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The distribution of phase lengths t for intermittent band switching is investigated. Its form 
is observed to deviate from a exponential function; a minimal phase length is seen to exist and 
the probabilities for the first few occurring phase lengths are often strongly enhanced or 
suppressed. These deviations are analyzed and described explicitly in terms of the parameter~ 

of a model map. 

1. Introduction 

Historically, the concept of intermittency stems from fluid dynamics [1-3], 

where it is used to describe the transition from a laminar to a turbulent flow in 

various situations, as some system parameter is varied. 

Pomeau and Manneville [4] conjectured that this transition might be qualita- 

tively understood by a new route to chaos in one-dimensional r_~aps. The 

intermittent behaviour in this route occurs when for certain values of a control 

parameter the orbit is confined for long times to a small part of the interval, 

evolving in a regular fashion, to escape from time to time exhibiting short 

chaotic bursts. In analogy with the fluid dynamics intermittency the long 

regular stretches were called laminar phases. 

At present, other intermittency routes to chaos have been discovered in 

various low-dimensional maps [5-10], providing possible models for a wide 

range of experimental situations, concerning for instance optical bistability 

[11], biochemistry [12], forced pendula (and hence Josephson junctions and 

VCOs) [13] and diode resonators [14]. These new types of intermittent 

behaviour differ from the Pomeau-Ma~ne~'i!!e (PM) types [4] in that during 
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the periods of confinement to a small part of the interval they also exhibit 

chaotic behaviour, only on a smaller scale. 

This paper will treat an intermittent phenomenon that occurs when two 

chaotic bands merge [5-7, 9, 11, 12, 15-17]. Just after the merger of the two 

chaotic bands the orbit of the twice iterated map is found to spend relativel~ 

long periods in either of the former band regions, but at irregular times it 

switches from one region to the other. This phenomenon has been called 

intermittent hopping or switching and an exponential (geometrical) distribution 

of the periods t (phase lengths) between subsequent switches has been ob- 

served. 

However, in numerical investigations we find that the phase length t cannot 

be arbitrarily short. That is, a minimal phase length tmi n exists, which increases 

when we get nearer to the merging point. Moreover, the probability distribu- 

tion fluctuates strongly for the shortest phase lengths, showing high peaks and 

dips. 

It is the purpose of this paper to give a quantitative description of the above 

short-phase phenomena, using the map 

f ( x )  = 1 - alxl z > 1 ,  (1) 

as an example. 

In the next section we present a brief overview of the various existing 

intermittent phenomena and their underlying mechanisms. Furthermore, we 

give a qualitative account of their individual scaling behaviours and we discuss 

the form of their probability distributions. 

In section 3 we discuss the band structure of the map (1), focussing on the 

band merging process and the ~cL mpanying switching mechanism. 

In section 4 we explain the existence of a minimal period tml . and we derive 

an expression for it in terms of the small parameter e = a -  al,  where al 

denotes the value for a for which the two chaos bands merge into one, 

In section 5 we derive explicit expressions for the probabilities of the shortest 

phase lengths in terms of e and the order z of the maximum, explaining tt,e 

strong short-phase fluctuations in the phase-length distributions. The results 

are confronted with numerically obtained phase-length distributions. 

" . . . . . . .  . . . . . . . . .  (i) . . . . . . .  : ,  In o,.,.,,,,. ~, we u,~,.u~ t .c  wi.uow structure of me map close to 
the band merging value a 1, which ' -- .appc..s to be an accumulation point of 

windows of period 2n + 1, n -- 1 , 2 , . . .  [17]. These windows are closely related 

to the minimal phase lengths tmin  - n. Furthermore, we expect PM type 1 

intermittency [4] and intermittent bursting [9] at the borders of the windows. 

Thus an intricate interplay of various intermittenc:es takes place at these 
specific parar, eter values. 
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2. An overview of intermittent phenomena 

In this section we discuss the intermittency routes to chaos for the map (1). 

When the parameter a is increased from 0 up to a0 = 2 we observe the 

following phenomena, as illustrated in fig. 1 below. 

For a < (z  + 1)z-1/z  z the orbit is attracted to the positive fixed point X of the 

map. As a is increased up to a~ the orbit undergoes the well-known cascade of 

period-doubling bifurcations. At  a = a= we have an orbit of period 2 ®, consist- 

ing of points which together form a Cantor set. (For a discussion of its 

dimension see e.g. ref. [18].) For a >  a~ the attractor is composed of a 

collection of chaos bands which undergoes a sequence of reverse bifurcations, 

.~r band mergings, at v a l u e s . . . ,  a3,  a 2, a t. Here  a,  denotes the value of a at 

which 2" chaos bands merge into 2 "-1 bands, in a pairwise manner. For a just 

above a ,  the orbit of the 2 n times iterated map shows intermittent hopping or 

switching (IS). Beyond a = a 1 we have one large chaos band. 

