) 838 (509, 1,155) 0.79 (0.66, 0.93) 0.01
Tmax (h) 4.0 (3.5, 5.0) 4.5 (3.5, 5.0) 1.10 (0.88, 1.38) 0.47
t1/2 (h) 21.6 (18.4, 28.7) 16.7 (15.1, 23.7) 0.83 (0.73, 0.94) 0.04
CL/F (liters/h) 5.13 (4.74, 8.23) 6.69 (5.28, 9.67) 1.20 (1.03, 1.41) 0.03

Rifampin (arm 3) AUC0–24 (ng · h/ml) 42, 495 (29,501, 48,661) 13,659 (9,981, 19,070) 0.34 (0.27, 0.42) �0.001
Cmax (ng/ml) 2,490 (1,925, 2,885) 1,165 (769, 1,520) 0.47 (0.39, 0.56) �0.001
Cmin (ng/ml) 1,080 (722, 1,300) 173 (93, 320) 0.15 (0.11, 0.21) �0.001
Tmax (h) 4.0 (3.0, 6.0) 4.0 (3.5, 4.5) 1.00 (0.81, 1.22) 0.58
t1/2 (h) 19.25 (15.66, 20.78) 8.07 (6.28, 9.22) 0.41 (0.36, 0.46) �0.001
CL/F (liters/h) 4.72 (4.12, 6.78) 14.67 (10.52, 20.31) 2.97 (2.41, 3.67) �0.001

a Dosing was as follows: PA-824, 200 mg once daily; efavirenz, 600 mg once daily; lopinavir/r, 400 mg/100 mg twice daily; rifampin, 600 mg once daily.
b Geometric mean of ratios (GMR) of pharmacokinetics of PA-824 coadministered with a companion drug to PA-824 alone.
c IQR, interquartile range.
d CI, confidence interval.
e P value of Wilcoxon signed-rank test comparing pharmacokinetics of PA-824 coadministered with the companion drug to PA-824 alone.

FIG 2 Mean loge PA-824 plasma concentration-versus-time curve of PA-824 at 200 mg once daily alone (solid lines) or together (dotted lines) with steady-state
efavirenz (EFV) (A), lopinavir/ritonavir (LPV/r) (B), or rifampin (RIF) (C). Values shown represent means with standard errors.
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sures were similar, trough concentrations remained modestly re-
duced with rifampin coadministration (data not shown).

Pharmacogenetic associations. Of 16 subjects evaluable for
PK in arm 1 (efavirenz), 6 (38%) were CYP2B6 extensive metabo-
lizers, 10 (63%) were intermediate metabolizers, and none were
slow metabolizers. Changes in PK parameter values for PA-824
(based on geometric means of ratios [GMR]) with concomitant
efavirenz did not differ significantly between CYP2B6 intermedi-
ate and extensive metabolizers (e.g., PA-824 Cmin reduced by 44%
and 49%, respectively; P � 0.692). Of 16 subjects evaluable for PK
in arm 2 (lopinavir/r), 12 (75%) were homozygous for SLCO1B1
T/T and 4 (25%) were heterozygous for SLCO1B1 521 C/T. Re-
garding CYP3A5 36986A¡G (rs776746), 5 subjects (31%) had
extensive, 3 (19%) had intermediate, and 8 (50%) had slow me-
tabolizer genotypes. Changes in PK parameter values for PA-824
(based on GMR) with concomitant lopinavir/r did not differ con-
sistently between SLCO1B1 C/T and SLCO1B1 T/T or by CYP3A5
genotype. Of 16 subjects evaluable for PK in arm 3 (rifampin), 4
(25%) were homozygous for SLCO1B1 38664 (rs4149032), 5 (31%)
were heterozygous for SLCO1B1 38664 (rs4149032), and 7 (44%)
were homozygous for SLCO1B1 38664 (rs4149032). Regarding
CYP3A5 36986A¡G (rs776746), 4 subjects (25%) had extensive,
6 (38%) had intermediate, and 6 (38%) had slow metabolizer
genotypes. Changes in PK parameter values for PA-824 (based on
GMR) with concomitant rifampin did not differ significantly by
SLCO1B1 rs4149032 or by CYP3A5 genotype. Relationships be-
tween polymorphisms and PK parameters of efavirenz and lopi-
navir as well as relationships between polymorphisms and magni-
tude of drug-drug interactions when PA-824 was administered
with efavirenz, lopinavir/r, or rifampin are described in the sup-
plemental material.

To explore genetic associations, we considered PA-824 PK data
without concomitant efavirenz, lopinavir/r, or rifampin in all 48
subjects. We found no apparent association between CYP2B6,
SLCO1B1, and CYP3A5 polymorphisms and PA-824 PK parame-
ters. The relationship between these polymorphisms and Cmin is
shown in the supplemental material.

