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Abstract

Background: Preclinical studies demonstrate synergism between cancer immunotherapy and local radiation,

enhancing anti-tumor effects and promoting immune responses. BI1361849 (CV9202) is an active cancer

immunotherapeutic comprising protamine-formulated, sequence-optimized mRNA encoding six non-small cell lung

cancer (NSCLC)-associated antigens (NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1), intended to induce

targeted immune responses.

Methods: We describe a phase Ib clinical trial evaluating treatment with BI1361849 combined with local radiation

in 26 stage IV NSCLC patients with partial response (PR)/stable disease (SD) after standard first-line therapy. Patients

were stratified into three strata (1: non-squamous NSCLC, no epidermal growth factor receptor (EGFR) mutation,

PR/SD after ≥4 cycles of platinum- and pemetrexed-based treatment [n = 16]; 2: squamous NSCLC, PR/SD after ≥4

cycles of platinum-based and non-platinum compound treatment [n = 8]; 3: non-squamous NSCLC, EGFR mutation,

PR/SD after ≥3 and ≤ 6 months EGFR-tyrosine kinase inhibitor (TKI) treatment [n = 2]). Patients received intradermal

BI1361849, local radiation (4 × 5 Gy), then BI1361849 until disease progression. Strata 1 and 3 also had maintenance

pemetrexed or continued EGFR-TKI therapy, respectively. The primary endpoint was evaluation of safety; secondary

objectives included assessment of clinical efficacy (every 6 weeks during treatment) and of immune response

(on Days 1 [baseline], 19 and 61).
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Results: Study treatment was well tolerated; injection site reactions and flu-like symptoms were the most common

BI1361849-related adverse events. Three patients had grade 3 BI1361849-related adverse events (fatigue, pyrexia);

there was one grade 3 radiation-related event (dysphagia). In comparison to baseline, immunomonitoring revealed

increased BI1361849 antigen-specific immune responses in the majority of patients (84%), whereby antigen-specific

antibody levels were increased in 80% and functional T cells in 40% of patients, and involvement of multiple

antigen specificities was evident in 52% of patients. One patient had a partial response in combination with

pemetrexed maintenance, and 46.2% achieved stable disease as best overall response. Best overall response was SD

in 57.7% for target lesions.

Conclusion: The results support further investigation of mRNA-based immunotherapy in NSCLC including

combinations with immune checkpoint inhibitors.

Trial registration: ClinicalTrials.gov identifier: NCT01915524.

Keywords: Clinical trial, Hypofractionated radiotherapy, Immunomonitoring, mRNA active cancer immunotherapy,

Non-small cell lung cancer, BI1361849, CV9202

Background
Active immunotherapy targeting selected tumor associ-

ated antigens (TAAs) aims to improve outcomes by pro-

ducing antigen-specific cellular and/or humoral immune

responses [1], with the aim of controlling tumor growth

and prolonging survival. However, several phase III trials

using this approach in patients with early-, as well as

late-stage non-small cell lung cancer (NSCLC) did not

reach their primary endpoint [2, 3]. To date, these immu-

notherapeutic approaches have mostly targeted single an-

tigens, whereby immune escape of tumor cell populations

not expressing a single target antigen may have posed a

stumbling block. Insufficient immunogenicity of cancer

vaccine formulations, not able to break tolerance towards

tumor/self-antigens and other immune escape mecha-

nisms, such as activation of inhibitory immune check-

points [4] may have contributed to these disappointing

results. The success of checkpoint blocking antibodies in

the treatment of NSCLC offers a new way to overcome

immune escape and holds promise to increase the efficacy

of antigen-specific therapies in combination.

RNActive® is an mRNA-based vaccination approach,

which uses chemically unmodified, sequence-optimized

mRNA to encode TAAs for cancer treatment [5–8].

BI1361849 (CV9202) is an RNActive®-based cancer im-

munotherapy containing sequence-optimized mRNAs en-

coding different cancer antigens in free and complexed

form with the cationic protein protamine; this facilitates

antigen expression and activation of the immune system

through interaction with toll-like receptor TLR7, TLR8,

and intracellular RNA sensors, essentially conferring

self-adjuvanting activity, and subsequently inducing an

adaptive cellular and humoral immune response [9].

A previous phase I/IIa study has shown that treatment

with RNActive®-derived CV9201 cancer immunotherapy

in patients with NSCLC was safe and well tolerated, and

immune responses against all five encoded antigens were

reported [10]. BI1361849 includes the five antigens

encoded by CV9201 (cancer/testis antigen 1B [New York

esophageal squamous cell carcinoma, NY-ESO-1], melan-

oma antigen family C1 [MAGE-C1] and C2 [MAGE-C2],

baculoviral inhibitor of apoptosis repeat-containing 5 [sur-

vivin], and trophoblast glycoprotein [5T4]), together with

the mucin-1 (MUC-1) antigen [7]. MUC-1 is frequently

overexpressed in NSCLC, and triggering immune re-

sponses to this antigen in other clinical trials in this indica-

tion has not raised any safety concerns [2, 11]. NY-ESO-1,

MAGE-C1 and MAGE-C2 are highly tumor-specific anti-

gens expressed in up to 30% of NSCLC samples, while sur-

vivin, 5T4 and MUC-1 are all detected at low levels in

healthy tissues but expressed in more than 90% of NSCLC

tumors [7]. Based on the frequency of expression of indi-

vidual antigens in NSCLC, it is estimated that 99.6% of the

patient population will express at least one of the antigens

encoded by BI1361849 [12, 13].