The whole range a > a= however is densely intersparsed with so-called 

windows in which the orbit is periodic. The opening of a period n window is 

marked by a tangent bifurcation of the n times iterated map f " ( x ) ,  i.e. a 

stable/unstable pair of n-cycles is born at, say, a = aope,. For a just below 

a = a open PM type 1 intermit*~ency is observed. Inside the period n window the 

stable n-cycle also undergc, es the cascade of period doublings and the sub- 

sequent band mergings until we have an n-piece attractor. 

1 

X 

-1 

J.,5 1,6 1,7 1.8 1,~ 2.B 

a 

Fig. 1. The structure of the attractor for the map f ( x )  = 1 - ax 4, for 1.5 < a < 2. We have indicated 

some parameter values where the various kinds of intermittent behaviour are to be expected. PM 

stands for Pomeau-Manneville type 1 intermittency, IB stands for intermittent bursting and IS for 

intermittent switching. 
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When this n-piece attractor finally collides with the unstable n-cycle from the 

tangent bifurcation the window closes. For a just above athos e we then observe a 

phenomenon which is called intermittent bursting (IB). 

We shall now briefly review the mechanisms behind these intermittencies. 

2.1. Pomeau-Mannevi l le  type 1 intermittencv 

To explain the mechanism of PM type 1 we focus on the largest periodic 

window in the parameter space of the map (1), the 3-window, with aopen = 1.75 

for z = 2. 

In fig. 2 the three times iterated map is plotted for a = 1.749, just below aopen 

where the tangent bifurcation takes place. In fact, the plotted function is 

almost tangent to the line x = y at three places. We observe that an orbit which 

comes close to a near-tangency gets caught in the narrow channel between the 

function and the line y = x. The evolution of the orbit inside the narrow 

channel is called the laminar phase. After a number of iterations the orbit gets 

out of the channel and is free to wander around chaotically until accidentally it 

comes close to a near-tangency again, and so on. 

The width d of the channel is proportional to 

E -" aopen -- a .  (2) 

1 

3(x) 

9 

-J. 

. . . .  i . . . .  i 

L - '  

. . . . . . . . . . . . . . . . . . . . .  ! t  
-1 8 1 

X 

Fig. 2. The map f3(x) for z = 2 at a = 1.749, before the opening of the 3-window at aopen = 1.75. 

The plotted function is almost tangent to the line x = y at three places, as can be verified watching 

the blow-up of the small rectangle covering the central near-tangency. Some iterations of  f3(x) in 

the channel discussed in the text are shown (dashed lines). 
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Since the maximum of the map (1) is of order z, all extrema of the n times 

iterated map will be of order z as well, so the length L of the channel is 

proportial to e ~lz. Now, the mean number of iterations ( t )  an orbit has to 

spend inside a channel will be proportional to the length L of the channel 

divided by the average distance the orbit passes per iteration, which is 

proportional to the channel width d. Putting this together we estimate for the 

mean length ( t )  of a laminar phase: 

(t) "" el/~/e = e -{~-1)/~ . (3) 

This relation can also be found in a rigorous manner using renormalization 

group arguments [19, 20]. The success of this approach is due to the fact that 

the Feigenbaum-Cvitanovi6 equation [21] can be solved exactly in this case. 

2.2. Crisis-induced intermittencies 

The mechanisms for intermittent bursting (IB) and switching (IS) are 

essentially the same as the mechanism for transients to infinity for a just 

beyond a 0 = 2 [8, 9]. The event which causes the intermittent or transient 

phenomena to occur is a so-called crisis [6], i.e. the collision of a chaotic 

attractor with an unstable cycle. For values of the parameter a just past the 

value where the crisis occurs an orbit of the map is confined to a part of the 

interval for a finite number of iterations, after which it escapes to 

- minus infinity, in the case of transient behaviour; 

- a larger, embedding part of the interval, in the case of intermittent 

bursting; 

- a n o t h e r ,  adjoining part of the interval, in the case of intermittent 

switching. 

We discuss the mechanism for transient phenomena first, then we generalize it 

to the IB and IS situations. We give a detailed treatment here, since this is a 

prerequisite for a full understanding of the anomalies that occur in intermittent 

switching. 

