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Abstract

Purpose: This study is an expanded and parallel clinical trial of
EGFR-specific chimeric antigen receptor–engineered autologous
T (CART) cell immunotherapy (NCT01869166) to assess the
safety and activity of CART-EGFR cell therapy in EGFR-positive
advanced unresectable, relapsed/metastatic biliary tract cancers
(BTC).

Experimental Design: Patients with EGFR-positive (>50%)
advanced unresectable, relapsed/metastatic BTCs were enrolled.
Well-producedCART-EGFR cellswere infused in amanner of dose
escalation after the conditioning treatment with nab-paclitaxel
(100–250 mg/m2) and cyclophosphamide (15–35 mg/kg).

Results: A total of 19 patients (14 cholangiocarcinomas and 5
gallbladder carcinomas) received one to three cycles of CART-
EGFR cell infusion (median CART cell dose, 2.65� 106/kg; range,
0.8–4.1� 106/kg)within 6months. TheCART-EGFR cell infusion

was tolerated, but 3 patients suffered grade �3 acute fever/chill.
Grade 1/2 target-mediated toxicities including mucosal/cutane-
ous toxicities and acute pulmonary edema and grade �3 lym-
phopenia and thrombocytopenia related to the conditioning
treatment were observed. Of 17 evaluable patients, 1 achieved
complete response and 10 achieved stable disease. The median
progression-free survival was 4 months (range, 2.5–22 months)
from the first cycle of treatment. Analysis of data indicated that
the enrichment of central memory T cells (Tcm) in the infused
CART-EGFR cells improved the clinical outcome.

Conclusions: The CART-EGFR cell immunotherapy was a safe
and active strategy for EGFR-positive advanced BTCs. The enrich-
ment of Tcm in the infusedCART-EGFR cells could predict clinical
response. Clin Cancer Res; 24(6); 1277–86. �2017 AACR.

See related commentary by Kalos, p. 1246

Introduction
Biliary tract cancers (BTC) comprise a group of highly invasive

heterogeneous neoplasms including gallbladder carcinoma
(GBCA), intrahepatic cholangiocarcinoma (iCCA), perihilar cho-
langiocarcinoma (pCCA), and distal cholangiocarcinoma
(dCCA). Radical resection has been the only possibility for cure;
however, approximately 90% of the patients with BTCs lose the
possibility of surgical treatment because of the advanced stage of
their disease, resulting in a poor prognosis with the median
overall survival (OS) rarely exceeding 6 to 8 months (1, 2). For
patients diagnosed with unresectable and/or metastatic BTCs,
gemcitabine combined with platinum was the recommended
standard first-line chemotherapy. Disappointingly, except for
21% to 34.5% of the population with BTCs, most of the patients

were insensitive to gemcitabine-based chemotherapy (3–7). The
low overall response rates (ORR) and limited survival benefit
brought about by chemotherapeutic regimens have driven
patients who suffered with advanced BTCs to search for a more
effective treatment strategy.

EGFR, a receptor tyrosine kinase, is commonly expressed in
BTCs, and an overexpression has been described in nearly all
iCCAs, 50% of extrahepatic cholangiocarcinomas (eCCAs), and
38% of GBCAs, indicating that EGFR represents a valid therapeu-
tic target for the treatment of advanced BTCs (8). Unfortunately,
the EGFR inhibitor erlotinib as a monotherapy failed to produce
promising results in several phase II trials, with the objective
response rates of 8% to 12%, and the combination of anti-EGFR
antibody with chemotherapy in clinical trials did not show a
significant improvement of OS and progression-free survival
(PFS) in patients with advanced BTCs (9–14). Recent genetically
modified immune cells have illustratedmore sensitive and potent
antitumor activity than that of a bivalent antibody, even for those
with low target antigen expression, which suggested a promising
treatment using EGFR-directed geneticallymodified immune cells
in patients with BTCs (15, 16).