Safety and tolerability. PA-824 was well tolerated alone and
with concomitant efavirenz, lopinavir/r, and rifampin. There
were two adverse events of grade �3. In arm 2, one participant

had an asymptomatic elevation of aspartate transaminase
(AST) following vigorous exercise (PA-824 alone, sequence 2).
One subject in arm 3 experienced grade 3 neutropenia on the
last day of dosing, likely due to rifampin. Both adverse events
resolved quickly after drug discontinuation. There were no
QTc events of grade �2.

DISCUSSION

For the first time in decades, there is a robust drug development
pipeline for tuberculosis. The nitroimidazole PA-824 is poised
to enter phase 3 clinical trials. Anticipating the need to treat
patients coinfected with HIV-1, we examined the safety, toler-
ability, and PK of PA-824 given with commonly used antiret-
rovirals that induce or inhibit P450 metabolizing enzymes (efa-
virenz and lopinavir/r) and with the essential first-line
tuberculosis drug, rifampin. We showed substantial reduction
of plasma PA-824 exposure by efavirenz and rifampin but
modest changes with lopinavir/r. The combinations were safe
and well tolerated, and PA-824 did not affect plasma efavirenz
or lopinavir exposures.

Concurrent treatment of HIV and tuberculosis reduces
mortality and new AIDS-defining illnesses (23–25). Because
cotreatment can be complicated by drug-drug interactions,
overlapping drug toxicities, immune reconstitution syndrome,
and high pill burden (26), late-phase clinical trials of antitu-
berculosis drugs typically exclude patients requiring antiretro-
viral therapy. In the present study, coadministration of PA-824
with lopinavir/ritonavir did not increase PA-824 concentra-
tions; rather, exposures were modestly reduced. Ritonavir is a
mixed inducer and inhibitor, and with regard to interactions
with PA-824, induction apparently dominated. This demon-
strates the importance of empirical data when ritonavir is used
with other drugs as it is difficult to make a priori predictions
about its likely effects on companion drugs (10, 27). The mod-
est reductions in PA-824 with lopinavir/r were statistically sig-
nificant but are likely not clinically relevant. In contrast, efa-
virenz substantially decreased PA-824 exposure, likely by
upregulating CYP3A or other metabolizing enzymes. While
CYP3A contributes only 20% to overall metabolism of PA-824,
this percentage may increase when CYP3A is induced. Whether

TABLE 2 Pharmacokinetic parameters of efavirenz and lopinavir when administered alone or coadministered with PA-824

Drug (treatment
group)a Pharmacokinetic parameter

Median (IQR) for the parameterc

GMRb 90% CId P valueDrug alone Drug with PA-824

Efavirenz (arm 1) AUC0–24 (ng · h/ml) 62,112 (48,568, 72,301) 55,835 (44,347, 73,023) 0.96 (0.91, 1.02) 0.25
Cmax (ng/ml) 4,380 (3,712, 4,773) 3,945 (2,616, 4,897) 0.86 (0.72, 1.02) 0.21
Cmin (ng/ml) 1,868 (1,359, 2,275) 1,768 (1,193, 2,270) 0.96 (0.90, 1.04) 0.82
t1/2 (h) 20.2 (15.6, 24.3) 18.5 (16.5, 33.3) 1.14 (0.93, 1.40) 0.38
CL/F (liters/h) 3.23 (2.77, 4.12) 3.61 (2.74, 4.51) 1.04 (0.98, 1.11) 0.19

Lopinavir/r (arm 2) AUC0–24 (ng · h/ml) 95,689 (71,321, 117,600) 87,092 (58,858, 98,231) 0.86 (0.77, 0.96) 0.005
Cmax (ng/ml) 11,450 (8,955, 13,400) 10,150 (7,400, 10,850) 0.83 (0.76, 0.92) 0.004
Cmin (ng/ml) 4,095 (2,245, 6,255) 2,925 (2,200, 5,110) 1.03 (0.60, 1.80) 0.009
t1/2 (h) 6.71 (4.67, 8.76) 6.54 (4.95, 8.22) 0.96 (0.84, 1.09) 0.63
CL/F (liters/h) 4.18 (3.41, 5.64) 4.59 (4.07, 6.80) 1.17 (1.05, 1.30) 0.005

a Efavirenz was given at a dose of 600 mg daily; lopinavir/r was given at a dose of 400 mg/100 mg twice daily.
b Geometric mean of ratios (GMR) of pharmacokinetics of PA-824 coadministered with a companion drug to PA-824 alone.
c IQR, interquartile range.
d CI, confidence interval.
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interactions of efavirenz and rifampin with PA-824 will be clin-
ically important can only be answered by PK/pharmacodynam-
ics (PD) analysis of trial data in which different doses of PA-824
are tested for longer durations in patients with tuberculosis. PK
and outcome data from an 8-week phase 2 clinical trial are
expected soon, and with these data in hand, concentration-
effect relationships can be explored more fully.

