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Abstract: We present a phase-imaging technique to quantitatively study the 
three-dimensional structure of cells. The method, based on the simultaneous 
dual-wavelength digital holography, allows for higher axial range at which 
the unambiguous phase imaging can be performed. The technique is capable 
of nanometer axial resolution. The noise level, which increases as a result of 
using two wavelengths, is then reduced to the level of a single wavelength. 
The method compares favorably to software unwrapping, as the technique 
does not produce non-existent phase steps. Curvature mismatch between the 
reference and object beams is numerically compensated. The 3D images of 
SKOV-3 ovarian cancer cells are presented. 
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1. Introduction 
 

In holography, the interference between the coherent object and reference waves produces a 
holographic recording, which contains the information about not only the intensity of light 
(amplitude signal), but also its phase. Conventional holography uses a photographic plate to 
record the interference pattern. Hologram is then developed by photochemical processes. If 
this hologram is then illuminated using the original reference wave, the wave diffracts and the 
light propagates in such a way that the original optical field is reproduced. Since the 
holographic image retains the information of not just the amplitude but also the phase of the 
original optical field, this image is the exact 3D replica of the original object. 

Since the conventional process of holographic recording on photographic plates is rather 
complicated and time-consuming, recently the emphasis has been shifting towards digital 
holography [1]. In digital holography, hologram is sampled by a high resolution CCD array 
[2-4] and the detected light intensity profile is transferred to a computer as an array of 
numbers. The propagation of optical field, which is completely and accurately described by 
the diffraction theory [5], is done via numerical reconstruction of the image as another 
numerical array of complex numbers representing the amplitude and phase of the optical field. 
Furthermore, in addition to the ability of rapid image acquisition and the accessibility of 
quantitative amplitude and phase information, various image processing technique can be 
applied to the complex field, which is not possible in real space holography. Previously, 
numerical reconstruction was performed using Fresnel transform, Huygens convolution, and 
angular spectrum methods [6-8]. 

Digital holography has been utilized for microscopic image formation. The examples 
include imaging of microstructures and biological systems [9-11]. Since high magnification 
microscopic images have small depth of focus, the possibility to numerically focus a 
holographic image (which can be done from just a single hologram) makes digital holographic 
microscopy especially important [12, 13]. Also, direct access to both the amplitude and the 
phase information allows for the numerical correction of aberrations, such as curvature and 

#95598 - $15.00 USD Received 29 Apr 2008; revised 27 Jun 2008; accepted 30 Jun 2008; published 7 Jul 2008

(C) 2008 OSA 21 July 2008 / Vol. 16,  No. 15 / OPTICS EXPRESS  10901



anamorphism [14]. While the light wave is propagating through, or reflecting from, a 
microscopic object, the phase changes can be converted into the intensity variations. The 
phase change indicates the change in the optical path length. The optical path length can be 
then converted to physical thickness, providing the sample height information. This property 
of holograms offers a phase-contrast techniques, which can then be used for quantitative 3D 
imaging.  

Many microscopic biological specimens, such as cells and their intracellular constituents, 
are mostly transparent, and therefore are problematic for conventional bright-field 
microscopy. A number of techniques are known to qualitatively convert the phase changes to 
observable amplitude variations. For example, Zernike phase contrast (ZPC) microscopy uses 
a spatial filter and a phase plate to translate phase into intensity modulation. Differential 
interference contrast (DIC) microscopy (also known as Nomarski Interference Contrast) uses 
two polarized light beams, which take slightly different paths through the microscopic 
sample. As their optical paths lengths differ and the beams interfere when they are 
recombined, it creates shadow effects, giving the appearance of a three-dimensional image. 
However, both ZPC and DIC phase contrast microscopy techniques cannot be easily utilized 
to extract the quantitative phase information. On the other hand, by giving direct access to the 
quantitative phase information, digital holographic microscopy offers a way to map a phase 
image of an object, and convert this phase map into optical thickness profile. 

On the other hand, the phase imaging of objects whose optical thickness variation is 
greater than the wavelength of light is ambiguous. Once the phase change exceeds 2π, the 
phase wraps and the image suffers a discontinuity. Therefore, such phases need to be 
unwrapped using, for instance, a software algorithm that looks for jumps in the phase image 
and shifts them up or down depending on the surrounding pixels. The usual software 
algorithms are computationally demanding and cannot correctly process complex phase 
topologies. We have previously introduced a dual-wavelength phase-imaging technique that 
removes the 2π-discontinuities by using two different wavelengths for generating two phase 
maps and comparing them. The method then uses one of the original single-wavelength phase 
images and uses the dual-wavelength image as a guide to unwrap it [15]. This has an effect of 
keeping the overall noise levels low comparing to the dual-wavelength phase image. 