Recently, numerous clinical studies of chimeric antigen
receptor–modified T (CART) cells have achieved spectacular
successes in B-cell hematologic malignancies; meanwhile, CART
cell therapy has been actively studied in a number of solid
tumors, and these studies have indicated the feasibility and
efficacy of CART cell–based immunotherapy in solid malignan-
cies, especially those with certain highly specific tumor-associated
antigens (17–23). In our previous study, we demonstrated that
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a protocol containing EGFR-specific CART (CART-EGFR) cell
infusion was well tolerated, but with grade �3 increase of serum
lipase in 1 of 11 patients and grade 1/2 EGFR-targeting toxicity,
and we also showed an efficient clinical response in patients with
EGFR-positive advanced non–small cell lung cancer (NSCLC;
ref. 24). In addition, the study illustrated that a proper condi-
tioning chemotherapy administered before CART cell infusion
could generate better clinical outcomes when compared with
CART cell therapy alone. We realized the importance of tumor
stroma and the microenvironment in blocking the antitumor
activity of CART cells and therefore tested several chemothera-
peutic agents to deplete stroma in our previous report of NSCLC;
we also continued to search for an optimal stroma-depleting
regimen. It has been reported that albumin-bound paclitaxel
(nab-paclitaxel) could be more efficient than other chemothera-
peutic drugs in depleting tumor stroma by binding the secreted
protein acidic and rich in cysteine (SPARC), which is overex-
pressed in a variety of malignant tumors including BTCs (25). In
this study, we expanded the clinical trial (NCT01869166) by
designing a conditioning chemotherapy (nab-paclitaxel and
cyclophosphamide)-based CART-EGFR cell therapy to evaluate
its safety and efficacy in EGFR-positive advanced unresectable,
relapsed/metastatic BTCs.

Materials and Methods
Patients

This study (NCT01869166) was approved by the ethics com-
mittee of the Chinese PLA General Hospital (Beijing, China).
Informed consent was obtained from eligible patients in accor-
dance with the Declaration of Helsinki. No commercial sponsor
was involved in the study. Patients were enrolled in the study if
they had a diagnosis of advanced unresectable, relapsed/metastat-
ic EGFR-positive BTCs. An expression level of EGFR on tumor cells
of more than 50% was a prerequisite for patient enrollment, and
EGFR positivity was determined by immunohistochemistry (IHC;
ref. 26). Patients were required to have an Eastern Cooperative
Oncology Group Performance Status of 0 to 1, have at least one
measurable target lesion, have adequate cardiac and pulmonary
function, have adequate bone marrow reserve, and have hepatic
and renal functions as follows: absolute neutrophil count�1,500/
mm3, platelet count�100,000/mm3, hemoglobin�10 g/dL, ALT/
AST<2.5�ULN, total bilirubin <1.5�ULN, and serumcreatinine

<1.5 � ULN. Patients were excluded if they had a life expectancy
shorter than 3 months. In addition, patients were excluded who
had uncontrolled hypertension (>160/100 mmHg), unstable cor-
onary diseases, severe liver and kidney dysfunction, any type of
primary immunodeficiency, active virus infections such as hepa-
titis and human immunodeficiency virus, or pulmonary function
abnormalities as follows: forced expiratory volume (FEV) <30%
predicted, diffusing capacity of lung for carbonmonoxide (DLCO)
<30% predicted (following bronchodilator), and oxygen satura-
tion<90%on roomair. Patients whowere pregnant or lactating or
who were participating in any other clinical trials in the prior 30
days were also excluded.

Study design
This study was designed to assess the safety and efficacy of an

adoptive immune cell therapy using autologous T cells expressing
an EGFR-specific CAR for the treatment of EGFR-positive
advanced unresectable, relapsed/metastatic BTCs. The detailed
clinical protocol is described according to the schema in Fig. 1. All
patients received contrast-enhanced CT, MRI, and PET/CT to
evaluate overall disease burden before conditioning chemother-
apy and CART-EGFR cell treatment. Patients received condition-
ing chemotherapywith nab-paclitaxel at a total dose of 100 to 250
mg/m2, followed by a dose of 15 to 35mg/kg cyclophosphamide
(Table 1). For safety concern, patients received the infusion of
CART-EGFR cellswith escalating T-cell doses continuously for 3 to
5 days. The detail of dose escalation is provided in the Supple-
mentary Methods. Palliative radiotherapy was administered to
relieve tumor-associated pain or other symptoms. Adverse events
were documented and graded based on the Common Termino-
logy Criteria for Adverse Events (CTCAE) v4.0. The clinical
response was evaluated using CT, MRI, and PET/CT according to
the RECIST 1.1 (27). All patients were encouraged to receive three
cycles of CART-EGFR cell treatment within 6 months unless there
were new tumor lesions or intolerable toxicities. Disease control
ratewas defined as complete response (CR), partial response (PR),
and stable disease (SD) in all evaluable patients. All patients were
recruited to receive CART-EGFR cell therapy and follow-up
between December 1, 2014, and November 30, 2016.