Radiotherapy can induce immunogenic cell death and

stimulate tumor-specific immune responses, resulting in

regression of non-irradiated lesions [14]. However, such

abscopal responses observed outside the field of radiation

remain relatively rare in the clinic after radiotherapy alone.

Nevertheless, the ability of radiotherapy to induce im-

munogenic cancer cell death and to promote recruitment

and function of T cells within the immunosuppressive

tumor microenvironment, provides a rationale for combin-

ing radiotherapy with immunotherapy [15, 16]. Preclinical

data provide evidence for synergy between radiotherapy

and active immunotherapy [17–21], and there is also evi-

dence of synergy in the clinical setting, including in meta-

static NSCLC [22–26]. While active immunotherapy may

support an abscopal effect of radiation, preclinical data

suggest that the tumor response varies with the size of

radiotherapy dose per fraction [27].

This article describes results from a phase Ib clinical

trial that aimed to assess the safety and tolerability of
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BI1361849 mRNA-based active cancer immunotherapy

combined with fractionated local radiation and different

standard of care maintenance treatments in patients

with stage IV NSCLC.

Methods

Details of the study design, which have been published

previously [7], are summarized below.

Study design

This was an exploratory, open-label, multicenter, phase

Ib study of mRNA-based active cancer immunotherapy

BI1361849 (CV9202) and local radiation as consolidation

and maintenance treatment in patients with stage IV

NSCLC and a response or stable disease (SD) after

first-line chemotherapy or therapy with the epidermal

growth factor receptor (EGFR) tyrosine kinase inhibitors

(TKI) erlotinib or gefitinib (ClinicalTrials.gov identifier:

NCT01915524).

The study was performed according to Good Clinical

Practice and in line with the Declaration of Helsinki and

local regulations.

Patients

Eligible patients were ≥ 18 years old with histologically or

cytologically confirmed stage IV NSCLC and, for those with

non-squamous cell histology, a confirmed EGFR mutation

status. All patients should have achieved a partial response

(PR) or SD according to Response Evaluation Criteria for

Solid Tumors (RECIST) version 1.1 after receiving

first-line therapy. Patients had to have at least one tumor

lesion eligible for radiation, and at least one additional

measurable tumor lesion according to RECIST version 1.1

(see further details in Additional file 1: Supplementary

methods). Patients also had Eastern Cooperative Oncology

Group (ECOG) performance status 0 to 1, and adequate

organ function.

Exclusion criteria (considered in more detail in

Sebastian et al. 2014 [7]) included previous active im-

munotherapy for NSCLC (including immunotherapy

with anti-CTLA4 antibodies) and an estimated life ex-

pectancy of ≤3 months.

Patients were enrolled into one of three study arms

(stratum 1, 2, or 3) based on their molecular and histo-

logical subtype of NSCLC (Fig. 1a and b). Stratum 1 in-

volved patients with non-squamous NSCLC without

activating EGFR mutations, who had PR or SD after at

least four cycles of platinum- and pemetrexed-based treat-

ment, and had an indication for maintenance therapy with

pemetrexed. Stratum 2 contained patients with squamous

NSCLC, who had PR or SD after at least four cycles of

platinum-based and non-platinum compound treatment.

Stratum 3 comprised patients with non-squamous NSCLC

and an activating EGFR mutation, who had PR or SD after

at least 3, and up to 6months of EGFR-TKI treatment.

Treatment

Patients started screening 2 weeks after their last cycle of

first-line chemotherapy (in strata 1 and 2) or within 6

months of starting EGFR-TKI therapy (stratum 3).

BI1361849 was administered on study days 1 and 8,

followed by radiation therapy on days 9–12 (Fig. 1a). Pa-

tients in strata 1 and 3 subsequently received three fur-

ther treatments with BI1361849, on days 15, 36, and 57,

whereas those in stratum 2 received four, on days 15, 29,

43, and 57, after which patients in all three strata were

treated with BI1361849 at 3-week intervals for the first

6 months, then every 6 weeks thereafter. Treatment with

BI1361849 was continued until disease progression re-

quiring the start of systemic second-line treatment or

patients experiencing unacceptable toxicity.

Preclinical data support a vaccination schedule compris-

ing frequent and continued vaccination with an interval of

1 week in the priming phase in combination with a frag-

mented radiation regimen. The synergistic anti-tumor ef-

fect of immunotherapies with radiotherapy has been

shown in different preclinical models [17, 18, 20, 21, 28].

Importantly, complete primary tumor regression as well

as abscopal effects were only observed in a mouse breast

cancer model when radiation was given as a fractionated

regimen together with anti-CTLA4 but not when the anti-

body was given either alone or in combination with

single-dose radiotherapy [18].

