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SUMMARY

This paper presents the problem definition for the second generation of benchmark structural control
problems for cable-stayed bridges. The goal of this study is to provide a testbed for the development of
strategies for the control of cable stayed-bridges. Based on detailed drawings of the Bill Emerson Memorial
Bridge, a three-dimensional evaluation model has been developed to represent the complex behavior of the
full-scale benchmark bridge. Phase II considers more complex structural behavior than phase I, including
multi-support and transverse excitations. Evaluation criteria are presented for the design problem that are
consistent with the goals of seismic response control of a cable-stayed bridge. Control constraints are also
provided to ensure that the benchmark results are representative of a control implementation on the
physical structure. Each participant in this benchmark bridge control study is given the task of defining,
evaluating and reporting on their proposed control strategies. Participants should also evaluate the robust
stability and performance of their resulting designs through simulation with an evaluation model which
includes additional mass due to snow loads. The problem and a sample control design have been made
available in the form of a set of MATLAB equations. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The control of long-span bridges represents a challenging and unique problem, with many

complexities in modeling, control design and implementation. Cable-stayed bridges exhibit complex

behavior in which the vertical, translational and torsional motions are often strongly coupled.

Clearly, the control of very flexible bridge structures has not been studied to the same extent as

buildings have. As a result, little expertise has been accumulated. Thus, the control of seismically

excited cable-stayed bridges presents a challenging problem to the structural control community.
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The first generation of benchmark problems on cable-stayed bridges focused on the Bill

Emerson Memorial Bridge under construction in Cape Girardeau, Missouri, USA ([1,2]; see

also: http://wusceel.cive.wustl.edu). Based on detailed drawings of the Emerson bridge, a three-

dimensional evaluation model was developed to represent the complex behavior of the full–scale

benchmark bridge. A linear evaluation model, using the equations of motion generated around

the deformed equilibrium position, was deemed appropriate. Because the structure is attached

to bedrock, the effects of soil–structure interaction were neglected. To simplify the problem for

phase I, two assumptions were made regarding the excitation. This problem focused on a one-

dimensional ground acceleration applied in the longitudinal direction and uniformly and

simultaneously applied at all supports. Researchers reported their phase I results during a theme

session devoted to this problem held at the 3rd World Conference on Structural Control in April

2002 in Como, Italy [3–6].

Although a significant amount of expertise was accumulated during phase I, the assumptions

made regarding the excitation (longitudinal and simultaneously acting) limited the extent to

which this problem modeled a realistic situation. A structure’s response to an earthquake

is based on the simultaneous action of three translational components of ground motion:

two in the horizontal plane, and one in the vertical direction. Structures are typically analyzed

for the two horizontal components of ground motion. The structural response depends on the

incidence angle (the angle between the ground motion components and the structural axes).

Additionally, the excitation is expected to vary at each of the supports, owing to the length of

these structures. A phase II problem was developed to extend the problem to consider these

issues.

This paper presents the second generation of benchmark control problems for cable-stayed

bridges. In this problem the ground acceleration may be applied in any arbitrary direction, using

the two horizontal components of the historical earthquake with a specified incidence angle.

Multi-support excitation is also considered in this phase of the study. Here the prescribed

ground motion is assumed to be identical at each support, although it is not applied

simultaneously. We assume that bent 1 undergoes a specified ground motion, and the motion, at

the other three supports is identical to this motion but delayed based on the distance between

adjacent supports and the speed of the L-wave of a typical earthquake (3 km/s). The total

responses of the structure is obtained by superposition of the responses due to each independent

support input [7,8].

This problem has been prepared to provide a testbed for the development of effective

strategies for the control of long-span bridges. This second-generation problem considers

the control of more complex motions of the bridge as compared with the first-generation

problem. To evaluate the proposed control strategies in terms that are meaningful for

cable-stayed bridges, appropriate evaluation criteria and control design constraints are

specified within the problem statement. Additionally, an alternate model of the bridge is

developed for evaluating the robustness of the designs. This model includes the effects of

snow loads on the bridge deck. Designers and researchers participating in this benchmark

study will define all devices, sensors and control algorithms used, evaluate them in the context

of their proposed control strategies, and report the results. These strategies may be

passive, active, semi-active or a combination thereof. The phase II problem will be

made available for downloading on the benchmark web site in the form of a set of

MATLAB equations http://wusceel.cive.wustl.edu/quake/. A sample control design is

included.
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2. BENCHMARK CABLE-STAYED BRIDGE

The cable-stayed bridge used for this benchmark study is the Bill Emerson Memorial Bridge

spanning the Mississippi River (on Missouri 74–Illinois 146) near Cape Girardeau, Missouri,

designed by the HNTB Corporation [9]. The bridge is currently under construction and is to be

completed in 2003. Instrumentation is being installed in the Emerson bridge and surrounding

soil during the construction process to evaluate structural behavior and seismic risk [10].

Seismic considerations were strongly considered in the design of this bridge, owing to the

location of the bridge (in the New Madrid seismic zone) and its critical role as a principal

crossing of the Mississippi River. In early stages of the design process, the loading case

governing the design was determined to be due to seismic effects. Earthquake load combinations

in accordance with American Association of State Highway and Transportation Officials

(AASHTO) division I-A specifications were used in the design. Various designs were considered,

including full longitudinal restraint at the tower piers, no longitudinal restraint, and passive

isolation. When temperature effects were considered, it was found that fully restraining the deck

in the longitudinal direction would result in unacceptably large stresses. On the basis of

examination of the various designs, it was determined that incorporating force transfer devices

would provide the most efficient solution.

Sixteen 6.67MN (1500 kip) shock transmission devices are employed in the connection

between the tower and the deck. These devices are installed in the longitudinal direction to allow

for expansion of the deck due to temperature changes. Under dynamic loads these devices are

extremely stiff and are assumed to behave as rigid links. Additionally, in the transverse direction

earthquake restrainers are employed at the connection between the tower and the deck, and the

deck is constrained in the vertical direction at the towers. The bearings at bent 1 and pier 4 are

designed to permit longitudinal displacement and rotation about the transverse and vertical

axis. Soil–structure interaction is not expected to be an issue with this bridge as the foundations

of the cable-stayed portion is attached to bedrock.

As shown in Figure 1, the bridge is composed of two towers, 128 cables, and 12 additional

piers in the approach bridge from the Illinois side. It has a total length of 1205.8m (3956 ft). The

main span is 350.6m (1150 ft) in length, the side spans are 142.7m (468 ft) in length, and the

approach on the Illinois side is 570m (1870 ft). A cross-section of the deck is shown in Figure 2.

The bridge has four lanes plus two narrower bicycle lanes, for a total width of 29.3m (96 ft). The

deck is composed of steel beams and prestressed concrete slabs. Steel ASTM A709 grade 50W is

used, with fy=344MPa (50 ksi). The concrete slabs are made of prestressed concrete with

f 0
c ¼ 41:36MPa (6000 psi).

Bent 1

(1150’) ( (468’) 1870’)

pier 3 pier 4pier 2

(468’)

Illinois approach

x··g

33321 64

1 Cable Number

142.7m 350.6m 142.7m 570.0m

Figure 1. Drawing of the Cape Girardeau bridge.
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The 128 cables are made of high-strength, low-relaxation steel (ASTM A882 grade 270). The

smallest cable area is 28.5 cm2 (4.41 in2) and the largest cable area is 76.3 cm2 (11.83 in2). The H-

shaped towers have a height of 102.4m (336 ft) at pier 2 and 108.5 (356 ft) at pier 3 (Figure 3).

Each tower supports a total of 64 cables. The approach bridge from the Illinois side is supported

by 11 piers and bent 15, which are made of concrete. The deck consists of a rigid diaphragm

made of steel with a slab of concrete.