In fig. 3 the map (1) is drawn for z = 3 at a = 1.8 and a = 2.1. We have used 

the negative fixed point x_ and its nontrivial pre-image f-~(x_) to construct a 

square box, with corners (x_ ,x  ), ( f - l ( x_) ,  x_), ( f - ' ( x  ), f - ! (x_))  and 

(x_, f-~(x_)).  We see that in fig. 3a the maximum of the mapping at £0 = 0  is 

completely contained within the box. Its value £~f f (£o)= 1 gives the upper 

boundary for the chaotic attractor. The lower boundary is obtained by iterating 
d e f  _ .  , . ,  

the upper one once: ~7 2 = f(x~) = 1 - a. Furthermore,  the box denotes the basin 

of attraction of the chaotic attractor, i.e. all orbits started within it will be 

drawn into the attractor. Any point o~tside the box is mapped on one iteration 

to the left of x ,  and successively to minus infinity. 
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(a) (b) . 

t * ! ' ' 
f i x )  Ix) 

! 8 - 

"J, "L 

-1  

. . . . . . . . . . . . .  L _ ' S S Z  

. . . .  4~ 

, , A ....... , - - ; - X  
x - - ~  - t  e l 

x 

Fig. 3. The  map f(x) for z = 1.5 (a) at a = 1.8. Fne boundaries  of the at t ractor  are indicated by ~72 

and ~71, respectively. Note that  the maximum at ~70 = 0 is completely contained within the square 

box discussed in the text. (b) at a = 2.1. The maximum at ~70 = 0 pierces through the square box 

discussed in the text. Some iterations of a typical orbit  which escapes to -ao after  landing in the 

escape region le~ c are shown (dashed lines). 

For all a < 2  the maximum is contained within the box and hence the 

attractor is stable, i.e. an orbit once on it will remain there forever. At a = 2 

the maximum hits the top of the box, as can be checl'~ed easily; in this situation 

the left attractor boundary ~7 2 coincides with the negative fixed point x_ (so we 

have a crisis here), while the symmetry of the map dictates that x _ - - x t  = 

- 1 .  Thus we have x2 = 1 - a = - 1 ,  hence a = 2 for all z. For a above a 0 = 2 the 

maximum pierces through the top of the box, as illustrated in fig. 3b. The 

interval where f(x) exceeds the box denotes the escape region Iesc. Any orbit 

point which falls into this interval is mapped to the right side of the box and on 

the next iteration to the left side, whereafter  it wanders away to minus infinity. 

For small e = a - a 0 the amount d that f (x )  exceeds the box is proportional 

to e, so the width L of the escape region is proportional to e t/z. For small 

values of e this is also a small quantity, and orbits of f (x)  started inside the box 

will in general remain there for long times before escaping to minus infinity. 

The mean number of iterations ( t )  an orbit with a random initial condition 

within the box spends before escaping can thus be estimated as 

( t ) " l / L " e  -l 'z • (4) 

We denote the iterations an orbit spends within the box as the transient 

phase. We shall now discuss the distribution P(t) of lengths t of transient 

phases for orbits with random initial conditions within the box, for small e. In 

this case we have a small escape region: L <~ 1, so we can assign a small 

probability q = 1 / ( t )  for an orbit to land in it on each iteration. Then tire 

probability for a transient phase of length t to occur equals 
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1 [ ( 
e(t)=(1-q)t- lq= (t--) exp ( t -  1)In 1 . . . .  

1 

This is a geometrical distribution. Since for small a we have I n ( 1 -  q ) =  

_ q  + (~(q2)  the distribution limits for large (t} to an exponential one, 

1 exp[ t e(t) = (t) ]" (6) 

For a discussion of this distribution see also ref. [14]. 

2.3. Intermittent bursting 

In order to understand intermittent bursting (IB) we consider the thrc.: **i.~,~:~ 

iterated map f3(x) for z = 3 at a = 1.86, as depicted in fig. 4, iust before the 

closing of the 3-window at a¢~os e = 1.869904234.. .  We can now dr~,~ ~hree 

square boxes in the same manner  as before using the unstable 3-cycle elements 

and their closest nontrivial pre-images under f3(x) as reference points. Each of 

these boxes contains a (sub)map similar to the original map f(x),  but on a 
smaller scale. 

As long as the extrema of the three submaps lie inside their boxes (as in fig. 