The vaccination regimen employed in this study is in

line with a vaccination regimen used in a trial with

CV9201, a precursor mRNA-based lung cancer vaccine

[10]. Since expected progression free survival (PFS) was

shorter in patients with squamous cell carcinoma

(stratum 2) and no concomitant maintenance treatment

was administered, a slightly more intense vaccination

schedule was applied in this stratum. This more intense

schedule is also supported by preclinical data, suggesting

that more frequent administrations may enhance the gen-

eration of antigen-specific immune responses (unpublished

observations). Pre-clinical studies, however, only provide

an indication of vaccination efficacy and clinical studies are

required to determine the most efficacious treatment regi-

men for patients.

The recommended dose of BI1361849 was based on

the recommended dose per individual mRNA as deter-

mined in a phase I/IIa trial of CV9201, a precursor

mRNA vaccine (NCT00923312, [10]). At each

BI1361849 administration time point, patients received

320 μg mRNA per antigen resulting in a total dose of

1920 μg mRNA. The six components (one per encoded

antigen) were administered separately, with patients re-

ceiving 2 × 200 μL intradermal injections per component.
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Fig. 1 a Study design. b Patient disposition
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The 12 injections were distributed across four lymph

node targeting areas, i.e. three injections in each of the

right and left upper inner arm, as well as in the right

and left inner thigh. In addition, patients in stratum 1

received pemetrexed maintenance therapy every 21 days,

while erlotinib/gefitinib continuation was available for

those in stratum 3.

Radiation therapy was delivered to a dose of 20Gy over

four consecutive days with a daily fraction of 5 Gy. The

administration of 4 × 5 Gy represents a well-established

palliative radiation regimen that can be applied to pul-

monary lesions, bone and soft tissue lesions with low tox-

icity [29]. Radiation target definitions are described in

Additional file 1.

Study endpoints

The primary endpoint was the number of patients who

experienced BI1361849- and/or radiation-related adverse

events (AEs) of ≥ grade 3 according to National Cancer In-

stitute–Common Terminology Criteria for Adverse Events

(NCI-CTCAE), version 4.0. The pre-defined margin for ac-

ceptable safety and tolerability for this endpoint was ≤30%

of patients. Secondary safety endpoint evaluation included

consideration of other treatment-emergent AEs (TEAEs),

as well as clinical and laboratory assessments.

Other secondary endpoints involved assessment of im-

mune responses (as defined in the section below) —

consideration of cellular and humoral immune responses to

the antigens encoded by the six BI1361849 mRNA compo-

nents, as well as humoral immune responses to a panel of

antigens not covered by the immunotherapeutic (for assess-

ment of ‘broadening of the humoral immune response’).

Secondary efficacy endpoints were tumor response ac-

cording to RECIST version 1.1 [30], time to start of, and

response to, second-line cancer treatment, PFS, and

overall survival (OS) from time of first BI1361849

administration.

Assessments and immunological assays

Safety assessments included monitoring of AEs and

hematological and biochemical tests. They are described

in detail together with immune response analysis and

efficacy assessment in Additional file 1. Based on the

prediction that 99.6% of the patient population will ex-

press at least one of the antigens encoded by BI1361849,

individual patient tumors were not assessed for anti-

gen expression.

Intracellular cytokine staining (ICS) and flow cytometry

Antigen-specific T cells were assessed by ICS measuring

interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α)

and interleukin-2 (IL-2) production, and CD107a trans-

location by CD4+ and CD8+ T cells. Peripheral blood

mononuclear cells (PBMCs) were thawed and stimulated

ex vivo with overlapping 15-mer peptide libraries each

covering the full open reading frame of the six

BI1361849-encoded antigens (JPT Peptide Technologies

GmbH, Germany) including literature-selected short

class-I peptides (Additional file 2: Table S1). Short-term

cell culture was performed for 6 h in the presence of

anti-CD28 (CD28.2), anti-CD49d (L25), phycoerythrin

(PE) anti-CD107a (H4A3) antibodies (BD Biosciences,

Germany) and GolgiPlug/GolgiStop (BD Biosciences).

Cells stimulated with culture medium X-Vivo 15 (Lonza,

Switzerland) and dimethyl sulfoxide (Sigma-Aldrich

Chemie GmbH, Germany) served as background controls.

In addition, each experimental run included a positive

control consisting of PBMCs stimulated with a peptide

mix including epitopes from cytomegalovirus, Epstein-Barr

virus and flu virus (CEF; JPT Peptide Technologies GmbH,

Germany) and Staphylococcus enterotoxin B (SEB)

(Sigma-Aldrich Chemie GmbH, Germany). Stimulated

PBMCs were incubated with Fc-receptor block (Miltenyi

Biotec GmbH, Germany) and labeled with LIVE/DEAD®

Fixable Aqua Dead Cell Stain Kit (Thermo Fisher

Scientific, USA) and Brilliant Violet650 anti-CD8 (RPA-T8),

APC-H7 anti-CD3 (SK7), PE-Cy7 anti-CD4 (MP4-25D2),

AlexaFluor700 anti-CD14 (M5E2), or AlexaFluor700 anti-

CD19 (HIB19) (BD Biosciences). Cells were fixed and

permeabilized using Cytofix/Cytoperm (BD Biosciences)

and ICS was performed for the activation marker CD69

(Brilliant Violet605 anti-CD69, clone FN50, BioLegend,

Germany) and cytokines using fluorescein isothiocyanate

anti-IFN-γ (B27) (BD Biosciences), PerCP-Cy5.5 anti-TNF-α

(Mab11), or Brilliant Violet 421 anti-IL-2 (MQ1-17H12)

(BioLegend) antibodies.