3. EVALUATION MODEL

Based on the description of the Emerson bridge provided in the previous section, a three-

dimensional finite element model of the bridge was developed in MATLAB [11]. A linear

evaluation model is used in this benchmark study. However, the stiffness matrices used in this
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Figure 2. Cross-section of bridge deck.
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Figure 3. Cross-sections of the towers.
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linear model are those of the structure determined through a nonlinear static analysis

corresponding to the deformed state of the bridge with dead loads [12]. Additionally, the bridge

is assumed to be attached to bedrock, and the effects of soil–structure interaction are neglected.

A detailed description of the finite element model development is provided elsewhere [1].

The finite element model employs beam elements, cable elements and rigid links. The

nonlinear static analysis is performed in ABAQUS [13], and the element mass and stiffness

matrices are output to MATLAB for assembly. Subsequently, the constraints are applied, and a

reduction is performed to reduce the size of the model to something more manageable [1]. The

first ten undamped frequencies of the evaluation model are 0.2899, 0.3699, 0.4683, 0.5158,

0.5812, 0.6490, 0.6687, 0.6970, 0.7102, and 0.7203Hz.

To make it possible for designers and researchers to place devices acting longitudinally

between the deck and the tower, a modified evaluation model is formed in which the tower and

the deck are disconnected. If a designers on researcher specifies devices at these nodes, the

second model will be formed as the evaluation model, and the control devices should connect

the deck to the tower. As one would expect, the frequencies of this model are much lower than

those of the nominal bridge model. The first ten undamped frequencies of this second model are

0.1619, 0.2667, 0.3725, 0.4547, 0.5017, 0.5653, 0.6190, 0.6489, 0.6968, and 0.7097Hz. Note that

the uncontrolled structure, used as a basis of comparison for the controlled system, corresponds

to the former model in which the deck–tower connections are fixed (the dynamically stiff shock

transmission devices are present).

3.1. Description of finite element model

The finite element model, shown in Figure 4, has a total of 579 nodes, 420 rigid links, 162 beam

elements, 134 nodal masses and 128 cable elements. The towers are modelled by 50 nodes, 43

beam elements and 74 rigid links. Constraints are applied to restrict the deck from moving in the

lateral direction at piers 2, 3 and 4. Boundary conditions restrict the motion at pier 1 to allow

only longitudinal displacement (X) and rotations about the Y and Z axes. Because the
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Figure 4. Finite element model.
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attachment points of the cables to the deck are above the neutral axis of the deck, and the

attachment points of the cables to the tower are outside the neutral axis of the tower, rigid links

are used to connect the cables to the tower and to the deck. The use of the rigid links ensures

that the length and inclination angle of the cables in the model agree with the drawings.

Additionally, the moment induced in the towers by the movement of the cables is taken into

consideration in this approach. In the case of variable sections, the average of the section is used

for the finite element. The cables are modeled with truss elements. In the finite element model

the nominal tension is assigned to each cable.

This FEM model is used directly in cases when the control devices are employed in the

longitudinal direction between the deck and tower. If the designer on researcher employs no

control device at these locations (in which case the shock transmission devices are included), the

model is modified by including four longitudinally directed, axially stiff beam elements that

force the deck to move with the tower in the longitudinal direction. The uncontrolled structure

used as a basis of comparison corresponds to this second case. Note that the program included

with the benchmark files determines if the designer or researcher has placed devices in this

location, and builds the appropriate FEM model.

Cable-stayed bridges exhibit nonlinear behavior due to variations of the catenary shape of the

inclined cables, cable tensions that induce compression forces in the deck and towers, and large

displacements. A nonlinear static analysis was performed, using the commercial finite element

program ABAQUS, giving the model tangent stiffness matrix at the (deformed) equilibrium

position. In ABAQUS, the B31 beam element was used for the structural beam element, and the

element T3D2 was used for the cable elements. Further details on this procedure can be found

elsewhere [1].

In modeling the cables, the catenary shape and its variation with the axial force in the cable

are modeled by an equivalent elastic modulus [14]. The cable elements are modeled as truss

elements in ABAQUS, and their equivalent elastic moduli are used in the nonlinear static

analysis. The deck is comprised of two main steel girders along each longitudinal edge of the

deck supporting the concrete slab (see Figure 2). The deck was modeled by the method

described by Wilson and Gravelle [12] and is treated as a C-shaped section. In this approach the

deck is modeled as a central beam (the spine) which has no mass. Lumped masses are employed

to model the mass of the deck, which are connected to the spine by rigid links. The masses are

included for more realistic modeling of the torsional response of the deck to lateral loads, and

have been shown to be important in the modeling of this structure [15].

3.2. Problem formulation

Consider the general equation of motion for a structural system subjected to seismic loads

M .UUþ C ’UUþ KU ¼ �MG .xxg þ Lf ð1Þ

where .UU [m/s2] is the second time derivative of the displacement response vector U [m], M, C,

and K are the mass, damping and stiffness matrices of the structure, f [N] is the vector of control

force inputs, .xxg [m/s2] is the ground acceleration, G is a vector of zeros and ones, relating the

ground acceleration to the bridge degrees of freedom (DOF), and L is a vector relating the

force(s) produced by the control device(s) to the bridge DOFs. This equation is appropriate

when the excitation has a single component or when the excitation is uniformly applied at all

supports of the structure. The formulation of the equations expressing the response to multiple
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input component is somewhat different, however, from that described for the system having

only a single input component. For multiple supports, the resulting motion of the supports

relative to each other induces pseudo-static responses in the structure that must be considered in

addition to the dynamic responses.

For the analysis of the bridge with multiple-support excitation, the model must include the

degrees of freedom at the supports. The equation of dynamic equilibrium for all the DOFs is

written in partitioned form [7,8]

M Mg

MT
g Mgg

" #

.UU
t

.UUg

2

4

3

5þ
C Cg

CT
g Cgg

" #

’UU
t

’UUg

2

4

3

5þ
K Kg

KT
g Kgg

" #

Ut

Ug

" #

¼
0

Pg

" #

þ
Lf

0

" #

ð2Þ

where Ut and Ug are the absolute displacement vector of the superstructure and the

displacement vector of the supports, respectively. Matrices M, C, and K are the system

matrices of the structural model. Matrices Mg, Cg, and Kg are the mass, damping and

elasticcoupling matrices expressing the forces developed in the active DOFs by the motion of the

supports. Matrices Mgg, Cgg, and Kgg are the mass, damping and stiffness matrices of the

supports, respectively. It is desired to determine the displacement vector Ut in the superstructure

DOFs and the support forces Pg. Observe that control forces f are applied only to the

superstructure DOFs.

The total displacement Ut is expressed as its displacement Us due to static application of the

ground motion, plus the dynamic displacement U relative to the quasi-static displacement.

Therefore, the relationship between these displacement components is expressed by

Ut

Ug

" #

¼
Us

Ug

" #

þ
U

0

" #

ð3Þ

The two are related through

K Kg

KT
g Kgg

" #

Us

Ug

" #

¼
0

Ps
g

" #

ð4Þ

where Ps
g are the support forces necessary to statically impose displacements Ug that vary with

time; obviously, Us varies with time and is therefore known as the vector of quasistatic

displacements. Observe that Ps
g ¼ 0 if the structure is statically determinate, or if the support

system undergoes rigid-body motion; for the latter condition, an obvious example is identical

horizontal motion of all supports. The remainder U of the structural displacements is known as

the dynamic displacement vector because the quasi-static displacements cannot be evaluated by

rigid-body kinematics.