4), any orbit of fa(x) trapped in one of them will remain there forever. So, 

' • ) . . . .  i . . . . . . . .  , . . . .  | 

:s(x) l 

- i  8 1 

Fig. 4. The map f3(x) for z = 3 at a = 1.86, before the closing of the 3-window at aaose = 
1.869904234... The boundaries of the three bands are £2, £5 and £3, £6 and £4, £~, respectively 
(see text). In the insert a blow-up of the central box is drawn. Note that the three submaps 
discussed in the text are completely contained within the square boxcs. The rightmost box is so 
small it ca"not be discerned in this figure. 
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considering f(x), we have a three-piece chaotic attractor here. The actual chaos 

bands are given by the intervals [-'72, xs], [-~'3,-~6] and [x4,-'7~], where 

x\ = f ' ( 0 )  (7) 

denotes the nth iterate of the maximum S 0 = 0, i.e. -~'1 = 1, x2 = 1 -  a, -r3-- 

1 - a l l  - al z, and so on. 

At  a = aclos e the extrema of the submaps hit their boxes simultaneously~ and 

at this moment  we have x _ i  = x4+i, i = 0 ,  1,2,  where x_.i denotes the ith 

elemeJ~t of the unstable 3-cycle, so here the attractor collides with the unstable 

cycle. 

For a > ac~os e we have a situation similar to the one in fig. 3b. The three 

extrema pierce through their boxes and consequently an orbit can escape from 

its box. For  small values of  e = a - a~os~ the escape regions, which are given by 

the intervals where f3(x)  exceeds the boxes, are quite small, end orbits o f  f3(X) 

will in general remain for long times in one of the former band regions. When 

the orbit escapes it wanders around chaotically within the overall attractor 

boundaries ~72 and ~1, until it gets trapped again in one of the boxes, and so on. 

A typical time series o f  f3(x)  JS shown in fig. 5. 

The average time ( t )  an orbit spends in the former band regions is again 

proportiona! to e -l/z, cf. eq. (4). Since the boxes are relatively small as 

compared to the whole inte~wal [x2, :7~] and since the motion outside the boxes 

is chaotic, we may assume that the points wlaere the orbit re-enters the boxes 

A 

I 

x( t l  

I 

-: I- 

. . . .  • . - ,  . . . .  , . . . .  , . . . .  , . . • , . . . .  , . . . .  , . . . = p - -  

l!?t j 

8 ~Oe 2°,] ~88 468 G66 

t 

Fig. 5. A t ime series of  the m a p  f3(x), f(x) = 1 - a lxl  3, for a = 1.87. just  af ter  the closing of the 

3-window at a,,o~ = ] . 8 6 9 9 0 4 2 3 4 . . .  Successive iterate'., are joined by straight  lines for clarity. 
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are more or less randomly distributed. This means the di.~tribution of the 
lengths of the confinement ph"~,es is given by (6). 

2.4. Intermittent switching 

Finally, we discuss the phenomenon of intermittent switching (IS). In fig. 6 

the twice iterated m a p  fE(x) is depicted for z - 2, a = 1.51, just before the last 

band merging at a~ = 1.5436890...  Two boxes containing a submap can be 

constructed now, taking as reference points the positive fixed point X and its 

pre-images u n d e r  fE(x) at the left and the right of X: 

XL = -- X XR = ( I + X )  ~/z 
' a " ( 8 )  

For a < al ,  before the band merging, the extrema of the submaps lie inside 

their boxes, so an orbit of f2(x) started in either of them remains there forever. 

The actual chaos bands are given by tt~e intervals [£2, :74] and [x3, £1]. At 

a = a I tbe extrema hit their boxes simultaneously, and the band boundaries £4 

and .,7~ touch each other (at X). For a just above al the points £4 and :73 have 

crossed each other, and orbits of f2(x) can escape from their boxes, again with 

a small probability proportional to e ~/~, with e = a -  a~ here. In doing so, the 

orbit is first transferred to the left of X L, respectively, the right of Xa, and on 

the next iteration off2(x) it enters the interval [X, a74], respectively, [£3, X] of 

the other box. So, for small e an orbit of the twice iterated map is found to 

ii 

Fig. 6. The map f2(x) for z = 2 at a = 1.51, before the band merging at a = a~ = 1.5436890. The 

bountlaries of the two bands are indicated by £2, ~74 and ~3, ~Tt, respectively. Note that the two 

submaps discussed in the text are completely contained within the square boxes. 
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spend relatively long periods in either of the former band regions, but at 

irregular times it switches from one region to the other. A typical time series at 

a = 1.545 (e = 1.311 10 -3) is shown in fig. 7. 

The average duration of the phases scales again with e-~/z in the limit e ~ 0, 

but we must be careful in making assumptions about the distribution P(t) of 

phase lengths t, since the entrance points in the boxes are not randomly 

distributed over the boxes, but are confined to the small intervals [73, X] for 

the left box and [X, x4] for the right box. Hence we expect the distribution (6) 

to hold only for the longer phase lengths. We shall come back to this in the 

following sections. 