Here, we present a phase-imaging technique to quantitatively study the three-dimensional 
structure of cells. A similar study had been previously done using a single wavelength and 
software phase unwrapping [16]. We have obtained 3D images of SKOV-3 ovarian cancer 
cells with diffraction limited lateral resolution and axial resolution on the order of 5 nm. The 
cells display intracellular features with sufficient clarity to measure the thickness of the cell’s 
lamelipodium and observe the features of its nucleus. Our dual-wavelength method allows a 
faster imaging, as the only time constriction is the speed at which the two angular spectra for 
both wavelengths are calculated. Moreover, in certain cases, the software unwrapping 
algorithm can mistakenly identify low intensity areas as multiple phase steps, producing non-
existent height features. This problem is not present in dual-wavelength optical unwrapping, 
as it does not rely on surrounding pixels to correct the phase discontinuities, but simply 
compares the two single wavelength phase images, taken simultaneously. In addition to that, 
we also present a simple ways of correcting a curvature mismatch between the reference and 
object beams, based on the phase correction within the angular spectrum algorithm.  
 

2. Experimental apparatus 
 

Figure 1 shows the experimental apparatus. It is based on two overlapping Michelson 
interferometers (one for each wavelength), which enables us to adjust the location of the first-
order components produced by each wavelength in the Fourier space (see below). The idea is 
similar to the setups based on the modified Mach-Zehnder configuration used previously [17-
21], and the setups based on Michelson interferometer [22-26]. He-Ne (λ1=633 nm) and 
diode-pumped solid-state (λ2=532 nm) lasers were used as coherent light sources. Both beams 

#95598 - $15.00 USD Received 29 Apr 2008; revised 27 Jun 2008; accepted 30 Jun 2008; published 7 Jul 2008

(C) 2008 OSA 21 July 2008 / Vol. 16,  No. 15 / OPTICS EXPRESS  10902



are attenuated by neutral density filters (ND) and then passed through the microscope 
objectives (OBJ11/OBJ12) which, together with the apertures A and collimating lenses 
L11/L12, produce plane waves. Their intensity is further controlled by the polarizing filters 
P1 and P2. Beam splitters BS1 and BS2 divide the beams into the reference and the object 
arms. Two separate reference arms are used to fine-tune the location of the first-order 
diffraction peaks and separate them in the Fourier domain. Lenses L21 and L22 and 20x 
microscope objective OBJ1 again collimate the beams in the object arm. The wave fronts in 
both reference arms remain spherical and the resulting curvature mismatch is digitally 
removed. An interference filter is placed into the reference arm of the diode-pumped solid-
state (λ=532 nm) laser. It is designed to allow only this wavelength to pass and block the 
inverse reflection of the other laser. The interference pattern between the reflected reference 
waves and the object wave is recorded by the CCD camera. A relative angle can be introduced 
between the object and each of the two reference beams by slightly tilting the reference arms 
mirrors. By introducing different tilts in two orthogonal directions for two reference beams, 
we can separate each spectral component in Fourier space (see Fig. 2(b) below), which allows 
us to capture both wavelengths simultaneously. 
 

 
 

Fig. 1. Multi-wavelength digital holography apparatus. The focal length of the lenses L21 and 
L22 are 17.5 cm and 10 cm respectively. The beams are collimated between L11 and L21 and 
between L12 and L22 and again are collimated after 20x OBJ1 microscope objective. 

 

3. Multi-wavelength digital holographic phase imaging 

3.1 Angular spectrum method  

Once a hologram has been acquired, it is reconstructed by numerically propagating the optical 
field along the direction perpendicular to the hologram plane (z-direction) in accordance with 
the laws of diffraction. In the case of Fraunhofer diffraction, Fresnel-Kirchoff integral can be 
expressed as [27]: 
 

0 0( , ;0) ( , ;0) exp[ ( )]x y x yA k k E x y i k x k y dxdy= − +∫∫    (1), 

 

where xk  and yk  are spatial frequencies corresponding to x  and y respectively. 