With the total structural displacements split into quasi-static and dynamic displacements, we

return to the first of the two partitioned equations

M .UU
t
þMg

.UUg þ C ’UU
t
þ Cg

’UUg þ KUt þ KgUg ¼ Lf ð5Þ

Substituting Equation (3) and transferring all terms involving Ug and Us to the right-hand

side leads to

M .UUþ C ’UUþ KU ¼ Lf � ðM .UU
s
þMg

.UUgÞ � ðC ’UU
s
þ Cg

’UUgÞ � ðKUs þ KgUgÞ ð6Þ
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where the term on the right-hand side is called the vector of effective earthquake forces. The

third term of the right-hand side in Equation (6) drops out because Equation (4) gives

KUs þ KgUg ¼ 0 ð7Þ

in which the displacement Us by definition is the pseudo-static vector. Solving for these

displacements leads to

Us ¼ �K�1KgUg ð8Þ

from which it is apparent that the pseudo-static influence vector is given by

Rs ¼ �K�1Kg ð9Þ

The influence vector describes the influence of support displacements on the structural

displacements. Finally, substituting Equations (8) and (9) into Equation (6) gives

M .UUþ C ’UUþ KU ¼ Lf � ðMRs þMgÞ .UUg � ðCRs þ CgÞ ’UUg ð10Þ

If the ground accelerations and velocities are prescribed at each support, this completes the

formulation of the governing equation.

For many practical applications, further simplification of the effective force vector is possible.

The damping term is zero if the damping matrices are proportional to the stiffness matrices

because of Equation (7); this stiffness-proportional damping may be unrealistic, however. While

the damping term is not zero for arbitrary forms of damping, it is usually small relative to the

inertia term, and may therefore be dropped. Nevertheless, the damping term is included in the

governing equation in this benchmark problem.

The element mass and tangent stiffness matrices generated in ABAQUS are summed at each

node to assemble the global stiffness and mass matrices within MATLAB. The equations are

partitioned into active and constrained DOFs, and constraints were applied by condensing out

rigid links (applying kinematic constraints). The resulting model has 909 DOF for the

superstructure plus 45 DOF for the supports.

3.3. Model reduction

The model resulting from the finite element formulation has a large number of degrees of

freedom and high-frequency dynamics. Thus, some assumptions are made regarding the

behavior of the bridge to make the model more manageable for dynamic simulation while

retaining the fundamental behavior of the bridge. The active DOF retained in the model include:

(i) the nodes at the top of each tower; (ii) the lowest nodes at which cables are connected on each

tower; (iii) nodes at the joints of the towers; (iv) nodes or DOFs of elements whose shear and

overturning moments are among the design criteria; (v) approximately every third node of the

bridge deck; and (vi) rotational DOFs about the longitudinal and vertical axis of all spinal deck

nodes. These locations are indicated in the finite element model in Figure 4. Note that the

support DOF are not eliminated because they are required for determination of the response of

the structure to multiple support excitation.

Static condensation is performed by first partitioning the mass and stiffness matrices

corresponding to the structure DOF into active and dependent DOF as in

M ¼
Maa Mad

Mda Mdd

" #

K ¼
Kaa Kad

Kda Kdd

" #

ð11Þ
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Assuming that no loads are applied to the dependent DOFs, the system equation for static

equilibrium is written as

Kaa Kad

Kda Kdd

" #

#UU

%UU

" #

¼
Pa

0

" #

ð12Þ

where #UU is the active, and %UU is the dependent displacement vector. Using the second row of

Equation (12), the transformation matrix is obtained as

TR ¼
I

�K�1
ddKda

" #

ð13Þ

where TR is the static transformation matrix, and I is an identity matrix of appropriate size, such

that

#UU

%UU

" #

¼ TR
#UU ð14Þ

The transformed mass and stiffness matrices are then as follows

#MM ¼ TT
RMTR and #KK ¼ TT

RKTR ð15Þ

The corresponding coefficient matrices for the ground excitation and the control forces are

given by

#GG ¼ TT
RMG and #LL ¼ TT

RL ð16Þ

Note that prior to making this transformation, C and K must be reordered into active and

dependent DOF. Application of this reduction scheme to the full model of the bridge resulted in

a 419-DOF reduced order model. The first 100 natural frequencies of the reduced model (up to

3.5Hz) were compared and are in good agreement with those of the 909-DOF structure.

The damping in the system is defined based on the assumption of modal damping. The

damping matrix was developed by assigning 3% of critical damping to each mode. This value

was selected to be consistent with assumptions made during the design of the bridge.The

reduced system was used to construct the damping matrix, using

#CC ¼ #MMU

2z1o1 0 0

0 . . . 0

0 0 2znon

2

6

6

4

3

7

7

5

F�1 ð17Þ

where F is the modal matrix, and oi and zi are the natural frequency [rad/s] and modal damping

ratio of the ith mode, respectively.

After model reduction the resulting equation of motion for the damped structural system

from Equation (10) is

#MM
.#UU#UUþ #CC

’#UU#UUþ #KK #UU ¼ Lf � ð #MM #RRþMgÞ .UUg � ð #CC #RRs þ CgÞ ’UUg ð18Þ

where #RRs ¼ � #KK
�1
Kg and #UU is the displacement vector of active structural DOFs. This model is

designated the evaluation model. It is considered to portray the actual dynamics of the bridge,

and will be used to evaluate various control systems. Note that this model always includes the

effects of the shock transmission devices, which constraint longitudinal motion. The evaluation
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model and earthquake inputs are fixed for this benchmark problem. Two representative transfer

functions are shown in Figure 5 and the first few mode shapes are shown in Figure 6.

3.4. Alternate model for assessment of robustness

An alternate model is developed to evaluate the robust performance of the proposed control

designs. To develop the alternate model, the effects of snow loads on the model are considered.
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Figure 5. Representative transfer functions of the bridge model: (a) longitudinal ground acceleration to
acceleration (X) at the top of pier 2; (b) ground acceleration to the shear force at the deck level at pier 2.

Third Mode Shape (Torsion, .4683 Hz)
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Figure 6. Representative mode shapes of the bridge evaluation model.
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UBC codes [16] indicate that the ground snow load in the Cape Girardeau region is 73.3 kg/m2

(15 psf) for 50-year mean recurrence interval. In addition to the snow load, 24.4 kg/m2

(5 psf) should be added for zones with frequent rain and snow. Snow with a mass per length of

97.7 kg/m2 (20 psf) are added to the deck, and its effect perturbs the mass matrix of the model.

This amount increases the mass of the bridge by approximately 3.5%. The nominal evaluation

model has the following first ten undamped natural frequencies: 0.2899, 0.3699, 0.4683, 0.5158,

0.5812, 0.6490, 0.6687, 0.6970, 0.7102, and 0.7203Hz. The second evaluation model, considering

snow loads, has the following first ten undamped natural frequencies: 0.2790, 0.3559, 0.4489,

0.4969, 0.5589, 0.6230, 0.6406, 0.6809, 0.6816, 0.6971Hz. The maximum variation in these

frequencies is 4.38%. The second model is to be used to investigate the robustness of the control

system with respect to the uncertainties in mass.

4. ANALYSIS TOOL

The linear model of the bridge system is simulated by a version of the analysis tool developed by

Ohtori and Spencer [17] for linear systems. This tool allows the user to implement the compiled

C code from within the MATLAB environment through a SIMULINK block to simulate the

responses of a seismically excited structural system. Although the full version of the program

may be used for nonlinear analysis, the version included in this benchmark problem is

applicable only to linear systems.

To use the code, one must define the mass, stiffness, and damping matrices for the evaluation

structure ( #MM; #CC; and #KK in Equation (18)), as well as the matrices defining the inputs and outputs

of the structural system. The input and output matrices are found using the state space form of

Equation (18) given by

’xx ¼ Aexþ Be

.UUg

’UUg

f

2

6

6

4

3

7

7

5

y ¼ CexþDe

.UUg

’UUg

f

2

6

6

4

3

7

7

5

ð19Þ

where ’xx ¼ ½ #UU
T ’#UU#UU

T

�T is the state vector, Ae is the state matrix, and Be; Ce; and De are determined

by the inputs and outputs selected by the designer or researcher.

These matrices must be available in the MATLAB workspace to perform the simulation.

Note that the analysis tool does not require use of the Ae matrix, although it is available to the

researcher or designer for possible use in developing a control-oriented model of the bridge.