Immune response analysis included determination of

cellular immune responses ex vivo by enzyme-linked

immunosorbent spot (ELISpot) assay and intracellular

cytokine staining (ICS). Antigen-specific antibodies were

assessed via enzyme-linked immunosorbent assay (ELISA).

Seromic profiling, using the Serametrix NSCLC-specific

antigen microarray, was performed to investigate broaden-

ing of humoral immunity. Efficacy was assessed by radio-

logical tumor assessments.

Criteria to identify cellular and humoral immune re-

sponses included an at least two-fold increase of either

functional T cells or antibody levels over background in

addition to empirically determined minimum thresholds

(e.g. percentages of functional T cells > 0.1% or at least

10 events in the functional gate). Depending on the

specific assay, in the absence of official guidance or rec-

ommendations, further empirical rules for definitions

were applied, in addition to the aforementioned in-

creases, as described in Additional file 1. In addition, the

frequencies of patients were determined with cellular or

humoral immune response magnitudes at least two-fold

higher compared to baseline (day 1).
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Statistical analysis

A formal sample size calculation was not applicable — a

planned sample size of 36 patients was chosen, based on

previous observations with predecessor vaccines of

BI1361849, whereby a minimum of eight patients per

stratum was considered necessary to evaluate the fre-

quency of immune responses.

The safety and efficacy evaluations were performed on

all patients who received at least one dose of study

medication (safety analysis set [SAF]).

Assessments of immune responses were performed on

patients in the SAF who received at least three administra-

tions of BI1361849 and 4 × 5Gy radiotherapy according to

the protocol, had at least one post-vaccine immune sample

collected, and did not receive relevant immunosuppressive

concomitant medication (i.e. evaluable population). The

evaluable population included 25 patients overall.

SAS, GraphPad Prism 6 and Microsoft Excel 2010

were used for statistical data analysis.

Survival data was estimated from the time of treat-

ment initiation using Kaplan-Meier methodology.

Results
Patient disposition and characteristics

The study was conducted at 13 centers in Germany,

Austria and Switzerland, and enrolled 32 patients; six

patients failed screening (see Additional file 3: Table S2)

and 26 were assigned to the different strata (Fig. 1b).

The first patient was recruited in April 2013; the last pa-

tient completed the study in July 2016.

The recruitment goal of eight patients to stratum 3

could not be achieved within a reasonable time frame

and recruitment was stopped prematurely, with only two

patients enrolled in this stratum. This was because only

few patients had eligible lesions for radiation after initial

therapy with EGFR-TKIs (erlotinib and gefitinib).

Patients’ baseline characteristics, reflecting those of a

stage IV NSCLC population, are shown in Table 1.

Table 1 Baseline characteristics of the patient population

Characteristic Stratum 1
(n = 16)

Stratum 2
(n = 8)

Stratum 3
(n = 2)

Overall
(n = 26)

Gender, n (%)

Male 5 (31.3) 7 (87.5) 1 (50.0) 13 (50.0)

Female 11 (68.8) 1 (12.5) 1 (50.0) 13 (50.0)

Age, years

Median (range) 61.0 (40–74) 70.0 (58–83) 66.0 (59–73) 63.0 (40–83)

ECOG, n (%)

0 5 (31.3) 0 2 (100.0) 7 (26.9)

1 11 (68.8) 8 (100.0) 0 19 (73.1)

NSCLC duration at baseline, days

Median (range) 131.0 (99–482) 117.0 (92–762) 167.0 (141–193) 123.5 (92–762)

Previous first-line chemotherapy

Yes, n (%) 16 (100.0) 8 (100.0) 0 24 (92.3)

No, n (%) 0 0 2 (100.0) 2 (7.7)

Treatment response,a n (%)

CR 0 0 – 0

PR 9 (56.3) 3 (37.5) – 12 (46.2)

SD 7 (43.8) 5 (62.5) – 12 (46.2)

PD 0 0 – 0

NE 0 0 – 0

Previous EGFR-TKI therapy

Yes, n (%) 0 0 2 (100.0) 2 (7.7)

No, n (%) 16 (100.0) 8 (100.0) 0 24 (92.3)

Treatment response, n (%) – – 2 (100.0)b 2 (7.7)

Abbreviations: CR complete response, ECOG Eastern Cooperative Oncology Group, EGFR-TKI epidermal growth factor receptor tyrosine kinase inhibitor, NE not

evaluable, NSCLC non-small cell lung cancer, PR partial response, SD stable disease
aWith respect to previous first-line chemotherapy for NSCLC (strata 1 and 2)
bBoth patients had partial response
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Treatment exposure and overall safety

The mean number of successful BI1361849 administra-

tions, defined as successful administration of at least 10

of the 12 injections per treatment, was 8.4 (range 2–25).

The median duration of BI1361849 treatment was 81

days (range 8–806 days). All patients received a radiation

dose of 20 Gy in four fractions of 5 Gy per protocol.