0 ( , ; 0)E x y z = is the intensity distribution recorded by the CCD camera. This is the 
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expression for Fourier transform and 0 ( , ;0)x yA k k  is the angular spectrum of the optical field 

0 ( , ; 0)E x y z =  at the hologram plane z=0. The object’s angular spectrum consists of a zero-
order and a pair of first-order terms. One of the first-order terms is the angular spectrum of the 
object field and the other is its phase inverted version. Figure 2(a) shows the hologram of a 
USAF resolution target recorded by our dual wavelength experimental setup. The two 
crossing interference fringe patterns, formed by two wavelengths, can be clearly seen. Figure 
2(b) presents the Fourier spectrum with the two pairs of first-order components, 
corresponding to the two wavelengths, clearly visible. 

 

 
  

Fig. 2. Two-wavelength hologram of a USAF resolution target: (a) digital hologram (640x480 
pixels) and (b) its Fourier spectrum of the hologram with the red and the green wavelengths 
first order components shown. 

 
The field 0 ( , ; 0)E x y z =  can be regarded as a projection of many plane waves 

propagating in different directions in space and with the complex amplitude of each 
component equal to 0 ( , ;0)x yA k k . The angular spectrum can then be propagated in space 

along the z -axis: 
 

0( , ; ) ( , ;0) exp[ ]x y x y zA k k z A k k ik z= ,   (2) 
 

where [ ]zikzexp  is the complex transfer function and 2 2 2
z x yk k k k= − −  , where 

2 /k π λ= . Here, there is no requirement for z to be larger than a certain minimum value, as 
in the case of Fresnel transform or Huygens convolution. The complex wave-field at an 
arbitrary z can be obtained by performing the inverse Fourier transform: 

 

( , ; ) ( , ; ) exp[ ( )]x y x y x yE x y z A k k z i k x k y dk dk= +∫∫    (3). 

As both integrals in Eq. (1) and Eq. (3) are computed via FFT algorithm, the angular spectrum 
method is well suited for the real-time imaging.  
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3.2 Curvature correction  

The angular spectrum method described above is based on the premise that the reference and 
object waves are both plane waves. However, in the real setup, each wave has its wavefront 
curvature, resulting in a curvature mismatch. Consider the complex field captured by a CCD 
camera (see Fig. 3). 
 

 
 

Fig. 3. R is the wave’s radius of curvature centered at C, which can be determined 

experimentally for a given setup,
 
r  is the vector from the center of the CCD matrix (point O) 

to an arbitrary point A, and 0r  is the vector from the center of the CCD matrix to the 

projection of the center of curvature on the CCD matrix P. Here 2 2r x y= + , x and y 

are the coordinates of A and 2 2
0 0 0r x y= +  , x0 and y0 are the coordinates of P. 

 
The phase mismatch can be compensated numerically, by multiplying the original “flat” 

field 0 ( , ; 0)E x y z =  by the phase factor exp[ ]iφ , where kdφ =  is the phase difference 

between A and O. Here, 2 /k π λ= , where λ is the wavelength of light and d is the optical 
path difference:  

 

2 2 2 2d CA CO CP PA CP PO= − = + − +    (4). 
 

From geometry: 
 

( ) ( )0 0 0 0 0 0

2 2 2 22 2 2 2 2 2d R r r R r R x x y y R x y= + − − + = + − + − − + +   (5). 

 

The difference can be positive or negative, depending on the angle of the curvature we are 
compensating. Finally, 
 

( ) ( )2 22 2 2 2
0 0 0 0 0( , ;0) ( , ;0) exp[ ( )]E x y E x y ik R x x y y R x y

⎡ ⎤= ± + − + − − + +⎢ ⎥
⎣ ⎦

 (6), 

 

which is the exact expression for the curvature-corrected field. This expression agrees with 

the approximation from reference [28], in the case R r>>  and 0 0r → :  
  

2 22 22 2
2 2

2 2
( ) 1 1 1 1

22

R x yr rk R r R kR
RR R

π π
λ λ

⎡ ⎤ +⎡ ⎤+ − = + − = + − =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
     (7). 
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It is worth noting that Eq. (7) is a known expression for Newton’s rings, which means that if 
the object is a plane mirror, the resulting interference pattern would be a set of concentric 

rings with the dark fringes of radius of mRλ , where m=0,1,2…. Therefore, for a 
wavelength of 532 nm, R = 3 cm, the radius of a first fringe is 126 micron and there is a total 
of 3 fringes visible in 174 micron frame (see Fig. 4 below). If the field of view is increased, 
there are going to be more fringes visible and at some point the aliasing may occur. One can 
use this formula as an analytical expression to avoid fringe aliasing. For example, for the 
parameters above, in order for the fringes to alias (less than 2 pixel per fringe), one would 
have to have a field of view large enough for over 100 fringes. 
If the parameters are chosen correctly, even a substantial curvature mismatch can be 
compensated. Figure 4 shows the phase image of the USAF resolution target covered with a 
layer of aluminum to make it entirely reflective. The pattern on the resolution target is 
elevated approximately 100 nm above the flat background. Figure 4(a) shows the 
reconstructed image before the curvature correction. Figure 4(b) is the same image after the 
curvature correction was applied, and the curvature mismatch completely compensated.  
 