Generation of CART-EGFR cells
CART-EGFR cells were generated from patients' autologous

peripheral blood mononuclear cells (PBMC) at the Chinese PLA
General Hospital Good Manufacturing Practice facility according
toamodificationof the standardoperatingprocedures. ThePBMCs
were collected from80 to 100mLperipheral blood and stimulated
by 50 ng/mL anti-CD3 monoclonal antibody (Takara) and cul-
tured in GT-T551 medium (Takara) with 0.5% autologousserum
and 500 U/mL recombinant human IL2 (rhIL2; PeproTech). The
transduction was performed after 2 days in cell culture. The
lentiviral particles encoding an EGFR-CD137-CD3zeta-CAR was
thawed and loaded into 6-well plates coated with 10 mg/mL
RetroNectin (Takara) at 4�C overnight. Virus-loaded plates were
centrifuged at 2,000 g for 2 hours at 32�C. Subsequently, 5 � 105

activated cellswere added toprewells, followedby centrifugationat
1,000 g for 10 minutes. After overnight culture, the cells were
placed in freshGT-T551mediumwith0.5%autologous serumand
500 U/ml rhIL2 and further expanded in culture bags (Takara).
Cell infusion was performed after a total of 10 days in culture.
Release criteria included negative bacterial, fungal, andMycoplasma
cultures after transduction and on the day of infusion; endotoxin

Translational Relevance

Biliary tract cancers (BTC) are very common in East Asia,
especially in China, although they are rare in Western coun-
tries. For patients diagnosed with advanced BTCs, the prog-
nosis is extremely poor due to the unresectable or metastatic
lesions and limited efficacy of chemoradiotherapy. Therefore,
new treatment regimens to improve the outcome of BTCs are
encouraged. In this trial, we designed a CART-EGFR cell
immunotherapy conditioned with nab-paclitaxel and cyclo-
phosphamide and studied the potential of this regimen for
treating advancedBTCs.Ourdata showed thatCART-EGFR cell
therapy was a safe and active strategy in treating EGFR-positive
advanced BTCs, providing a new feasible approach that may
favor patients with advanced BTCs.
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level�5EU/kg after transduction andon thedayof infusion;Gram
stain negative on the day of infusion; �80% cell viability, immu-
nophenotype, and detection of CAR expression (>5%) by flow
cytometry; and EGFR-specificity cytotoxicity.

Statistical analysis
GraphPad Prism version 5.0 for Windows was used to perform

the statistical analysis. The outcomes are shown as mean �
standard deviations, and the number of infused CART-EGFR cells

Patients

enrollment

Baseline

studies
PBMC

collection

Conditioning treatment Infusion of
CART-EGFR cells
(dose escalation)Nab-paclitaxel CTX

(100−250 mg/m2) (15−35 mg/kg)

Postinfusion
observation and

monitoring of CART-
EGFR cells in vivo

Response evaluation and
monitoring of CART-

EGFR cells in vivo

Day -10 Day -7 Day -3~ −2 Day 0−3/5 Day 5−9 Day 29

6 months

The first cycle of CART-EGFR cell immunotherapy The second cycle

The second cycle or third cycle of CART-EGFR cell immunotherapy was determined by the level of CAR

The third cycle

Note:

transgene copies in peripheral blood when it decreased close to baseline.
Palliative radiotherapy was permitted for relieving symptoms such as intolerable pain caused
by the tumors.

Figure 1.

Schema of clinical protocol. CTX, cyclophosphamide; PBMC, peripheral blood mononuclear cell.