3. Band structure and switching process 

As already mentioned before, the switching phenomenon occurs for all 

a-values just above all band merging values a,. In this section we shed some 

light on how the band structure of the map (1) comes about and we highlight 

the switching process more in detail. 

3.1. Band structure of  the attractor 

In the previous section we studied the last band merging at a = a~ by looking 

at the twice iterated map f2(x). We continue this line of thought by considering 

the four times iterated map just before the one but last band merging at a = a 2. 

e 

" "  1 " 1  I l l  ' " 1  I Ill 'I I I III I 

. . . .  , . . . .  J . . . .  , • , , , i , . • . 0 . . . .  J . . . .  , . . . .  i . . . .  i . . . .  i . . . 

9 LOB 299 2[99 496 599 

' t  

Fig. 7. A time series of the map fZ(x), f (x )  = 1 - ax 2, for a = 1.545, just after the band merging at 

a~ = 1.5436890. Successive iterates are joined by straight lines for clarity. 
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A plot of this map is given in fig. 8 for z = 1.1 at a = 1.2. For z = 1.1 we have 

a 2 = 1 .2343723 . . .  

Now we construct four boxes taking as reference points the 2-cycle and their 

respective pre-images under.f4(x)  at their immediate  left and right. These four 

boxes all contain submaps whose extrema touch the boxes at the band merging 

value a 2. Just above a = a 2 orbits o f  fa(x) show intermittent switching between 

the two boxes of the pair in which they were started. In the figure we have also 

drawn the boxes with as reference points the positive 1-cycle X and its 

pre-images under f2(x),  cf. eq. (8). In the depicted situation (a < a2) the 

attractor bands are bounded by the extremal values of the submaps and their 

images u n d e r  f 4 ( x ) .  They are the intervals [.,7-2,£6], [£8,£4], [ £ 3 , £ 7 ]  and 

 11. 
It can easily be proved that all extremal values of an n-times iterated 

unimodal map f(x), i.e. f"(x), are given by the values .,71, £2, .  • - ,  £n, where £i 

denotes the ith iterate of the critical point x o of f(x), cf. eq. (7). The ordering 

of the iterates £i, i = 1, 2 , . . . ,  2n, follows from the theory of Metropolis,  Stein 

and Stein (MSS) [22]. We elaborate on this in appendix A. 

At  a = a 2 we have £5 = £7 and hence £6 = .'78, which illustrates the fact that 

the merging points of the attractor bands are given by the 2-cycle, just like at 

a = a i we have £3 = £4, where the merging point is the (positive) 1-cycle. In 

genera! at a = a ,  we have £2,÷1 = £2,+1+2,-~. This is the condition one normally 

uses to determine the band merging values an. 

T 
f~(x) 

-1 I1 

I 

i . . t 

1. 
D, 

Fig. 8. The map f4(x) for z = 1.1 at a = 1.2, before the band merging at a = a 2 -- 1.2343723. . .  The 

boundaries of the four bands are x2, x6 and £~, x 4, x 3, x7 and X s, x~, respectively. Note that the four 

submaps discussed in the text are completely contained within their boxes. Also drawn are the 

boxes corresponding to the submaps of f:(x).  
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Some band merging values for the map (1) are given in table I, for various 

values of z. They converge geometrically to a®(z), the accumulation point for 

period doubling, i.e. 6,, = ( a , , -  a n _ l ) l ( a n + l -  a,,), 6,,--->6(z), with 6(z) being 

equal to the well-known Feigenbaum constant for period doubling [2, 18]. 

Moreover, the widths of the bands at successive an's scale according to the 

scaling function 1/or(z) of Feigenbaum [21, 18]. In the table we also give the 

scaling of the quantity X 2 n + l -  X2 n , whose absolute value is the width of the 

largest band (the one that contains ~7 = 0). This quantity scales rather nicely 

with the factor t~ n, an--> a ( z ) .  