Further details of treatment exposure are given in

Additional file 4: Table S3.

For the primary study endpoint, BI1361849- and/or ra-

diation- related AEs of ≥grade 3 were reported in four

(15.4%) of the 26 patients, overall: two patients (12.5%)

in stratum 1 (one event each of dysphagia and fatigue),

one patient (12.5%) in stratum 2 (fatigue), and one pa-

tient (50.0%) in stratum 3 (pyrexia) had grade 3 events.

For strata 1 and 2, these frequencies were below the

pre-defined margin of ≤30% of patients; the small sam-

ple size of stratum 3 (n = 2) did not allow determination

of meaningful percentages in this group. Three of the

four events (fatigue [two events] and pyrexia) were

related to administration of BI1361849, while one

(dysphagia) was related to study radiation. There were no

serious TEAEs related to BI1361849 and no TEAEs lead-

ing to death. No immune-related TEAES were reported.

Table 2 provides an overview of the TEAEs. The most

frequently reported TEAEs were injection-site reactions,

transient flu-like symptoms or, for stratum 1 only, AEs

typically associated with pemetrexed therapy; no

immune-related TEAEs were reported. Common TEAEs

(occurring in ≥10% of patients overall) are summarized

in Additional file 5: Table S4.

Clinically relevant changes in autoimmunity parame-

ters were not reported.

Humoral and cellular immune assessments

According to the mechanism of action of BI1361849 as an

active cancer immunotherapy, pre-existing and post-vaccine

immune responses were measured ex vivo without prior

expansion by in vitro stimulation. Representative IFN-γ

ELISpot results for a patient reacting to the antigen 5T4 are

shown in Additional file 6: Figure S1a). Antigen-specific

CD4+ and CD8+ T cells were analyzed by ICS (Representa-

tive CD8+ analysis in Additional file 6: Figure S1b, c).

Twenty-five patients were evaluable for immunomoni-

toring, of whom 84.0% (21/25) fulfilled the criteria of

exhibiting an at least two-fold increase in immune re-

sponse magnitude compared to baseline against one or

more of the BI1361849 antigens (Fig. 2a). In detail, a

total of 10/25 (40%) evaluable patients fulfilled the

pre-specified criteria of at least two-fold increased mag-

nitudes of functional CD4+ and/or CD8+ T cells deter-

mined by ICS or ELISpot and 20/25 (80%) met the

Table 2 Overview of treatment-emergent adverse events (safety analysis set)

Patients with at least one event, n (%) Stratum 1
(n = 16)

Stratum 2
(n = 8)

Stratum 3
(n = 2)

Overall
(n = 26)

TEAE 16 (100.0) 8 (100.0) 2 (100.0) 26 (100.0)

BI1361849- and/or radiation-related AE 16 (100.0) 8 (100.0) 2 (100.0) 26 (100.0)

TEAE related to BI1361849 15 (93.8) 8 (100.0) 2 (100.0) 25 (96.2)

TEAE related to radiation 4 (25.0) 1 (12.5) 0 (50.0) 5 (19.2)

Serious TEAE 7 (43.8) 3 (37.5) 1 (50.0) 11 (42.3)

Serious BI1361849- and/or radiation-related AE 1 (6.3) 0 0 1 (3.8)

Related to BI1361849 0 0 0 0

Related to radiation 1 (6.3) 0 0 1 (3.8)

TEAE toxicity grade≥ 3a 9 (56.3) 4 (50.0) 2 (100.0) 15 (57.7)

BI1361849- and/or radiation-related AE toxicity grade ≥ 3a 2 (12.5) 1 (12.5) 1 (50.0) 4 (15.4)

Related to BI1361849 1 (6.3) 1 (12.5) 1 (50.0) 3 (11.5)

Related related to radiation 1 (6.3) 0 0 1 (3.8)

Serious BI1361849- and/or radiation-related AE toxicity grade ≥ 3a 1 (6.3) 0 0 1 (3.8)

Related to BI1361849 0 0 0 0

Related to radiation 1 (6.3) 0 0 1 (3.8)

TEAE leading to discontinuation 4 (25.0) 0 0 4 (15.4)

TEAE toxicity grade≥ 3 leading to discontinuation 2 (12.5) 0 0 2 (7.7)

TEAE leading to interruption/dose modification 4 (25.0) 0 0 4 (15.4)

TEAE leading to death 0 0 0 0

Abbreviations: AE adverse event, TEAE treatment-emergent adverse event
aNational Cancer Institute–Common Terminology Criteria for Adverse Events (NCI-CTCAE) toxicity grading
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criteria of a two-fold increased antigen-specific IgM

and/or IgG level compared to baseline on at least one

post-vaccine time point (Fig. 2a). Patients with at least

two-fold increased immune response magnitudes have

been detected in all three strata (see Additional file 7:

Table S5). Immune responses directed against each of

the six antigens encoded by BI1361849 were detected

(Fig. 2b), while 52% of patients (13/25) reacted against

multiple antigens (Fig. 2c).