 
 

Fig. 4. The reconstructed phase image of the USAF resolution target (a) without curvature 
correction and (b) with curvature correction applied. The images are 174x174 μm2 (450x450 
pixels). 

 
3.3 Multi-wavelength phase imaging and optical thickness 
 
If the object is reflective, like the resolution target in Fig. 4, its surface height profile ( )yxh ,  

is described by its phase map ( )yx,φ  of the holographic reconstruction at a given 
wavelength by 
 

( ) ( )yxyxh ,
4

, φ
π
λ=     (8). 

 

On the other hand, if the object is a mostly transparent cell on the reflective substrate, so that 
the light propagates through it, reflects from the substrate and propagates back, the physical 
thickness is 
 

( ) ( )
0

,
,

4 ( )

x y
h x y

n n

φλ
π

=
−

    (9), 

 

#95598 - $15.00 USD Received 29 Apr 2008; revised 27 Jun 2008; accepted 30 Jun 2008; published 7 Jul 2008

(C) 2008 OSA 21 July 2008 / Vol. 16,  No. 15 / OPTICS EXPRESS  10906



where 0( )n n−  is the refractive index difference between the cell and air. Figure 5(a) shows 

the phase map of the aluminum-covered USAF resolution target. The step size in Fig. 5(a) is 
approximately 2.2 radians, which can be converted to height using Eq. (8).  This is consistent 
with the AFM scan of the same area, shown in Fig. 5(b), with the step height equal to 
approximately 100 nm in both images. 
 

 
 

Fig. 5. (a). Phase map and height profile for λ=633 nm. (b). For comparison, AFM image and 
height profile of the same area.  

 
In the phase profile above, the height variation is less than the wavelength of light. The 

phase images of objects with variations in height greater than the wavelength are ambiguous 
and the phase maps exhibit discontinuities. If the simultaneous dual-wavelength phase 
imaging is performed, each phase map suffers a discontinuity every time the total phase 
change exceeds 2π, but since the two wavelengths are different, the discontinuities occur at 
different points of the image. It is possible to use this information to unwrap the phase by 
comparing the two maps. 

The phase images produced by each wavelength are independently filtered in the Fourier 
domain and two phase maps are obtained. Figure 6 shows the phase images of the USAF 
resolution target imaged at a slight angle. The images produced with a single wavelength 
exhibit multiple phase steps [see Figs. 6(a), 6(b)].  By comparing the phase images from each 
wavelength, the 2π phase ambiguities can be resolved. The new phase map [see Fig. 6(c)] is 
equivalent to a phase map created by a wavelength: 

 

 Λ12 = λ1 λ2/| λ1 - λ2|    (10). 
 

For λ1=633 nm and λ2=532 nm, Λ12 = 3334 nm, which is high enough to remove the 
discontinuities seen in Figs. 6(a), 6( b). 

The downside of this method is that the phase noise is also amplified by the same factor as 
the range. However, one can then use this dual-wavelength “coarse” map as a guide, together 
with one of the original phase maps (φ1 or φ2), to produce the low noise “fine” phase map. The 
method (detailed in the reference 15) uses one of the original single wavelength (say λ1) phase 
images and corrects the phase jumps using the coarse map as a guide. If the noise in the 
coarse phase map is too excessive, some of the single wavelength segments might still end up 
being vertically shifted from its correct position by λ1 [26], creating phase image artifacts. 
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Since the value of this shift is always λ1, these errors can then be corrected in software by 
simply looking for such jumps and shifting them up or down back to their proper place. In 
comparison to the coarse map, the noise in the resulting fine map [see Fig. 6(d)] is much 
lower, while the axial range is still the same. Indeed, while the rms noise in the flat area of the 
resolution target is about 40 nm for the coarse map, for the fine map it is almost the same as 
for the single wavelength (both on the order of 6 nm). 

 

 
Fig. 6. Phase maps for (a) λ1=532 nm and (b) λ2=633 nm; (c) 3D rendering of synthetic dual-
phase map with beat wavelength Λ12 = 3334nm and (d) reduced noise fine map (the images are 
174x174 μm2, 450x450 pixels and the vertical scale for (a) and (b) is in radians). 