Table I 

Band merging values and the scaling approximants 6n and a n 

discussed in the text for some values of  z. 

n a n 8 n o t  n 

z = l . 1  

1 1.4317116724407 

2 1.2343722800140 2.815553 "-6.088603 

3 1.1642832538048 2.800400 -7.180582 

4 1.1392550372393 2.815698 -7.669212 

5 1.1303662234870 2.824695 - 7.858585 

6 1.1272194006324 2.828441 - 7.927802 

7 1.1261068362159 2.829841 -7.952554 

8 1.1257136818428 

z = 2 

1 1.5436890126921 

2 1.4303576324513 4.937646 -2.464982 

3 1.4074051181647 4.671847 -2.496139 

4 1.4024921763586 4.675955 -2.501243 

5 1.4014414942536 4.669907 -2.502571 

6 1.4012165043094 4.669443 -2.502832 

7 1.4011683208393 4.669242 -2.502892 

8 1.4011580015052 4.669212 -2.502904 

9 1.4011557914246 4.669204 -2.502907 

10 1.4011553180932 

z = 3  

1 1.6180339887499 

2 1.5366213864468 6.616745 -1.917654 

3 1.5243173613342 6.035730 -1.928489 

4 1.5222788300306 6.098311 -1.927491 

5 1.5219445520154 6.082926 -1.927745 

6 1.5218895985208 6.085109 -1.927690 

7 1.5218805677057 6.084615 -1.927694 

8 1.5218790835010 6.084703 -!.927691 

9 1.5218788395771 6.084686 -1.927691 

10 1.5218787994889 

a:~ 
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These facts are not too surprising, since to derive the relevant scaling laws 

one uses the same renormalization scheme, with the same scaling operation 

To g(x)= ag(g(x/a)) and the same accumulation point a~. 

To appreciate the fact that the attractor has a (multi)fractal structure at 

a = a~, one gains a more direct insight in this structure when one approaches 

a~ from above instead of from below, as is usually done. Considering the 

attractor at successive values a = a ,  we first see one interval at a = a~. At 

a = a 2 the middle part is taken out in such a w~y that the remaining parts have 

approximately 1/a  resp. 1/I, 1 times the size of the original interval. At a = a 3 

this process repeats for each of the remaining intervals, and so on until at 

a = a~ we have a Cantor set. 

3.2. A symbolic description of the switching process 

We shall now have a closer look at the switching process occurring after a 

band merging. For this purpose we consider the original map f(x) for z = 1.5 at 

a = 1.6, just after the last band merging at a~ = 1.48963190. . ,  as depicted in 

fig. 9. 

Before the band merging an orbit always alternates between the regions 1 

and r at the left, respectively, the right side of the positive fixed point X. After 

the band merging we have the situation as in fig. 9. We have also drawn the 

two square boxes discussed in the previous section with the reference points X 

and its pre-images X L and X R under f2(x), cf. (8). Also the attractor 

i 

l ---- .... I 

Y- l\- 't B ~ - -  -n . . . . . .  L 

I \it 
l /  ~ i I \ ',1 

XL It.,: L X X 
I F  / I ~ I I , , "  I " i  I - W  

-1 IA rn 
v l . , i , I , i i i i , , , . i . . . .  i 

- I  II I 

Fig. 9. The  map  f(x) for z = 1.5, at a = 1.6, after  the band  merging.  The  boundar i e s  of the 

a t t ractor  are £~ = 1 and £:  = 1 - a. Also  drawn are the two square  boxes discussed in the text with 

the reference  points  X and its p re - images  X L and XD ,,,'.,~er f~'(x). 
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boundaries £~ and £2 are indicated. Now the left part 1 = [£2, X] and the right 

part  r = [X, £1] of the attractor are divided into the regions 1 A = [X L, X],  

rA = [X, XR], which are covered by the left, respectively, the right box, and 

the regions 1 B = [£, XL], r B = [X a, £1], which are not. 

We observe, considering the figure, that  a point in region 1 B is always 

mapped  into 1 A, a point in r B always into 1 B, a point in r A always into 1 A, 

but a point in 1 A can be mapped into both r A and rB,  depending on whether  

it lies in the subinterval denoted by Iesc. L or not. From these observations we 

deduce the following alternation rules: 

r - ~ l ,  

l-~rorl, 

ll-~r. 

(9) 

Since for small values of e = a -  a I the interval Iesc, L is small as compared to 

the region [X L, X] the occurrences of 1---> 1 are relatively rare in that case. 

A part  of a typical sequence for example is given by 

... irlrlrlrlrllrlrlrlrlrlrlrlrllrlrlrllrlrl .... 

When one considers an orbit of the twice iterated map f2(X) one follows either 

the even or the odd elements of the above sequence. That  is, one sees 

odd: 

even: 

. . .  llllllrrrrrrrrllllrr..., 

. . .  rrrrrlllllllllrrrlll..., 

which is intermittent band switching. Comparing the odd and even sequence 

we observe that a series of l ' s  is always one element longer than the 

corresponding series of r ' s  in the twin sequence. 