We defined functionality of T cells as their ability to

induce antigen-specific immune responses if the magni-

tude of their response exceeded the background control

(PBMCs that have received only cell-culture medium) by

at least two-fold. Additional exploratory post-hoc ana-

lysis of such immune responses showed that the fre-

quencies of functional CD4+ and CD8+ T cells following

BI1361849 immunotherapy combined with radiotherapy

increased over time (Fig. 3a). Detectable increases of

CD4+ and CD8+ T cells to BI1361849 antigens post-vac-

cine were mostly driven by CD4+ T cells (Fig. 3a,

left-hand panel). The magnitude of the responses to

individual antigens detected post-vaccination varied

among patients (Fig. 3b and c) with most responses

detected by ICS but not ELISpot. In one patient

a

b

c

Fig. 2 Frequencies of patients with an at least two-fold increase in antigen-specific immune responses following BI1361849 immunotherapy

combined with local radiation treatment. Values displayed above the bars indicate the percentages and actual number of patients with increase

in immune responses. a Summary graph showing frequencies of patients with antigen-specific T cells, antibodies or both exhibiting an at least

two-fold increase compared to baseline against one or more antigens encoded by BI1361849 (any post-vaccine time point). CD4 = antigen-specific

CD4+ T cells, CD8 = antigen-specific CD8+ T cells. b Frequencies of patients with an at least a two-fold increase in immune responses compared to

baseline to each of the antigens encoded by BI1361849 shown as percentage of all evaluable patients; any post-vaccine time point. c Frequencies of

patients with antigen-specific T cells, antibodies or both showing at least a two-fold increase compared to baseline against multiple antigens encoded

by BI1361849 shown as percentage of all evaluable patients; at any post-vaccine time point
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corresponding CD4 and CD8 T cell responses against

the same antigen were observed by ICS (patient 6,

MAGE-C2). The majority of the T cell responses de-

tected by ICS were mono-functional.

We hypothesized that the combination of radiotherapy

with active tumor immunotherapeutic BI136184 can ini-

tiate an antigen cascade to broaden the anti-tumor im-

mune response [31]. To address this question, we

profiled the antibody repertoire against NSCLC antigens

using an antibody array containing 32 known NSCLC

TAAs. Broadening of the antibody repertoire against an-

tigens not covered by BI1361849 was observed in 50.0%

of all evaluable patients (12/24; any post-vaccine time

point; Additional file 8: Figure S2) and in eight of the 14

analyzable pemetrexed treated patients (57.1%) in

stratum 1. Some patients had already high numbers of

pre-existing antibodies against TAAs. In most cases,

such repertoires did not increase during treatment, but

were generally maintained.

Efficacy

Of the 26 patients in the safety set (SAF) evaluated for

efficacy, overall, 46.2% (12/26) demonstrated SD as the

best confirmed overall response (Table 3). One patient

achieved a confirmed PR with decreasing measurable

tumor size up to the last follow-up visit. This patient re-

ceived concomitant pemetrexed (stratum 1) and had

already shown a PR to the previous chemotherapy.

a

b c

Fig. 3 a Vaccine antigen-specific CD4+ and CD8+ T cells detected by ICS at baseline (n = 7 patients for panel CD4, n = 11 patients for panel CD8,

n = 16 patients for panel CD4 and/or CD8), and days 19 (n = 13 patients for panel CD4, n = 15 patients for panel CD8, n = 23 patients for panel

CD4 and/or CD8) and 61 (n = 7 patients for panel CD4, n = 7 patients for panel CD8, n = 10 patients for panel CD4 and/or CD8) following

BI1361849 immunotherapy combined with local radiation treatment. Vaccine antigen-specific T cell responses were determined and are shown as

percentages of all possible responses. The denominator for calculating the percentage was defined as the maximum of all possible at least two-fold

increases over background (unstimulated cells). Example: 4 functions (IFN-γ, TNF-α, IL-2, CD107a) * 2 T cell subsets (CD4+ or CD8+ T cells) * 6 BI1361849

antigens * 25 patients = 1200 possible responses. The numbers in the key show fold-increases over the background control. b & c Magnitude of T cell

responses as measured by b ICS or c IFN-γ ELISpot of patients with an at least two-fold increase in antigen-specific immune responses following

BI1361849 treatment. Values are shown as the percentage of positive cells gated on both CD4+ or CD8+ populations for ICS. ELISpot results are plotted

as number of spots per 1 million PBMCs after background subtraction (PBMCs that received only cell culture medium). Legends indicate patient ID,

antigen, measured cytokine (only for ICS) and time point
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Another patient (also from stratum 1) exhibited decreas-

ing target lesion sizes not formally qualifying as a PR.

Shrinkage of non-irradiated lesions > 15% occurred in

six patients, five in stratum 1, and one in stratum 2.

Figure 4a shows the percentage change in target lesion

sizes (sum of longest diameters) by stratum. Best overall

response according to lesion type (target/non-target) is

shown in Additional file 9: Table S6.

Second-line cancer treatment was received by 73.1% of

patients overall (n = 19). The median times to the initi-

ation of second line therapy were 14.4 weeks (range 7–46)

in stratum 1, 15.6 weeks (range 7–30) in stratum 2, and

62.6 weeks (range 8–117) in stratum 3. Most patients

responded to the second-line cancer treatment with SD or

PD (31.6% [6/19] and 36.8% (7/19], respectively]. One pa-

tient, treated with crizotinib and trastuzumab emtansine,

achieved a PR. Five patients were not evaluable.