5. CONTROL DESIGN PROBLEM STATEMENT

As stated previously the researcher or designer must define the sensors, devices, and algorithms

to be used in his or her control strategy. These must be defined in specific forms to interface

properly with the benchmark bridge model. The sensors and control devices interface with the

bridge model through measurement and connection outputs, designated ym and yc, respectively

(Figure 7). Additionally participants define the components of the evaluation output vector,

designated ye. The components of ym, yc, and ye are specified within an input/output file

provided with the benchmark problem statement. A MATLAB graphical user interface is
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provided to simplify this procedure. However, this information can be inserted directly into the

input/output file in terms of the node numbers if preferred (Figure 8).

5.1. Control system components

The sensors must be defined to measure the outputs of the evaluation model. Researchers and

designers must develop models for the sensors which must take the following form

’xxs ¼ g1ðx
s; ym; yf ; tÞ ð20Þ

ys ¼ g2ðx
s; ym; yf ; tÞ ð21Þ

where xs is the continuous-time state vector of the sensor(s) and ys is the continuous-time output

of the sensor(s) (measured in Volts), yf is the continuous-time output vector from the control

device model (see Equations (26–28)), which may include forces produced by individual control

devices, device stroke, device acceleration, and is used for evaluation of the control strategy and

is available for feedback in the control algorithm.

Passive, active, and semi-active control devices (or combinations thereof) may be used in

designing control systems. For active or semi-active control systems, the associated discrete-time

Evaluation model

Control device(s) Sensors
Control

Algorithm

ye

ym
yc

u
yf

f

xg

y
s

..

Figure 7. Block diagram of the control system.
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control algorithm must take the form

xckþ1 ¼ g3ðx
c
k ; y

s
k ; kÞ ð22Þ

uk ¼ g4ðx
c
k ; y

s
k ; kÞ ð23Þ

where xck is the discrete-time state vector of the control algorithm at each sampling time

t ¼ kT ; y s
k ; is the discrete-time input to the control algorithm from the sensors (which should be

discretized in time and quantized to represent an A/D converter), and uk is the discrete-time

control command from the control algorithm.

Dynamic models of the control devices selected by the researcher/designer are not required

for this benchmark study. Ideal control devices may be assumed. Note that the program allows

designers and researchers to place control devices at constrained nodes although errors will

result in the simulated responses. To interface with the benchmark bridge model the control

device model(s) must take the form

f ¼ g5ðyc; uk ; tÞ ð24Þ

yf ¼ g6ðyc; uk ; tÞ ð25Þ

where yc contains the continuous-time responses from the evaluation model that influence the

control forces, and is the continuous-time force output of the control device(s) applied to the

structure (in kN). Researchers or designers who choose to employ dynamic models of their

control devices should use the form

’xxd ¼ g7ðx
d; yc; uk ; tÞ ð26Þ

f ¼ g8ðx
d; yc; uk ; tÞ ð27Þ

yf ¼ g9ðx
d; yc; uk ; tÞ ð28Þ

where xd is the continuous-time state vector of the control device.

5.2. GUI tool

A MATLAB-based graphical user interface (GUI) tool has been developed to aid the researcher

or designer in generating the input/output information for the evaluation model. The graphical

user interface allows the user to select the node numbers defining the evaluation outputs ye; the
connection outputs yc; and the measured outputs ym; for use in each control strategy. The

location of the control devices may also be specified within the GUI. Once the control system

setup is specified, the user may choose to generate the evaluation model from within the GUI or

from the MATLAB command window directly.

5.3. Evaluation criteria

For cable-stayed bridges subjected to earthquake loading, critical responses are related to the

structural integrity of the bridge rather than to serviceability issues. Thus, in evaluating the

performance of each control algorithm, the shear forces and moments in the towers at key

locations (see Figure 3) must be considered. Additionally, the tension in the cables should never

approach zero, and should remain close to the nominal pretension.
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A set of 18 criteria have been developed to evaluate the capabilities of each control strategy.

Because the earthquake is assumed to have two horizontal components at a specified incidence

angle, several of these criteria are evaluated in both the X (longitudinal) and Z (transverse)

directions. The first six evaluation criteria consider the ability of the controller to reduce peak

responses, the second five criteria consider normed responses over the entire time record, and

the last seven criteria consider the requirements of the control system itself.

For each control design, the evaluation criteria should be evaluated for each of three

earthquake records provided in the benchmark problem: (i) El Centro. Recorded at the Imperial

Valley Irrigation District substation in El Centro, California, during the Imperial Valley,

California earthquake of 18 May 1940; (ii) Mexico City. Recorded at the Galeta de Campos

station with site geology of meta-andesite breccia on 19 September 1985; (iii) Gebze, Turkey. The

Kocaeli earthquake recorded at the Gebze Tubitak Marmara Arastirma Merkezi on 17 August

1999. The Mexico City earthquake is selected because geological studies have indicated that the

Cape Girardeau region is similar to Mexico City. The El Centro and Gebze earthquakes allow

for the researcher or designer to test his or her control strategies on earthquakes with different

characteristics. These three earthquakes are each at or below the design peak ground

acceleration level for the bridge of 0.36 g.

To consider multi-support excitations, the prescribed ground motion is assumed to be

identical at each support, although it is not simultaneous. Bent 1 is assumed to experience a

specified ground motion, and the motion at the other three supports is delayed, based on the

distance between adjacent supports and the speed of the L-wave of a typical earthquake

(3 km/s). For each control design, the evaluation criteria should be evaluated for each specified

excitation case: case A, an incidence angle of 158 with arrival times of [0 0.05 0.16 0.20] s, and

case B, an incidence angle of 458 with arrival times of [0 0.03 0.12 0.15] s. The incidence angle is

defined between the longitudinal direction of the bridge and the N–S wave of the earthquake.

Researchers and designers may evaluate their control designs for additional incidence angles by

modifying the input file.

The first two evaluation criteria are dimensionless measures of the shear force at key locations

in the towers. The elevation of these key locations correspond to the tower base and the deck

level (see Figure 3). The latter criterion was selected because this elevation corresponds to a

drastic reduction in the cross-sectional area of the towers. This first two evaluation criteria are

given by

J1 ¼ max
El Centro

Mexico City
Gebze

max
i;t

FbiðtÞj j

Fmax
0b

( )

ð29Þ

J2 ¼ max
El Centro

Mexico City
Gebze

max
i;t

FdiðtÞj j

Fmax
0d

( )

ð30Þ

where Fbi is the base shear at the ith tower, Fmax
0b ¼ max

i;t
F0biðtÞj j is the maximum uncontrolled

base shear (of the values at the two towers), FdiðtÞ is the shear at the deck level in the ith tower

(see Figure 3), Fmax
0d ¼ max

i;t
F0diðtÞj j is the maximum uncontrolled shear at the deck level, and �j j

indicates absolute value. The values of Fmax
0b ; Fmax

0d ; and all other values used to normalize the

evaluation criteria, are provided in Tables VI–VII of the Appendix.
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The second set of evaluation criterion are dimensionless measures of the moments in the

towers at the same key locations, given by

J3 ¼ max
El Centro

Mexico City
Gebze

max
i;t

MbiðtÞj j

Mmax
0b

( )

ð31Þ

J4 ¼ max
El Centro

Mexico City
Gebze

max
i;t

MdiðtÞj j

Mmax
0d

( )

ð32Þ

where MbiðtÞ is the moment at the base of the ith tower, Mmax
0b ¼ max

i;t
M0biðtÞj j is the maximum

uncontrolled moment at the base of the two towers, MdiðtÞ is the moment at the deck level in the

ith tower, and Mmax
0d ¼ max

i;t
M0diðtÞj j is the maximum uncontrolled moment at the deck level in

the two towers.

The fifth evaluation criterion is a dimensionless measure of the deviation of the tension in the

stay cables from the nominal pretension, given by

J5 ¼ max
El Centro

Mexico City
Gebze

max
i;t

TaiðtÞ � T0ij j=T0i
Tmax
0c

� �

ð33Þ

where T0i is the nominal pretension in the ith cable, TaiðtÞ is the actual tension in the cable as a

function of time, and Tmax
0c ¼ max

i;t
ð Ta0iðtÞ � T0ij j=T0iÞ is the normalized actual cable tension of the

uncontrolled system. This criterion is selected to reduce the likelihood of failure or unseating of

the cables.