Table 1. Patients' clinical characteristics

Patient
number Sex

Age
(years) Diagnosis

Status at
enrollment

Cycles of
CART cell
therapy

Conditioning regimens
nab-P (mg/m2),
CTX (mg/kg)

CAR-positive
T cells in each
cycle (� 106/kg)

Best
response

PFS
(months)

1 Female 52 dCCA Unresectable 1 nab-P 241.0. CTX 28.1 4.1 CR 22a

2 Female 53 GBCA Unresectable 2 nab-P 191.1. CTX 22.2 (1st) 3.5 (1st) SD 4
nab-P 191.1. CTX 22.2 (2nd) 2.8 (2nd)

3 Male 70 pCCA Relapsed/metastatic 3 nab-P 112.4. CTX 22.9 (1st) 2.5 (1st) SD 9.5
nab-P 168.5. CTX 23.5 (2nd) 2.1 (2nd)

nab-P 170.5. CTX 22.5 (3rd) 2.0 (3rd)

4 Male 68 GBCA Relapsed/metastatic 1 nab-P 161.3.b 1.5 SD 15
5 Male 59 iCCA Relapsed/metastatic 1 nab-P 160.4. CTX 21.3 1.1 PD
6 Female 63 GBCA Unresectable 1 nab-P 188.7. CTX 23.3 3.4 PD
7 Male 65 iCCA Relapsed/metastatic 1 nab-P 164.8. CTX 21.1 2.0 Loss of follow-up
8 Male 54 iCCA Relapsed/metastatic 2 nab-P 177.5. CTX 25.0 (1st) 2.8 (1st) PD

nab-P 180.7. CTX 23.0 (2nd) 3.3 (2nd)

9 Male 39 dCCA Unresectable 3 nab-P 176.5. CTX 19.4 (1st) 2.6 (1st) SD 8
nab-P 115.6. CTX 18.5 (2nd) 2.7 (2nd)

nab-P 125.6. CTX 19.5 (3rd) 2.3 (3rd)

10 Female 64 pCCA Relapsed/metastatic 1 nab-P 143.9. CTX 12.5c 3.2 SD 2.5
11 Female 58 GBCA Relapsed/metastatic 1 nab-P 181.8. CTX 25.8 2.2 PD
12 Female 45 GBCA Relapsed/metastatic 2 nab-P 184.0. CTX 26.7 (1st) 2.9 (1st) PD

nab-P 123.5. CTX 20.3 (2nd) 2.8 (2nd)

13 Male 52 dCCA Relapsed/metastatic 3 nab-P 180.7. CTX 33.3 (1st) 3.1 (1st) SD 7.5
nab-P 181.2. CTX 34.3 (2nd) 2.7 (2nd)

nab-P 181.6. CTX 34.8 (3rd) 1.6 (3rd)

14 Male 67 iCCA Unresectable 2 nab-P 169.5. CTX 29.4 (1st) 3.5 (1st) SD 3
nab-P 173.4. CTX 30.8 (2nd) 1.7 2nd)

15 Male 45 iCCA Relapsed/metastatic 2 nab-P 163.0. CTX 27.8 (1st) 0.8 (1st) SD 4
nab-P 161.3. CTX 21.9 (2nd) 1.4 (2nd)

16 Female 54 iCCA Relapsed/metastatic 2 nab-P 185.2. CTX 26.2 (1st) 1.5 (1st) SD 2.5
nab-P 191.1. CTX 27.8 (2nd) 3.4 (2nd)

17 Female 57 dCCA Relapsed/metastatic 1 nab-P 158.7. CTX 31.7 2.8 Loss of follow-up
18 Male 60 dCCA Relapsed/metastatic 2 nab-P 179.6. CTX 25.6 (1st) 1.2 (1st) SD 4

nab-P 180.7. CTX 12.9 (2nd)c 2.5 (2nd)

19 Female 56 iCCA Unresectable 1 nab-P 185.2. CTX 26.2 3.2 PD

Abbreviations: CTX, cyclophosphamide; nab-P, nab-paclitaxel; PD, progression of disease.
aOngoing response.
bCTX was canceled for a grade 3/4 decrease of platelet.
cCTX was reduced for a grade 1/2 decrease of platelet.
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was shown as median. Descriptive statistics were used to sum-
marize the data in multiplex analyses. PFS was determined by the
Kaplan–Meier method. The relationships between CAR transgene
copies and the dose of infused CART-EGFR cells, transgene
copies and the number of central memory T cells (Tcm) in
infused CART-EGFR cell products, as well as transgene copies
and lymphocyte counts were analyzed by linear regression
models. The significance of difference between groups was
determined by using a t test. A P value less than 0.05 was
considered statistically significant.