Information for the individual patients by stratum is

provided in Fig. 4b, which shows a swimmer plot, illus-

trating PFS time and OS time, in addition to response

kinetics. Overall, median PFS was 2.87 months (95%

confidence interval [CI] 1.43–4.27) (Additional file 10:

Figure S3a). Overall, the median OS time from first

BI1361849 treatment was 13.95 months (95% CI

8.93–20.87; Additional file 10: Figure S3b).

Discussion

To our knowledge, this study is among the first to com-

bine mRNA-based immunotherapy with fractionated local

radiotherapy for the treatment of cancer [32]. In our

study, BI1361849 (CV9202) a cancer immunotherapy

based on sequence-optimized mRNA formulated with

protamine was combined with fractionated local radiation

treatment in patients with stage IV NSCLC and

appeared safe and well tolerated with or without main-

tenance pemetrexed; only four patients experienced a

grade 3 BI1361849- and/or radiation-related AE and

there was no evidence of autoimmune events. Based on

only two patients enrolled in the stratum with

EGFR-TKIs, no definitive conclusion on safety of this

combination is possible, but there was no overt

evidence of increased toxicity.

As we did not observe occurrence of radiation pneu-

monitis in our study, testing of BI1361849 in combin-

ation with fractionated radiotherapy and pemetrexed

therapy in further trials is supported.

The immunomonitoring results appear comparable to

those observed previously with the protamine formu-

lated precursor vaccine CV9201 alone without radiation

in a phase IIa study in patients with NSCLC where

antigen-specific immune reactions against at least one

antigen were detected in 63% of evaluable patients [10].

However, differences in study methodologies, e.g. sample

time points, and the overall small sample sizes limit the

comparability between the trial results.

About half of the patients had increases in T cell or

antibody magnitudes against multiple antigens post

treatment. In addition, a broadening of the antibody rep-

ertoire against tumor antigens not covered by BI1361849

was observed after treatment in a subgroup of patients

which could be an effect of the radiation, BI1361849

and/or other concomitant cancer treatments resulting in

immunogenic cell death of cancer cells. Other studies

have shown improved outcomes for cancer patients who

respond to multiple TAAs [33–35]. Although these re-

sults do not prove causality, it is conceivable that induc-

tion of immune responses against multiple TAAs might

be of therapeutic benefit.

We observed that the frequency of patients with in-

creased antigen-specific T cells to the individual anti-

gens, in particular CD8+ T cells, was rather low. For four

of the antigens (NY-ESO-1, 5T4, MAGE-C1, MAGE-C2)

fewer than 10% of the treated patients displayed an increase

in antigen-specific T cells over baseline. A putative explan-

ation for the low frequencies of tumor antigen-specific T

cell responses could be that all of our cellular immune as-

says were performed ex vivo. Whereas ex vivo assays pre-

dominantly assess the functionality of effector T cells, other

vaccine antigen-specific T cell subsets including memory T

cells may remain undetected [36, 37]. Evidence suggests

that central memory T cells which differentiate into effector

T cells during the culture period can be detected after pro-

longed in vitro re-stimulation, whereas circulating effector

memory T cells are quantified by ex vivo immune assays. It

can be argued that in vitro re-stimulation increases the

Table 3 Best overall response (safety analysis set)

Parameter Patients with response, n (%)
[95% confidence interval]

Stratum 1
(n = 16)

Stratum 2
(n = 8)

Stratum 3
(n = 2)

Overall
(n = 26)

Response (CR + PR) rate 1 (6.3)
[0.2–30.2]

0
[0.0–36.9]

0
[0.0–84.2]

1 (3.8)
[0.1–19.6]

Best overall response

CR 0
[0.0–20.6]

0
[0.0–36.9]

0
[0.0–84.2]

0
[0.0–13.2]

PR 1 (6.3)
[0.2–30.2]

0
[0.0–36.9]

0
[0.0–84.2]

1 (3.8)
[0.1–19.6]

SD 8 (50.0)
[24.7–75.3]

3 (37.5)
[8.5–75.5]

1 (50.0)
[1.3–98.7]

12 (46.2)
[26.6–66.6]

PD 7 (43.8)
[19.8–70.1]

4 (50.0)
[15.7–84.3]

1 (50.0)
[1.3–98.7]

12 (46.2)
[26.6–66.6]

NE 0
[0.0–20.6]

1 (12.5)
[0.3–52.7]

0
[0.0–84.2]

1 (3.8)
[0.1–19.6]

Confirmed response according to Response Evaluation Criteria for Solid

Tumors (RECIST) version 1.1

Abbreviations: CR complete response, NE not evaluable, PD progressive disease,

PR partial response, SD stable disease
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sensitivity of the assay by increasing the detection of low

frequency antigen-specific T-cell responses but there have

been reports of inducing de novo priming of naïve T cells

during the cell culture. Due to the limited amount of

PBMCs available repetition of T cell assays after in vitro

stimulation was not possible.