 
4. Results 
 
Here, we have applied the dual-wavelength phase imaging method to 3D imaging of SKOV-3 
ovarian cancer cells. Figure 7 shows the confluent group of cells: Fig. 7(a) shows the intensity 
image, which is similar to what one can see using the ordinary microscope, while Fig. 7(b) 
displays a single wavelength wrapped phase image, and Fig. 7(c) shows the coarse dual-
wavelength unwrapped phase image. Finally, Fig. 7(d) displays 3D rendering of the final fine 
map, where we see the cells connecting together with grooves between them. The area at the 
bottom of the images is the exposed part of the gold substrate, to which the cells are bound. 
The measurements of the optical thickness of cells can then be performed using Eq. (9). One 
also needs to make an assumption of the cells refractive index, which we took to be 1.375. 
While it may not be possible to precisely determine the refractive index of the cell at each 
individual point, this number is always close to the refractive index of water and unlikely to 
deviate by more than a few percent. 
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Fig. 7. Confluent SKOV-3 ovarian cancer cells: (a) amplitude image, (b) reconstructed phase 
for λ=532 nm, (c) dual-wavelength coarse phase image and (d) 3D rendering of fine map. All 
images are 92x92 μm2 (240x240 pixels). 
 

Figure 8 shows the image of SKOV-3 single cell, where the cell’s nucleus and 
pseudopodia are clearly seen. Once again, by using the phase to thickness conversion (Eq. 
(9)), we can easily determine the 3D features of the cell. In addition to phase images for (a) a 
single wavelength, (b) coarse map and (c) 3D rendering of the fine map, Fig. 8 displays the 
line intensity profile, which indicates, for example, that the overall cell height is about 1.47 
μm. The separate measurement indicates that the thickness of the cells pseudopodia 
(lamelipodia) is around 270 nm.  

Finally, the image in the Fig. 9 shows a different confluent area of the same sample. Once 
again, the phase images generated using one wavelength clearly exhibit a number of 2π phase 
steps [see Fig. 9(b)], while the dual wavelength unwrapped phase map Fig. 9(c) shows a few 
spots where discontinuities are still present. These spots correspond to the lower intensity 
areas on the sample where no interference fringes were obtained. As a result, the phase is a 
random noise, which gives rise to multiple 2π phase steps. The images in Fig. 9(d) and Fig. 
9(e) show the result of optical and software unwrapping respectively. The software phase 
unwrapping algorithm starts at a certain point of an image and moves along a one-
dimensional path (e.g. straight line, spiral). If it encounters what looks like a phase wrap (the 
next pixel is approximately 2π higher or lower than the previous), it corrects the phase down 
or up. If the image has noisy areas, where phase oscillates randomly, the software algorithm 
may take it as a real feature and create nonexistent steps in phase profile. On the other hand, 
in dual-wavelength technique, what you see is always real. Notice that the software 
unwrapping algorithm erroneously created a phase step [upper right corner of Fig. 9(e)], 
which clearly does not correspond to the real thickness profile of the sample. 
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Fig. 8. A single SKOV-3 cell: (a) reconstructed phase for λ=633 nm, (b) dual-wavelength 
coarse phase image, (c) 3D rendering of fine map and (d) line thickness profile. All images are 
63.5x59 μm2 (165x153 pixels). 

 
 

 

 
Fig. 9. Comparison between optical and software unwrapping: (a) amplitude image; (b) single 
wavelength phase image, (c) coarse maps, (d) 3D rendering of the dual-wavelength fine phase 
map and (e) software unwrapped phase map. Images are 98x98 μm2 (256x256 pixels). 
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5. Conclusion 

We have demonstrated the application of digital holography for studying cells. The use of two 
wavelengths together with the fine map algorithm allows us to increase the maximum height 
of the features that can be unambiguously imaged while keeping the noise down to single 
wavelength levels of only a few nanometers. As a result, the accuracy and the level of details 
of the dual-wavelength images of cells, presented here, are superior to what has been 
previously demonstrated.  In comparison to the software unwrapping, dual-wavelength optical 
unwrapping method is advantageous, as it requires no intensive computation procedures and 
can handle complex phase topologies. The proposed method of curvature correction is simple 
and effective enough to easily implement the experiment without the microscope objectives in 
the reference arms of the Michelson interferometer. This greatly simplifies the optical setup 
and makes it much easier to do the initial adjustments of the apparatus. Simultaneous dual-
wavelength setup utilized together with the angular spectrum algorithm provides an easy way 
to acquire single frame images in real time, which can be used to study cell migration. 
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