The sixth evaluation criterion is a measure of the peak deck displacement at piers 1 and 4.

J6 ¼ max
El Centro

Mexico City
Gebze

max
i;t

xbiðtÞ

x0b

�

�

�

�

�

�

�

�

� �

ð34Þ

where xbiðtÞ is the displacement of the bridge deck at the ith location and x0b is the maximum of

the uncontrolled deck response at these locations. This criterion is included to consider the

possibility of impact on the deck at these locations.

The seventh and eighth evaluation criteria are dimensionless measures of the normed values

of the base shear and shear at the deck level in each of the towers, respectively, given by

J7 ¼ max
El Centro

Mexico City
Gebze

max
i

FbiðtÞj jj j

F0bðtÞj jj j

( )

ð35Þ

J8 ¼ max
El Centro

Mexico City
Gebze

max
i

FdiðtÞj jj j

F0dðtÞj jj j

( )

ð36Þ

where F0bðtÞj jj j is the maximum of the normed value of the uncontrolled base shear of the two

towers, and F0dðtÞj jj j is the maximum of the normed value of the uncontrolled shear at the deck
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level of the tower. The normed value of the response, denoted by �j jj j; is defined as

�j jj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

tf

Z tf

0

ð�Þ2dt

s

ð37Þ

where tf is defined as the time required for the response to attenuate.

The ninth and tenth evaluation criteria are dimensionless measures of the normed values of

the overturning moment and moment at the deck level in each of the towers, respectively, given

by

J9 ¼ max
El Centro

Mexico City
Gebze

max
i

MbiðtÞj jj j

M0bðtÞj jj j

( )

ð38Þ

J10 ¼ max
El Centro

Mexico City
Gebze

max
i

MdiðtÞj jj j

M0dðtÞj jj j

( )

ð39Þ

where M0bðtÞj jj j is the maximum of the normed value of the uncontrolled moment at the base of

the two towers, and M0dðtÞj jj j is the maximum of the normed value of the uncontrolled moment

at the deck level of the two towers.

The eleventh evaluation criterion is a dimensionless measure of the normed value of the

deviation of the tension in the stay cables from the nominal pretension, given by

J11 ¼ max
El Centro

Mexico City
Gebze

max
i;t

TaiðtÞ � T0ij jj j=T0i
T0cj jj j

� �

ð40Þ

where T0i is the existing pretension in the ith cable, TaiðtÞ is the actual tension in the ith cable as a

function of time, and T0cj jj j ¼ max
i;t

ð Ta0iðtÞ � T0ij jj j=T0iÞ is the maximum of the normed value of

the actual cable tension for the uncontrolled system.

The twelfth evaluation criterion deals with the maximum force generated by the control

device(s) and is described as

J12 ¼ max
El Centro

Mexico City
Gebze

max
i;t

fiðtÞ

W

� �� �

ð41Þ

where fiðtÞ is the force generated by the ith control device over the time history of each

earthquake, and W=510 000 kN (114, 640 kips) is the seismic weight of the bridge, based on the

mass of the superstructure (not including the foundation).

The thirteenth criterion is based on the maximum stroke of the control device(s). This

performance measure is given as

J13 ¼ max
El Centro

Mexico City
Gebze

max
i;t

yd
i ðtÞ

�

�

�

�

xmax
0

� �� �

ð42Þ

where yd
i ðtÞ is the stroke of the ith control device over the time history of each earthquake, and

xmax
0 is the maximum uncontrolled displacement at the top of the towers relative to the ground.
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When devices are used that do not have an associated stroke (e.g. tuned liquid dampers), the

researcher or designer should assume this evaluation constraint is zero.

The fourteenth evaluation criterion is a dimensionless measure of the maximum

instantaneous power required to control the bridge, and is defined as

J14 ¼ max
El Centro

Mexico City
Gebze

max
t

P

i PiðtÞ
� �

’xxmax
0 W

8

<

:

9

=

;

ð43Þ

where PiðtÞ is a measure of the instantaneous power required by the ith control device, and ’xxmax
0

is the peak uncontrolled velocity at the top of the towers relative to the ground. Values for ’xxmax
0

are provided in the Appendix (Tables VI, VII) for each of the earthquakes specified. For active

control devices, PiðtÞ � ’yydi ðtÞfiðtÞ
�

�

�

�; where ’yydi ðtÞ is the velocity of the ith control device. When

semi-active devices are employed, PiðtÞ is the actual power required to operate the device. For

passive control devices, this criterion is zero.

The fifteenth evaluation criterion is a dimensionless measure of the total power required to

control the bridge, and is defined as

J15 ¼ max
El Centro

Mexico City
Gebze

P

i

R tf
0
PiðtÞdt

	 


xmax
0 W

( )

ð44Þ

This criterion is zero when passive device(s) are used.

The sixteenth evaluation criterion is a measure of the total number of control devices required

in the control system to control the bridge.

J16 ¼ number of control devices ð45Þ

The seventeenth evaluation criterion is a measure of the total number of sensors required for

the proposed control strategy.

J17 ¼ number of sensors ð46Þ

The final evaluation criterion provides a measure of the resources required to implement the

control algorithm and is given by

J18 ¼ dimðxckÞ ð47Þ

where xck is the discrete-time state vector of the control algorithm given in Equation (22).

All criteria except J5, J6, J7, J16–J18 are dependent on direction and should be evaluated for

both the X and Z directions.

A summary of the evaluation criteria is provided in Table I. The values of the uncontrolled

responses for the three earthquakes required to calculate the evaluation criteria are provided in

Tables VI–VII. All criteria should be reported for each proposed controller and for both case A

and B. The Mexico City, El Centro, and Gebze earthquakes should all be considered in

determining the evaluation criteria. However, designers and researchers are encouraged to

include additional criteria in their results if, through these criteria, their results demonstrate an

overall desirable quality. An example of such a situation might be a control system that

performs well for one type of earthquake, but marginally for other earthquakes, used to

evaluate the control strategy.
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5.4. Control strategy implementation constraints and procedures

To allow researchers and designers to compare and contrast various control strategies, each of

the controllers must be subjected to a uniform set of constraints and procedures. These

constraints and procedures are specified below:

1. The measured outputs directly available for use in determining the control action are the

absolute accelerations of the bridge at the nodes of the finite element model, and control

device outputs which are readily available (e.g. device stroke, force, or absolute

acceleration). Although absolute velocity measurements are not available, appropriate

filtering of the absolute accelerations may be performed to approximate the velocity

responses [18,19]. If pseudo-velocity measurements are used, the designer or researcher

should specify the filter used in the sensor model (see Equations 20,21).

2. The digitally implemented controller has a sampling time of T¼ 0:02 s: This sampling

time should be set equal to the integration step of the simulation.

3. The A/D and D/A converters on the digital controller have 16-bit precision and a span of

� 10V.

4. Each of the measured responses contains an rms noise of 0.03V, which is approximately

0.3% of the full span of the A/D converters. The measurement noises are modeled

as Gaussian rectangular pulse processes with a pulse width equal to the integration

step.

5. Currently available real-time control implementation hardware is impressive. However,

such hardware has limitations and the number of calculations in the control scheme

should be kept to a reasonable number. The designer or researcher should justify that the

proposed algorithm(s) can be implemented with currently available computing

hardware.

6. The control algorithm is required to be stable. The stability robustness for each proposed

active control design should be discussed by each researcher or designer.

7. The evaluation criteria of each researcher or designer’s controller should be evaluated by

the evaluation model, the SIMULINK diagram provided, and each of the earthquake

records provided in the benchmark problem. In addition, the values of the evaluation

criteria should be provided for the model with snow loads to demonstrate robust

performance.