Increases in tumor antigen-specific T cells and anti-

bodies were detected in all three strata suggesting

that the different concomitant treatments may not

confound this active cancer immunotherapeutic strat-

egy. Elevated antibody responses against cell surface

antigens may contribute to antitumor efficacy e.g.

a

b

Fig. 4 Efficacy outcomes following BI1361849 immunotherapy combined with local radiation treatment. a Change in target lesion sum of longest

diameters (SLD) from baseline. b Survival, progression-free survival, and response kinetics of individual patients (post hoc swimmer plot)
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through antibody- or complement-dependent cytotox-

icity (ADCC, CDC). Radiation may impact the expres-

sion of antigens targeted by tumor-specific antibodies

[38] and could further enhance the ADCC response

in this clinical scenario.

Whereas a putative lack of sensitivity of our ex vivo

cellular immune assays could represent a partial explan-

ation for the overall rather low frequency of CD4 and

particular CD8 responses, the following factors are prob-

ably more relevant and will be addressed in future trials

with BI1361849.

Firstly, self-tolerance to the encoded endogenous anti-

gens as well as the presence of immune-suppressive cell

populations including myeloid-derived suppressor cells,

regulatory T cells, or anti-inflammatory M2 macro-

phages may counteract the induction of high frequencies

of functional T cells. It may be interesting to see if a

higher immunogenicity can be achieved in combination

with immune checkpoint inhibitors, in particular

anti-CTLA4 or anti-PD1/-PD-L1 antibodies, to help

break the tolerance against endogenous antigens, e.g. by

enhancing effector T cell function and inhibition of

regulatory T cells [39]. Also, it may be useful to investi-

gate whether RNActive® immunotherapies encoding

patient-specific lung cancer or shared neoantigens might

result in higher frequencies of antigen-specific CD8 T

cells as suggested by recent studies [40, 41].

Secondly, a critical factor to consider for future trials

with protamine-based mRNA immunotherapies is the

mode of administration as shown by recent data. A

first-in-human trial of a protamine-formulated mRNA-

based rabies vaccine showed that needle-syringe

injection of this vaccine failed to induce protective

virus-neutralizing antibody titers. However, intradermal

injection using a needle-free injection device induced

antibody titers above the World Health Organization de-

fined protective threshold in 71% of subjects. The sero-

logical protection correlated with the induction of

multi-functional rabies-specific CD4+ T cells assessed

with the same ex vivo ICS methodology as described

here [42]. Preclinical data showed that needle-free jet in-

jection increases the expression of the mRNA encoded

antigens in the skin and improves immunogenicity of

protamine formulated mRNA vaccines (CureVac AG,

unpublished observations).

Based on these findings, BI1361849 is being investi-

gated in an ongoing phase I/II trial in combination

with the anti PD-L1 antibody durvalumab, and the

anti CTLA4 antibody tremelimumab and a needle-free

injection device is being used for the intradermal

injection.

While the design of our phase I trial does not allow us

to draw conclusions on the therapeutic benefit of the

combination, shrinkage of non-irradiated lesions and

prolonged disease stabilization was observed in a subset

of patients, mainly in combination with pemetrexed.

Two patients on pemetrexed maintenance therapy

remained progression free for a period of 21 and 27

months each, and one patient in stratum 3 (EGFR-TKI

therapy) in whom a new lesion was detected on

follow-up imaging after 14 months of treatment contin-

ued BI1361849 for more than 1 year beyond

RECIST-defined disease progression. One of the eight

patients in stratum 2 who did not receive concomitant

maintenance therapy experienced a decrease in target

lesion size, but none experienced an objective response.

A limitation of our analysis is the lack of a control

group (either radiation, BI1361849, or chemotherapy/

EGFR-targeted agent alone), and it is not possible to

conclude whether the detected increases in T cells

and antibodies observed were solely due to BI361849,

radiation or the combination of both. Furthermore,

only two patients were recruited to the EGFR-TKI

stratum, as most screened patients had no eligible le-

sions for radiotherapy due to the high response rate

to initial therapy.

mRNA-based active cancer immunotherapies, as used

in the current study, can be designed to encode for a

variety of endogenous cancer antigens from different

cancer types. This will help to maximize the chance that

an individual patient’s tumor expresses these antigens,

and patients with different antigen expression patterns

may thus derive benefit from the therapy. The value of

targeting neoantigens for cancer immunotherapy has

been extensively considered [43–46]. Recently, two stud-

ies investigating neoantigen vaccines demonstrated im-

munogenicity and reported encouraging clinical safety

and efficacy data in patients with stage III/IV melanoma

in phase I studies [40, 41]. These initial data provide a

rationale for testing of neoantigens for active cancer

therapy, whereby the combination with radiotherapy and

novel therapies such as immune checkpoint inhibitors

may further improve the outcomes for cancer patients.

Additional research is required to determine how radio-

therapy and immunotherapy can be most effectively

combined, considering, for instance, optimal fraction-

ation, dose, and the sequencing of radiotherapy and

immunotherapy.

Conclusions

In conclusion, BI1361849 (CV9202) combined with

local radiation treatment with or without pemetrexed

was well tolerated and antigen-specific immune re-

sponses were detected. Available evidence supports

further investigation of BI1361849 (CV9202) using

needle-free administration technique and combination

with immune checkpoint inhibitors.
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