Hence everything that applies to a phase of length t in the right region 

applies to a phase of length t + 1 in the left region. For instaoce for the 
minimal pha~e l e n o t h ~  d i ~ e . ~ o d  i n  t h ~  n ~ v t  ~potlnn ,xn= h~a~t,,~ 

/min.L -- /min,R q- 1 , (10) 

where tmin, L is the minimal phase length in the left region and train, R is the 

minimal phase length in the right region. For  the probabilities PL(t) and PR(t) 

for a phase of length t to occur in the left, respectively, the right region we 
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have in a similar fashion 

PL(t) = PR(t-- 1). (11) 

So the switching process of an oribt of f2(X) amounts to an anomaly of the 

type 11 in the alternating sequence . . .  l r l  r l r . . ,  of an orbit of f(x). 
Anomalies of the type 111  are not possible and neither are anomalies of the 

type r r  reported in ref. [17]. The same considerations can be applied to the 

submaps of fE"-l(X) at the band mergings at a., where the orbit of f2"(x) 
switches between the regions [:~i, x2--l,i] and [x2.-1,~ , :~2,+i], i = 1, 2 , . . . ,  2 "-1, 

where x2,-1,~ denotes the ith element of the 2"-I-cycle. 

4. Minimal phase length 

Let us consider the region x > X in fig. 10. An o r b i t  off2(x)  in the right box 

will switch to the left region x < X after it gets into the escape interval Iesc, R. 

When this happens the orbit is transferred on the next iteration into the 

interval I 0 = [XR, 1]. The interval I c ,s mapped by f2(x) to 11 = [x3, X], then to 

I2 = [xs, X],  then to 13 = [-~7, X].  In fig. 10 the interval 13 overlaps with the 

f2 (x)l ' 

J 

I 
• ! 

-1 i - ~ t 
: x 
f 

. . . . . . . . . . . . . . . . .  i li 2 

I3 

Fig. 10. The map f-(x)  for z = 2, at a = 1.58, after the band merging. The boundaries of the band 

are ~ = 1 and ~', = 1 - a. The escape interval Ie~. R of the right region i~ ,'napped onto the interval 

I., and then successively onto 11, I, and 13. Note that the interval 13 overlaps with the escape 

interval ! .... L of the left region. 
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escape interval of the left box and thus the orbit has a possibility to switch back 

to the right region on the second next iteration (since the escape interval is first 

transferred to the interval [:72, XL] at the left). So we observe that in this case 

the orbit must spend at least four iterations of fE(x) in the left region. We 

define the minimal phase length in the left region/min,L as the minimal number 

of iterations spent in that region. In general train, L will depend on the value of 

e = a - a~ as well as on the order z of the maximum. In the above example we 

have t ra in ,  L "- 4. 
To establish an accurate lower bound for tmi . as a function of e we determine 

the minimal number n of iterations of fE(x) needed to map x~ into the escape 

region Iesc, L (or to the left of it). For small values of e the region 11 is quite 

narrow, with :73 close to the unstable fixed point x, and the number of 

iterations can be found from 

x S + : .  - x =  - x )  . (12) 

The escape interval lies in a small neighbourhood of the minimum at :70 = 0 

and as soon as Xa+En reachcs this point the orbit has a possibility to escape after 

one extra iteration. Henc,.. from (12) we can estimate the minimal number of 

iterations n L of f 2 ( x )  to get from :73 to the escape region: 

1 ( X - £~ ) / I n  [ f'(X)[ (13) t i L =  - -~  In X _ : 7  ° 

Since a non-integer number of iterations has no meaning, it is understood that 

n L should be lifted to the next integer, i.e. tl E--->[tI E + 1]. Here we may 

anticipate that for small e eq. (13) will give a very good estimate of the number 

of iterations rtL, although of course the linear approximation (12) will not be 

good for values of "~'3+2n close to :7o. This is due to the fact that such values are 

reached from points where the linear approximation is valid only by a small 
number of iterations. 

The minimal phase length for an orbit of f2(x) in the left region/min,L is then 

[r/L + 3], since one iteration is needed to get into the interval I; and another 

one is needed to escape to the interval [:72, XL] before switching to the right 
region. 

For the right region the same arguments can be applied. However, the 

length of phases o f f : (x )  in the right region is always 1 iteration shorter than the 

length of the corresponding phases in the left region, as we showed in the 

previous section. In fact, we can read this directly from the analogue of eq. 