Rifampin has unique sterilizing activity against M. tuberculosis,
making it a mainstay of first-line tuberculosis treatment. To date,
there are no drugs clinically proven to have sterilizing activity
equal to rifampin. Rifampin is, however, a potent inducer of me-
tabolizing enzymes and drug transporters (28). Rifampin-in-
duced drug interactions complicate drug development efforts for
drug-sensitive tuberculosis in two ways. First, promising investi-
gational drugs cannot be added to first-line antituberculosis regi-
mens without evaluating PK effects of rifampin and other coad-
ministered antituberculosis drugs. For example, rifampin reduces
concentrations of the newest TB drug, bedaquiline, by 50% (29).
Conversely, isoniazid can inhibit metabolizing enzymes, and
unexpected effects may occur when rifampin and isoniazid are
coadministered with a third drug (30, 31). Second, rifamycin an-
tibiotics like rifampin and rifapentine have dose-dependent treat-
ment-shortening potential, but evaluating high-dose rifamycins is
challenging because the magnitude of drug interactions at in-
creased rifamycin doses is unknown. That is, while it is generally
believed that rifamycins’ inductive capabilities are maximized at
currently used doses, recent preliminary studies in human hepa-
tocytes suggest that mRNA expression of CYP3A increases with
higher rifamycin concentrations, within clinically relevant ranges
(32). Whether or not higher mRNA expression will lead to greater
enzyme activity or higher risk for clinically meaningful drug in-
teractions is unknown.

Interpretation of drug interaction study results requires under-
standing of study drug pharmacodynamics (PD; i.e., correlations
between PK parameters and efficacy). For tuberculosis, lack of a
reliable biomarker of treatment response makes it difficult to de-
fine PK-PD relationships. PA-824 is being tested in a 2-month
phase 2B treatment trial at doses of 100 mg and 200 mg daily
because doses from 100 mg to 1,000 mg had similar activities in
the 2-week dose-ranging phase 2A monotherapy studies; only at
50 mg daily was early bactericidal activity (EBA) decreased (33,
34). Preclinical studies suggest time-dependent activity of PA-824
against M. tuberculosis (35), suggesting that the AUC0 –24 may be a
key pharmacodynamic parameter; however, target AUC values
have not been defined. The phase 2B study may help define dose-
effect or concentration-effect relationships that will give our re-
sults context.

There are well-replicated associations between CYP2B6 poly-
morphisms and efavirenz PK (11–15) and between an SLCO1B1
polymorphism and lopinavir PK (16–18). An association has been
reported between an SLCO1B1 polymorphism and rifampin PK
(20, 21). It is important to consider whether these polymorphisms
affect drug interactions. In addition, because PA-824 is metabo-
lized in part by CYP3A, we assessed a CYP3A5 loss-of-function
polymorphism. Our study did not show magnitudes of effects of
efavirenz, lopinavir, and rifampin on PA-824 PK parameters to
differ by the above genetic polymorphisms. In addition, we found
no apparent associations between these polymorphisms and PA-
824 Cmin though the sample size was limited. We suspect that the

apparent association between CYP3A5*3 and lopinavir PK is spu-
rious since this association has not been seen elsewhere (16–18).

There were limitations to the present study. Because study
drugs were given for relatively brief intervals, the full safety profile
could not be assessed. The effect of rifampin on PA-824 was not
assessed in the context of full, multidrug first-line antituberculosis
treatment. It is possible that effects of rifampin alone differ from
effects when it is combined with other first-line antituberculosis
drugs. None of the multiple metabolites of PA-824 were measured
in this study, and the specific metabolizing enzyme(s) that medi-
ates reductions in PA-824 seen in this study is not known.

In conclusion, PA-824 was well tolerated when given with efa-
virenz, lopinavir/r, or rifampin. Concomitant lopinavir/r only
modestly reduced PA-824 plasma exposures, suggesting that the
drugs can be coadministered without dose adjustment. Efavirenz
reduced PA-824 exposures more substantially, and rifampin re-
duced PA-824 exposure even more. The clinical implications of
these findings should be interpreted in light of results of ongoing
phase 2 dose-ranging trials that will define dose-response relation-
ships and identify target concentrations for maximal PA-824 ef-
fect so that use of PA-824 in first-line regimens and in patients
requiring HIV-1 therapy can be optimized.
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