Results
Patient characteristics

Nineteen eligible patients received the CART-EGFR cell treat-
ment (Supplementary Fig. S1), and the clinical characteristics of
these 19 patients are listed in Table 1. Their median age was 57
years (range, 39–70 years), and 53% were males. The 19 patients
included 14 with cholangiocarcinoma and 5 with GBCA. The
EGFR expression was determined by IHC and shown in Supple-
mentary Table S1. The disease status of the 19 patients was
unresectable or relapsed/metastatic BTC before the administra-
tion of this regimen (6 had unresectable BTCs and 13 had
relapsed/metastatic BTCs).

Generation and characteristics of CART-EGFR cells
The CART-EGFR cells were successfully generated for

all patients. After a 10-day culture period, CART-EGFR cell
products were harvested for infusion. Of the infused cells, a
mean of 96.5% were CD3þ T cells, with a mean CD4:CD8
percentage of 30.1:68.2 (Supplementary Fig. S2A). Further-
more, a mean of 29.1% of infused cells were Tcm
(CD3þCD45ROþCD62LþCCR7þ), and representative data are
shown in Supplementary Fig. S2B. In addition, 8.6% (mean
range, 6.3%–11.2%) of the infused cells were CAR-EGFR
positive (Supplementary Fig. S2C). In a CCK-8 detection
assay, CART-EGFR cells could significantly lyse EGFR-positive
tumor cells (A549 and MCF7), whereas T cells with no

transduction or mock transduction could not (P < 0.05;
Supplementary Fig. S2D).

Administration of CART-EGFR cells
Nineteen patients received the CART-EGFR cell treatment

within 6 months (Supplementary Fig. S1). Patients received a
total of 32 cycles of this regimen, including 7 patients who
received two cycles and 3 who received three cycles. After condi-
tioning chemotherapy, patients received 2.65 � 106/kg (median
range, 0.8–4.1 � 106/kg) CART-EGFR cells (Table 1).

Toxicities
The adverse events of the 19 patients who received the CART-

EGFR cell treatment were summarized and categorized according
to CTCAE v4.0 (Table 2). All the toxicities could be reversed, and
no treatment-related deaths occurred in this study. Occurrences of
grade �3 lymphopenia (10 of 19) were observed because of
lymphodepletion resulting from prior conditioning chemother-
apy, and most patients recovered to the normal level within
the first week from the cell infusion (Supplementary Fig. S3A).
In addition, grade�3 thrombocytopenia occurred in 2 of 19
patients, and this was thought to be related to conditioning
chemotherapy. Anemia influenced by conditioning chemothera-
py was also observed in some patients. The CART-EGFR cell
infusion was tolerated, with grade �3 acute fever/chill occurring
in 3 of 19 patients. It is important to note that grade 1/2 oral
mucositis, oral ulcer, gastrointestinal hemorrhage, desquama-
tion, and pruritus occurred in several patients after the cell
infusion. In addition, patient 4 developed acute respiratory dis-
tress syndrome during the cell-infusion period. The subsequent
CT scan showed that acute pulmonary edema occurred in both
lungs, and serummeasurements indicated a rapid elevation of IL6
(1,712 pg/mL) and C-reactive protein (CRP; 32.1 mg/dL) com-
pared with baseline. Tocilizumab was administered immediately,
leading to the recovery of thepatientwith acute pulmonary edema
after 25 days (Fig. 2A and B). Concentrations of all the patients'
serum cytokines including IL2, IL6, IL8, and TNFa as well as CRP

Table 2. Adverse events related to CART-EGFR cell therapy

Conditioning Infusion Follow-up
Grade 1/2 Grade 3/4 Grade 1/2 Grade 3/4 Grade 1/2 Grade 3/4

Adverse events N (%) N (%) N (%) N (%) N (%) N (%

Mucosal/cutaneous
Oral mucositis 2 (10.5)
Oral ulcer 1 (5.3) 5 (26.3)
Gastrointestinal hemorrhage 1 (5.3)
Desquamation 5 (26.3)
Pruritus 2 (10.5)