8. Designers and researchers are requested to submit a program that will produce each of

the evaluation criterion specified in this problem statement. The resulting controllers will

be included on the web page for the second-generation benchmark bridge control

problem. Instructions on the formatting of these files are included in the information

provided with the benchmark files.

9. Designers and researchers are required to submit the SIMULINK blocks used for

controller performance evaluations. For each controller, one sensor block, one control

algorithm block, and one control device block should be submitted.

10. Tension in the stay cables should remain within a recommended range of allowable

values. A lower bound is necessary to ensure that unseating of a cable does not occur,

and an upper bound provides a factor of safety to prevent failure of the cable. The

tension in the ith cable may not exceed 0.7Tfi or fall below 0.2 Tfi; where Tfi is the tension
that would cause failure of the ith cable. Values for Tf i are included in the benchmark

problem programs.
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11. Because the D/A converters have a range of � 10V, the command signal to each control

device has a constraint of maxt uki ðtÞ
�

�

�

�410V, where uki ðtÞ is the ith component of the

control signal.

12. Each control device employed should be described in terms of the maximum force that

can be generated. Researchers and designers must demonstrate that this force constraint

is met during each of the earthquakes.

13. Any additional constraints that are unique to each control scheme should also be

reported (i.e. maximum stroke of control device, maximum velocity of control device,

etc.). Control devices should be selected to allow for expansion of the bridge due to

temperature effects.

6. SAMPLE CONTROL SYSTEM DESIGN

The following sample control design serves as a guide to the participants in this study, and will

lead them through the constraints and design criteria that are set forth in the previous sections.

The sample controller is an active control system designed for the linearized cable-stayed bridge

model. Accelerometers and displacement transducers are used for feedback to the control

algorithm. The sample control system employs a total of 24 hydraulic actuators located between

the deck and abutment, and the deck and the towers, and oriented to apply forces longitudinally

(global X direction). Therefore, to implement this controller one would replace the shock

transmission devices in the bridge with hydraulic actuators. Thus, the modified model (see

Section 3) is used for the control design. For simplicity in this sample control design, the control

devices act as ideal force actuators, and actuator dynamics and control–structure interaction is

neglected. In the following sections we describe the various components of the control system.

Models of the sensors and actuators used in the sample design are provided and discussed.

A linear quadratic Gaussian design is presented for this active controller. This sample has been

prepared to serve as a guide to designers and researchers, and is not intended to be competitive.

6.1. Sensors

In the control of civil engineering structures absolute acceleration measurements are readily

available. Additionally, measurements of the control devices themselves are typically available.

Fourteen accelerometers and four displacement sensors are employed in the sample control

system. Six accelerometers are located on top of the tower legs, including four oriented to

measure longitudinal (X) acceleration (nodes 240, 248, 353, 361), and two to measure transverse

(Z) accelerations (nodes 240, 353). Eight accelerometers are located on the deck, including one

at mid-span (node 34) oriented to measure longitudinal accelerations, and seven oriented to

measure transverse accelerations (nodes 8, 11, 25, 34, 43, 57, 60). The natural frequency of the

selected accelerometers are assumed to have a value that is at least an order of magnitude higher

than the highest natural frequency we are interested in controlling. Thus the selected

accelerometers have a flat response to approximately 3000 rad/s (i.e. a constant magnitude

and phase), and sensor dynamics can be neglected. Two displacement sensors are positioned

between the deck and pier 2, node pairs (84, 313), (151, 314), and two displacement sensors are

located between the deck and pier 3, node pairs (118, 428), (185, 429). These sensors are also

assumed to have a flat frequency response to 3000 rad/s or greater. All displacement

measurements are obtained in the longitudinal direction to the bridge (global X-direction).
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To ensure that the accelerations and displacement measured on the bridge are within the

range of the A/D converters, sensors are selected with a sensitivity of 7V/g (i.e. 7V=9.81m/s2)

for the accelerometers and a sensitivity of 30V/m (i.e. 10V=0.33m) for the displacement

sensors. Thus the sensor system is defined in the form of Equations (20–21) as

ys ¼ Dsym þ v ð48Þ

where ys is a vector of the measured absolute accelerations and device displacements in Volts, ym
is the vector of measured continuous-time absolute accelerations and device displacements in

physical units (i.e. m/s2 for accelerations and m for displacements), v is the measurement noise,

and

Ds ¼
I14�14Ga 0

0 I8�8Gd

" #

ð49Þ

where Ga ¼ 0:714Vm�1s�2) is the sensor gain for acceleration and Gd ¼ 30:30 V=m: The sensor
block is represented in the SIMULINK block shown in Figure 9. Note that in the sample

controller the device outputs are not measured, and therefore the corresponding signal yf is not

connected to the system, although it is available for participants to use. The gain block converts

the continuous-time acceleration measurements from physical units to Volts. Finally, noise with

an rms value of 0.03V is included, as is specified in the control constraints, is added to the

acceleration signal.

6.2. Control devices

A total of 24 hydraulic actuators are employed as control devices and oriented to apply forces

longitudinally (X-axis), 8 between the deck and pier 2, 8 between the deck and pier 3, 4 between

the deck and bent 1, and 4 between the deck and pier 4. Four actuators are located between each

of the following pairs of nodes on piers 2 and 3: (84, 313), (151, 314), (118, 428), (185, 429); two

actuators are located between each of the following pairs of nodes on bent 1 and pier 4: (68,

ground), (135, ground), (134, 444), (201, 440). The actuators have a capacity of 1250 kN.

Figure 10 shows the typical device layout at the tower.

For this sample control design actuator dynamics are neglected and hydraulic actuators are

considered to be ideal. The equation governing the dynamics of the longitudinal actuators in the

form of Equations (24, 25) are

f ¼ Kfu ð50Þ

yf ¼ Ddu ð51Þ

Selector

Selector

Selector

1

ys

Sensor
Noise

+
+

+

-

Sensor

Gain

k*u

1

ym

Figure 9. SIMULINK block: sensors.
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where Dd=125 kN/V (10V=1250 kN) is the gain of the actuator, and Kf is a matrix that

accounts for the gain of the actuator (i.e. the relationship between the input voltage and the

desired control force) as well as the fact that multiple actuators are used at each actuator

location. For the sample control design Kf takes the form

Kf ¼

2I2�2 0

4I4�4

0 2I2�2

2

6

6

4

3

7

7

5

Dd ¼ GdevDd ð52Þ

The vector of forces generated by the devices is

f ¼ Kfu ð53Þ

Figure 11 shows the SIMULINK control device block. For the sample control there are no

connection outputs in the model of the devices because the actuator dynamics are neglected and

this ideal control device model does not require any inputs from the structure. Connection

outputs are available for other type of device implementations.

6.3. Control design model

A reduced order model of the system is developed for control design. This model, designated the

design model, is formed from the evaluation model and has 60 states. The resulting model has

the same outputs as the evaluation model (see Equation 19). The reduced order model is formed

in MATLAB by forming a balanced realization of the system and condensing out the states with

relatively small controllability and observability grammians. The resulting state space system is

represented as follows

’xxr ¼ Arx
r þ Br

.UUg

’UUg

" #

þ Eru ð54Þ

z ¼ Cz
rx

r þDz
r

.UUg

’UUg

" #

þ Fz
ru ð55Þ

Edge Girder

Tower

Central Spine
Girder

Control
Devices

Figure 10. Schematic of control system design: typical tower actuator implementation.
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ym ¼ Cy
rx

r ¼ Dy
r

.UUg

’UUg

" #

þ Fy
ru ð56Þ

where xr is the design model state vector, Ar and Br are the system matrices, z is the regulated

output vector, which is obtained from the mapping matrices, Cz
r ; D

z
r and Fz

r : Similarly, ym is the

measurement vector, which is obtained from the mapping matrices, Cy
r ;D

y
r and Fy

r : The gains of
the sensors and control devices (i.e. in Equation 49 and Dd in Equation 52, respectively), as well

as the matrix defining the number of control devices (Gdev in Equation 52), are incorporated into

this model for control design. Thus, the inputs to the design model are the ground excitation at

the base of the structure and the control signals to the devices, whereas the inputs to the

evaluation model include the ground excitation and the applied control forces to the structure as

in Equation (18).