Hematologic
Anemia 8 (42.1) 16 (84.2) 2 (10.5)
Lymphopenia 7 (36.8) 10 (52.6) 2 (10.5) 16 (84.2) 1 (5.3)
Thrombocytopenia 6 (31.6) 2 (10.5) 5 (26.3) 1 (5.3)

Others
Acute fever/chill 6 (31.6) 16 (84.2) 3 (15.8)
Delayed fever/chill 7 (36.9)
Fatigue 15 (78.9) 16 (84.2) 16 (84.2)
Ascites/pleural effusion 4 (21.1)
Acute pulmonary edema 1 (5.3)
Diarrhea 2 (10.5) 1 (5.3)
Nausea/vomiting 13 (68.4) 3 (15.8)
Myalgia/arthralgia 8 (42.1) 2 (10.5)
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were determined at serial timepoints before and after CART-EGFR
cell infusion. Levels of IL2 and CRP significantly increased after
CART-EGFR cell infusion (P < 0.05) and recovered to baseline
within the first week from the cell infusion (Fig. 2C and D,
Supplementary Fig. S4, and Supplementary Table S2).

Clinical response
Two of the 19 enrolled patients lost follow-up after the

first cycle of CART-EGFR cell treatment. Of the 17 evaluable
patients, 1 achieved CR for 22 months and 10 had SD for
2.5 months to 15 months from the first cycle of treatment
(Fig. 3A and B), and the detailed data are listed in Table 1.
The clinical response assessment of the 17 evaluable
patients was observed for at least 1 month. The median
PFS was 4 months (range, 2.5–22 months; Fig. 3C), and 1
patient continued to have a response at the time of writing.
The CT and PET/CT scans showed that patient 1, who had
advanced unresectable dCCA with retroperitoneal lymph
node metastasis, achieved a CR at 3 months after receiving
this treatment, including the disappearance of the abnor-

mal intense metabolic primary tumor lesion and metastatic
retroperitoneal lymph node (Fig. 3D; Supplementary Fig. S5).
The PFS of this patient lasted for more than 22 months and is
ongoing at the time of writing (Fig. 3B).

Relationship between in vivo persistence of CART-EGFR cells
and clinical response

The persistence of CART-EGFR cells was assessed using
quantitative real-time PCR (qRT-PCR) to detect the CAR gene
copy number in patients' peripheral blood (Fig. 4A; Supple-
mentary Table S2). There was a rapid increase of CAR gene
copies after CART-EGFR cell infusion. The copy numbers
gradually declined close to baseline within 1 month, but a
low-level signal could be detected 21 months after treatment
in patient 1, who had only received one cycle of treatment.
Linear regression analysis indicated no significant correlation
between gene copies after CART-EGFR cell infusion and the
dose of infused CART-EGFR cells (Supplementary Fig. S6A),
and there were no significant differences between the dose of
infused CART-EGFR cells in patients who achieved different
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clinical responses (Supplementary Fig. S6B). Gene copies at
day 29 after CART-EGFR cell infusion in patients who achiev-
ed CR/SD were statistically significantly higher than in pro-
gression of disease (PD) patients (P ¼ 0.0465; Fig. 4B; Sup-
plementary Fig. S6C).

The persistence of CART cells in patients has been found to be
highly concordant with the percentage of Tcm in infused CART
cell products (28). Herein, we analyzed the correlation between
patients' CAR transgene copies and the number of Tcm in CART-
EGFR cell products, and we found that there was a significant
correlation between them (P ¼ 0.0022; Fig. 4C). In addition, the
number of Tcm in the infused cell products in patients who
achieved CR/SD was significantly higher than that in PD patients
by using the t test analysis (P ¼ 0.0464; Fig. 4D).

Discussion
In this phase I study,we established the safety and efficacy of the

CART-EGFR cell therapy in 17 evaluable patients with EGFR-
positive advanced unresectable, relapsed/metastatic BTCs. One
patient achieved CR, and 10 had SD. The median PFS was 4
months from the first cycle of treatment. Statistical analysis

indicated that the enrichment of Tcm in CART-EGFR cells could
improve the clinical outcome.

On-target/off-tumor toxicity is still a major concern regarding
CART cell therapy for solid tumor treatment; this toxicity is caused
when CART cells injure healthy cells. In the original study on
NSCLC treated with CART-EGFR cells, tolerable and controlled
EGFR-related targeting toxicities indicated that therapy with anti-
EGFR CAR was an appropriate treatment option (24). Overall,
infusion of CART-EGFR cells up to 4.1 � 106/kg was tolerated in
this study (Table 2). Hematologic adverse events including ane-
mia, lymphopenia, and thrombocytopenia had a high correlation
with prior conditioning chemotherapy. Themost likely on-target/
off-tumor adverse events related to CART-EGFR cells were muco-
sal/cutaneous toxicities including oral mucositis, oral ulcer, gas-
trointestinal hemorrhage, desquamation, and pruritus. In addi-
tion, patient 4 developed acute respiratory distress syndrome
during the cell-infusion period anddisplayed an acute pulmonary
edemaaccompanying a rapid elevationof serum IL6andCRP. The
patient's serum IL6 and CRP level and acute pulmonary edema
recovered after tocilizumab (an anti-IL6 antibody) administra-
tion, which has been reported to control cytokine release syn-
drome to an acceptable degree (29). The data indicated the
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appearance of on-target/off-tumor toxicity and indirectly con-
firmed effective antitumor activity of the CART-EGFR cells
because EGFR is expressed on both human epithelial cancers and
most epithelial cells (24, 30). To avoid on-target/off-tumor toxi-
cities, more research is needed to establish factors such as cell
dose; an appropriate target; and the optimization of CAR that
includes the incorporation of suicide genes, cytotoxic T lympho-
cyte antigen-4, or programmed death-1 (PD-1)–based inhibitory
CAR and the tandem CAR (31–34). In future studies, these safety
strategies will enable more extensive use of CART cells in solid
tumor treatment.

Prior conditioning chemotherapy has been reported to
improve the antitumor effect of CART cells by several potential
mechanisms, such as depleting leukocytes, improving the suscep-
tibility of tumor cells to T-cell lysis, increasing the number of
CART cells, and debulking the tumor (19, 35, 36). Recent studies
showed that cyclophosphamide could be a conditioning agent in
the treatment of liquid tumors by causing significant lymphope-
nia (19, 37, 38). In contrast to hematologic malignancies, solid
tumors have a more complex tumor microenvironment and
heterogeneity. However, we believe that proper conditioning
could improve the clinical outcome of CART cell therapy in solid
tumor treatment. The optimal regimen and dose of conditioning
chemotherapy are not well-known in solid tumor treatment
with CART cells. Nab-paclitaxel has been reported to damage the
tumor stroma through binding SPARC, which is overexpressed on
BTCs. In this study, cyclophosphamide and nab-paclitaxel were
used as conditioning chemotherapeutic agents administered

prior to CART-EGFR cell infusion. After conditioning treat-
ment, 17 patients experienced lymphopenia (Table 2), possibly
providing an appropriate "lymphoid space" to accommodate
CART cells and improve their expansion. The analysis of corre-
lation between lymphocyte counts and clinical response revealed
no significant difference of lymphocyte counts between the
two groups of patients who achieved CR/SD and PD (Sup-
plementary Fig. S3B). In addition, the data analysis indicated
that clinical response was correlated with the percentage of
Tcm in infused CART-EGFR cell products (Fig. 4D). Here, it is
hard to draw a conclusion that the clinical response may not be
directly correlated with lymphodepletion by cyclophosphamide
due to the complex tumor microenvironment in patients with
solid tumors. Our original study on NSCLC indicated that the
administration of conditioning chemotherapeutic agents to dam-
age the tumor stroma could increase clinical benefit (24). How-
ever, because only 1 patient achieved a CR after receiving the
treatment in this study, we speculate that this chemotherapy
regimen is possibly insufficient to damage the tumor stroma.
Unfortunately, this concept could not be tested by immunohis-
tochemical techniques because there was no biopsy tissue of the
tumor mass from these patients. Therefore, the optimal regimen
and dose of prior conditioning chemotherapy in solid tumor
treatment remains to be explored further to enhance antitumor
activity of CART cells.