6.4. Control algorithm

The sample controller employs a linear quadratic Gaussian (LQG) control design. For the

control system designs, the disturbances to the system (i.e. ½UT
gU

T
g �

T), are assumed to be

identically distributed, statistically independent stationary white noise processes, and

Sw ¼ SwwI8�8; and an infinite horizon performance index is chosen, i.e.

J ¼ lim
t!1

1

t
E

Z t

0

ðCz
rx

r þDz
ruÞ

TQðCz
rx

r þDz
ruÞ þ uTRu

� �

 �

ð57Þ

where R is an identity matrix. The control algorithm is designed by choosing a performance

index that weights the displacements of the deck at bent 1 and pier 4, with q1=3.5� 103. The

performance index that weights the translational acceleration at mid-span is q2=3.5� 102. The

weighting matrix Q is defined as

Q ¼
q1I4�4 0

0 q2

" #

ð58Þ

R is an [8� 8] identity matrix. Further, for each case, the measurement noise is assumed to be

identically distributed, statistically independent Gaussian white noise processes, and Sww=Svivi ¼
g ¼ 25:

The control and estimation problems are considered separately according to the separation

principle [20, 21], yielding a controller of the form

u ¼ �Ku #xx
r ð59Þ

where #xx
r is the Kalman filter estimate of the state vector based on the reduced order model. By

the certainty equivalence principle [20, 21], Ku is the full-state feedback gain matrix for the

1

f

1

u

k*uk*u

Number of

Devices

Actuator

Gain

2

device force

Figure 11. SIMULINK block: control devices.
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deterministic regulator problem given by

Ku ¼ *RR
�1
ð *NNþ BT

d
*
PÞ ð60Þ

where
*
P is the solution of the algebraic Riccati equation given by

0 ¼
*
P *AAþ *AA

T

*
P�

*
PBd

*RR
�1
BT
d
*
Pþ *QQ ð61Þ

and

*QQ ¼ CzT
d QCz

d �
*NN *RR

�1
*NN
T

ð62Þ

*NN ¼ CzT
d QDz

d ð63Þ

*RR ¼ RþDzT
d QDz

d ð64Þ

*AA ¼ Ad � Bd
*RR
�1

*NN
T

ð65Þ

Calculations to determine Ku were done using the MATLAB [11] routine lqry.m within the

control toolbox.

The Kalman filter optimal estimator is given by

’#xx#xx
r
¼ Ar #xx

r þ Bruþ Lðym � Cy
r #xx

r �Dy
ruÞ ð66Þ

L ¼ ½
*
R�1ðgFy

rE
T
r þ Cy

rSÞ�
T ð67Þ

where S is the solution of the algebraic Riccati equation given by

0 ¼ S
*
A ¼

*
ATS� S

*
GS þ

*
H ð68Þ

and

*
A ¼ AT

r � CyT
r
*
R�1ðgFy

rE
yT
r Þ ð69Þ

*
G ¼ CyT

r
*
R�1Cy

r ð70Þ

*
H ¼ gErE

T
r � g2ErF

yT
r
*
R�1Fy

rE
T
r ð71Þ

*
R ¼ Iþ gFy

rF
yT
r ð72Þ

Calculations to determine L were done using the MATLAB routine lqew.m within the control

toolbox.

For implementation on a digital computer, the controller is put in the form of Equations

(22,23) using the bilinear transformation [22] to yield the following compensator

xckþ1 ¼ Acx
c
k þ Bcy

s
k ð73Þ

uk ¼ Ccx
c
k þDcy

s
k: ð74Þ

Calculations to determine the discrete-time compensator were performed in MATLAB using

the c2dm.m routine within the control toolbox.
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The SIMULINK block shown in Figure 12 is used to represent the sample control algorithm

in the simulation. To represent the hardware used to implement this algorithm on a digital

computer, the input signal passes through a model of an analog-to-digital converter (A/D) and

the output control signal passes through a model of a digital-to-analog converter (D/A). The

model consists of a quantizer and a saturator as described in Section 5.4.

6.5. Evaluation of sample control design

The closed-loop response is evaluated for the three earthquakes specified. Table II shows the

values of the evaluation criteria in Equations (29–47). The responses of the controlled bridge are

compared with those of the uncontrolled bridge for the El Centro and Mexico City earthquakes

in Figures 13 and 14. In each figure, the left-hand plots show the maximum and minimum cable

tension as a function of cable number. The dark region provides the acceptable range of cable

tensions as specified in the control constraints (between the 0.2Tfi and 0.7Tfi), and the lighter

region provides a graphical description of the actual minimum and maximum cable tension.

Note that the uncontrolled cable tension falls below the lower bound in cables near the tower

when subjected to the El Centro earthquake. However, in each case the controlled cable tension

1

u

u(t) u(k) 1

ys

y(n)=Cx(n)+Du(n)
y(k) y(t)

x(n+1)=Ax(n)+Bu(n)

Discrete Controller
D/A Converter A/D Converter

Figure 12. SIMULINK block: control algorithm.
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Figure 13. Simulated responses to Mexico City earthquake (no snow, case A): (a) uncontrolled cable
tensions; (b) controlled cable tensions; (c) uncontrolled and controlled base shear force record (pier 2).
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is well within the bounds. Additionally each figure provides a graph of the base shear at pier 2 in

the longitudinal direction. Note that the controller is able to achieve a significant reduction in

the base shear forces as compared with the uncontrolled system.

To demonstrate the feasibility of this controller, peak values of the force, stroke, and velocity

are provided for each earthquake in Table IV. Note that the force requirement as well as the

velocity and displacement requirements are feasible in a device of this size.

7. CLOSURE

A second-generation benchmark problem on the seismic control of cable-stayed bridges has

been developed. Phase II of this benchmark problem extends the problem to consider ground

motions with two horizontal components, as well as multi-support excitation. The evaluation

model of the Bill Emerson Memorial Bridge, the MATLAB files used for the sample control

design, and the simulation model, are available at: http://wusceel.cive.wustl.edu/quake/

If you cannot access the World Wide Web or have questions regarding the benchmark

problem please contact Dr Shirley Dyke via e-mail at: sdyke@seas.wustl.edu. Participants in the

benchmark study will be expected to submit their control designs and supporting MATLAB files

electronically for inclusion on the benchmark homepage, as described in the information

distributed with the benchmark cable-stayed bridge problem.

APPENDIX

Tables I–VII
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Figure 14. Simulated responses to El Centro earthquake (no snow, case A): (a) uncontrolled cable
tensions; (b) controlled cable tensions; (c) uncontrolled and controlled base shear force record (Pier 2).
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Table II. Evaluation criteria for sample controller.