Three special patients (SP) with advanced BTCs received com-
passionate therapy with only CART-EGFR cell infusion, and the
details are summarized in Supplementary Special Presentations.
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After cell infusion, SP1achieved aPR, SP2achieved aCR, andSP3
had SD. The persistence of CART-EGFR cells in the SPs is shown
in Supplementary Fig. S7B and seemed to be higher than or
similar to that of the 17 enrolled patients who received the
CART-EGFR cell therapy with conditioning chemotherapy. The
mechanism to explain the clinical outcome and the in vivo
persistence of CART-EGFR cells probably included the correlation
noted above, which showed that clinical response and CART-
EGFR cell persistence were highly associated with Tcm number in
infused CART-EGFR cells, not with lymphodepletion. The Tcm
number in the first cycle of infusedCART-EGFR cells administered
to the SPs was higher than the mean of this number in patients
who had PD after receiving the CART-EGFR cell therapy with
conditioning chemotherapy (Supplementary Fig. S7A). Some
particular patient featureswere of note: SP 1 received radiotherapy
1 month before CART-EGFR cell infusion, which could damage
tumor stroma and enhance the antitumor activity of CART cells
(39, 40); for SP 2, there was no need to damage the tumor stroma
because this patient showed onlymalignant pleural effusion; and
SP 3 had multiple nonmeasurable lesions, which suggested the
possibility of having thin tumor stroma (41). These may be the
major factors that led the patients to have better or similar clinical
outcomes compared with the 17 enrolled patients. In addition,
the release of tumor-associated antigen caused by radiotherapy
may lead to the rapid expansion of CART cells in response to
released antigen in the peripheral circulation (39, 40, 42). Taking
all these points into account, we emphasize the importance of
damaging tumor stroma or selecting thin tumor stroma for
improving the antitumor efficacy of CART cells.

Recent studies have indicated that the persistence of CART cells
is associated with improved outcome, which could be correlated
with the percentage of Tcm in CART cells (28, 43). Our current
data show the correlation of CART-EGFR cell persistence with the
number of Tcm in CART-EGFR cell products. Importantly, our
data suggest that the enrichment of this population in CART-
EGFR cell products is associated with improved clinical outcome.
Interestingly, less differentiated T-cell subsets, such as T-memory
stem cells that expressed CD45RA, CD62L, and CCR7, have been
reported to show higher proliferation, survival, and antitumor
activity in mouse xenograft models than even Tcm (44, 45). To
modify and optimize the CART cell culture procedure to enrich T-
memory stem cells or other less differentiated T cells probably
could produce better clinical outcome and would have a crucial
impact on the future of CART cell therapy in solid tumors;
however, the clinical application of CART cells that contain
enrichment of these less differentiated T-cell subsets or Tcm in
patients with cancer is still a matter that needs investigation and
remains to be confirmed.

This andour original study demonstrated that CART-EGFR cells
could mediate potent in vitro cytolysis; however, the antitumor
efficacy of these cells exerted in patients is less encouraging. The
reasons for that are multiple, in which T-cell exhaustion is
reported to be a significant barrier that limits the antitumor

responses of engineered T cells in the setting of chronic antigen
exposure, which could upregulate the expression of inhibitory
receptors and their ligands in tumor cells such as programmed
death-1 ligands (PD-L1; refs. 46, 47). Therefore, refueling the
exhaustedCART cells via thePD-1/PD-L1pathwayusing anti–PD-
1 therapy is considered to be an important approach with poten-
tial benefits (48). Several studies have indicated that PD-1/PD-L1
blockade could improve the antitumor efficacy of CART cells in
solid tumors (49, 50). In one case report, a patient with refractory
diffuse large B-cell lymphoma and progressive lymphoma after
therapy with CART-CD19 cells was administered a PD-1–block-
ing antibody and had a significant antitumor response and an
expansion of CART cells (51). However, the aggravation of on-
target/off-tumor toxicity may be cocurrent with the enhanced
antitumor potency of CART cells by the combination with
immune checkpoint blockade.

In conclusion, we established the safety and efficacy of treat-
ing patients with advanced unresectable, relapsed/metastatic
BTCs with CART-EGFR cell therapy. Based on our findings,
further clinical studies for optimizing conditioning chemother-
apy are needed to enhance the efficacy of CART cells in solid
tumors. In addition, although many obstacles have limited the
application of CART therapy in the fight against solid tumors
and more work is needed to increase the clinical response in
patients with solid tumors, the overall future of cancer immu-
notherapy is very encouraging.
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