Value Direction El Centro Mexico Gebze Maximum

Case A (0, 0.05, 0.16, 0.20) s at 158

J1 X 0.3008 0.3826 0.4672 0.4672
Z 1.0215 1.1168 1.0366 1.1168

J2 X 0.7529 0.9092 0.9748 0.9748
Z 0.9662 0.9981 0.9963 0.9981

J3 X 0.3288 0.3734 0.4540 0.4540
Z 1.0978 1.0796 1.0463 1.0978

J4 X 0.5790 0.7601 0.9238 0.9238
Z 1.0097 0.9930 1.0012 1.0097

J5 X 0.2557 0.1355 0.1782 0.2557
J6 X 1.0489 1.7787 2.3270 2.3270
J7 X 0.2483 0.3054 0.3149 0.3149

Z 1.0136 1.0554 1.0529 1.0554
J8 X 0.8329 0.9046 0.9635 0.9635

Z 0.9783 0.9961 0.9912 0.9961
J9 X 0.2420 0.3163 0.3966 0.3966

Z 1.0053 1.0520 1.0394 1.0520
J10 X 0.6232 0.7968 0.8245 0.8245

Z 1.0018 1.0044 1.0033 1.0044
J11 – 2.404� 10�2 1.443� 10�2 1.684� 10�2 2.404� 10�2

J12 X 2.883� 10�3 1.636� 10�3 2.844� 10�3 2.883� 10�3

Z 00 0 0 0
J13 X 0.6425 0.9686 1.0154 1.0154

Z 0 0 0 0
J14 X 3.532� 10�3 2.334� 10�3 6.896� 10�3 6.896� 10�3

Z 0 0 0 0
J15 X 5.201� 10�4 3.395� 10�4 6.809� 10�4 6.809� 10�4

Z 0 0 0 0
J16 – 24 24 24 24
J17 – 14 14 14 14
J18 – 60 60 60 60

Case B (0, 0.03, 0.12, 0.15) s at 458

J1 X 0.3478 0.3703 0.4267 0.4267
Z 0.9905 1.0432 0.9977 1.0432

J2 X 0.7169 1.0068 0.9837 1.0068
Z 0.9843 0.9696 0.9903 0.9903

J3 X 0.3850 0.3849 0.4896 0.4896
Z 0.9790 1.0288 0.9924 1.0288

J4 X 0.6001 0.6588 0.7731 0.7731
Z 0.9969 1.0006 1.0022 1.0022

J5 – 0.2865 0.1363 0.1956 0.2865
J6 X 1.2524 2.1208 2.6391 2.6391
J7 X 0.2598 0.3327 0.3514 0.3514

Z 0.9822 1.0029 1.0253 1.0253
J8 X 0.8244 0.9145 0.9957 0.9957

Z 0.9922 0.9718 1.0015 1.0015
J9 X 0.2584 0.3463 0.4693 0.4693

Z 0.9855 0.9975 1.0221 1.0221
J10 X 0.6743 0.8465 0.9632 0.9632

Z 1.0033 1.0033 1.0049 1.0049
J11 – 2.637� 10�2 1.459� 10�2 1.774� 10�2 2.637� 10�2

J12 X 2.587� 10�3 1.690� 10�3 2.268� 10�3 2.587� 10�3

Z 0 0 0 0
J13 X 0.6643 0.9713 1.1719 1.1719

Z 0 0 0 0
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Table III. Evaluation criteria for sample controller with snow loads.

Value Direction El Centro Mexico Gebze Maximum

Case A [0,0.05, 0.16, 0.20] s at 158C

J1 X 0.3411 0.4308 0.4728 0.4728
Z 1.0214 1.1152 1.0367 1.1152

J2 X 0.7909 0.9340 1.0145 1.0145
Z 0.9658 0.9984 0.9964 0.9984

J3 X 0.3395 0.4101 0.4569 0.4569
Z 1.0964 1.0936 1.0460 1.0964

J4 X 0.6014 0.7685 0.9482 0.9482
Z 1.0099 0.9934 1.0012 1.0099

J5 X 0.2494 0.1243 0.1771 0.2494
J6 X 1.0726 1.7988 2.4286 2.4286
J7 X 0.2867 0.3599 0.3199 0.3599

Z 1.0135 1.0551 1.0529 1.0551
J8 X 0.8480 0.9038 0.9874 0.9874

Z 0.9787 0.9967 0.9912 0.9967
J9 X 0.2534 0.3376 0.4092 0.4092

Z 1.0053 1.0519 1.0394 1.0519
J10 X 0.6274 0.8032 0.8495 0.8495

Z 1.0019 1.0043 1.0033 1.0043
J11 – 2.353� 10�2 1.449� 10�2 1.766� 10�2 2.353� 10�2

J12 X 2.941� 10�3 1.717� 10�3 2.941� 10�3 2.941� 10�3

Z 0 0 0 0
J13 X 0.6640 0.9986 1.0597 1.0597

Z 0 0 0 0
J14 X 4.090� 10�3 2.576� 10�3 7.371� 10�3 7.371� 10�3

Z 0 0 0 0
J15 X 6.033� 10�4 3.765� 10�4 7.278� 10�4 7.278� 10�4

Z 0 0 0 0
J16 – 24 24 24 24
J17 – 14 14 14 14
J18 – 60 60 60 60

Case B [0, 0.03, 0.12, 0.15] s at 458

J1 X 0.4341 0.4375 0.4293 0.4375
Z 0.9869 1.0349 0.9976 1.0349

J2 X 0.6904 1.0021 1.0085 1.0085
Z 0.9825 0.9738 0.9904 0.9904

J3 X 0.4051 0.4277 0.4982 0.4982
Z 0.9800 1.0290 0.9923 1.0290

J4 X 0.6177 0.6551 0.7968 0.7968
Z 0.9970 1.0001 1.0022 1.0022

J14 X 3.613� 10�3 2.955� 10�3 4.822� 10�3 4.822� 10�3

Z 0 0 0 0
J15 X 4.596� 10�4 3.728� 10�4 5.344� 10�4 5.344� 10�4

Z 0 0 0 0
J16 – 24 24 24 24
J17 – 14 14 14 14
J18 – 60 60 60 60

Table II. Continued.

Value Direction El Centro Mexico Gebze Maximum

Case B (0, 0.03, 0.12, 0.15) s at 458
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J5 – 0.2801 0.1289 0.1882 0.2801
J6 X 1.2644 2.1379 2.7525 2.7525
J7 X 0.3035 0.3934 0.3588 0.3934

Z 0.9826 1.0026 1.0254 1.0254
J8 X 0.8382 0.9328 1.0151 1.0151

Z 0.9922 0.9719 1.0016 1.0016
J9 X 0.2719 0.3706 0.4852 0.4852

Z 0.9856 0.9974 1.0222 1.0222
J10 X 0.6781 0.8578 0.9911 0.9911

Z 1.0033 1.0033 1.0049 1.0049
J11 – 2.588� 10�2 1.466� 10�2 1.776� 10�2 2.588� 10�2

J12 X 2.783� 10�3 1.761� 10�3 2.414� 10�3 2.783� 10�3

Z 0 0 0 0
J13 X 0.6614 0.9957 1.2223 1.2223

Z 0 0 0 0
J14 X 4.103� 10�3 3.206� 10�3 5.310� 10�3 5.310� 10�3

Z 0 0 0 0
J15 X 5.128� 10�4 4.087� 10�4 5.885� 10�4 5.885� 10�4

Z 0 0 0 0
J16 – 24 24 24 24
J17 – 14 14 14 14
J18 – 60 60 60 60

Table III. Continued.

Value Direction El Centro Mexico Gebze Maximum

Case B [0, 0.03, 0.12, 0.15] s at 458

Table IV. Maximum actuator requirements for sample control strategy.

Response Direction El Centro Mexico Gebze Maximum

Case A [0, 0.05, 0.16, 0.20] s at 158

Force (kN) Z 1470.145 834.389 1450.378 1470.145
Stroke (m) Z 0.106 0.093 0.162 0.162
Vel (m/s) Z 0.811 0.402 0.535 0.811

Case B [0, 0.03, 0.12, 0.15] s at 458

Force (kN) Z 1319.488 862.081 1156.693 1319.488
Stroke (m) Z 0.120 0.094 0.148 0.148
Vel (m/s) Z 0.636 0.456 0.457 0.636

Table V. Maximum actuator requirements for sample control strategy with snow loads.

Response Direction El Centro Mexico Gebze Maximum

Case A [0, 0.05, 0.16, 0.20] s at 158

Force (kN) Z 1500.000 875.727 1500.000 1500.000
Stroke (m) Z 0.108 0.095 0.169 0.169
Vel (m/s) Z 0.825 0.403 0.543 0.825

Case B [0, 0.03, 0.12, 0.15] s at 458

Force (kN) Z 1419.342 897.910 1231.341 1419.342
Stroke (m) Z 0.121 0.095 0.155 0.155
Vel (m/s) Z 0.645 0.454 0.467 0.645

Copyright # 2003 John Wiley & Sons, Ltd. J. Struct. Control 2003; 10:137–168
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