(13) for the right region, taking into account that Ie~r a is located around the 

pre-image at the right of :7o which we denote by £ i. We thus have 
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1 ( ~4-X '~ 
n R =  2 In ~ _ ~ _ X / / I n  [ f ' ( X ) l .  (14) 

Substitution of  the approximate  relations 

~,-  x--f'(x)(~3- x),  

• ~ - 1  - x ~ (.~o - x ) / f t ( x )  
(15) 

immediately yields 

n R = n L - 1. (16) 

Thus the minimal phase lengths in the left and the right region are related by 

train, L = train, R + 1. Consequent ly  the minimal phase length tmi n is  equal to 

t r a i n ,  R = [rt R + 3] = [nL + 21. 
From now on, we shall concentra te  on the left region phenomena  only, i.e. 

we shall only use the quanti t ies  tmi., L, PL, etc. 

The quanti t ies  in eq. (13) can be calculated near  tbc baod merging using 

simple per turbat ion  techniques.  We shall do this for the map (1),  f ( x )= 

1 -  a lx l  z . 

We have 

x" 0 -'-0, "~l = 1, X 2 = 1 -- a, -~'3-- 1 -- a l l  - a l  ~ , (17) 

and so on. 

Insert ing a -  a~ + e we obtain  

.~3(e) = 1 -  (a, + e ) l l -  (a,  + e)] z . (18) 

For the fixed point X we observe that when the minimum in fig. 10 touches 

the bot tom of the left box we have X = X L = ,,7 2, hence X = a 1 - 1 a~ the band 

merging. The  fixed point relat ion f ( X ) =  X thus yields 

(a l - l )  ~ = ( 2 - a ~ )  - = ( 2 - a l ) / a  1. (19) 

Expanding  (18) we obtain,  using the above relation, 

a, 1) 
a 1 a I - 1 e "4- ( ~ ( e 2 )  • (20) 

On the o ther  hand, inserting X = a 1 - 1 + ~b(e), with ~b(0) = 0, into f (X )  = 
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X and expanding one finds 

(2-a,)( a,-a ) 
X ( e )  = a 1 - 1 + a 1 ( z -  1)a 1 - 2 z  + 1 e + ~ ( e 2 ) .  (21) 

So, summarizing, we find the following expressions: 

( z(2 - a l )  ~ ( z a ~  - 2(z + 1 ) a  I + 2) 
X - . ~ ' 3 =  a , ( a l _ l ) / \  ( ~ - _ l ) a l _ 2 Z + l  e+O' (e2) ,  (22) 

X -  Xo = al - 1 + '~(e), (23) 

- z ( 2 -  al)  
f ' ( X )  = a I - 1 + ~(e).  (24) 

For the case z = 2 for example this yields 

tmin. L = [3 - 0.965 In (3.43e)]. (25) 

Applying eq. (25) we find the values tmin, L = 6, 8, 10, 12, 15 for e = 1 0  -2 ,  

10 -3 , 10 -4 , 10 -5 , 10 -6 respectively. These values are in perfect agreement with 

the numerical values obtained by iteration of the interval I~ = [~73, X]. 

Some of the considerations given above are reminiscent of an estimate by 

Grebogi et al. [6] of the phase length of the transient chaotic phase in the case 

of intermittent bursting. The interpretation, however, is quite different and the 

laminar phase in intermittent bursting does not show a minimal phase length 

effect. Further, in ref. [7] some plots of distributions of phase lengths were 

shown, but the minimal phase length phenomenon was not mentioned. 

5. Probabilities of the short phase lengths 

In order to calculate the probabilities of the first occurring phase lengths we 

follow the switching process in detail once again. An orbit of f Z ( x )  that 

switches from right to left first gets into the right escape region. When the orbit 

is chaotic enough (i.e. when the value of the chaos-parameter a is not inside or 

very close to a periodic window), and the escape region is small, it is 

reasonable to assume that the points of entrance into the escape region Iesc, R 
are uviformly distributed over that region, that is 

Pesc,R - ' -  constant. (26) 
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The escape interval Iesc, R is mapped u n d e r  f2(x) onto the interval I0 = 

[X R, 1], cf. fig. 10. The (normalized) distribution po(X) of points mapped on 

this interval is obtained by applying the Frobenius-Perron  operator  (see 
R 

appendix B) to the (constant) distribution p esc.R(X), that is 

po<x) = f O s=,ga(X- f2(x'))dx' 
lesc,R 

- - z - l ( 1 - - X R ) - l / z ( 1 - - X )  - '+'/z,  X • I o .  (27) 

This distribution has a cusp type singularity at x = 1 for all z > 1. In the limit 

z ~ 1 it straightens out to a uniform distribution. On the next iteration I 0 is 

mapped onto I~, with a distribution p~(x) having a cusp type singularity at :~, 

i.e. at the left boundary of the interval I~. We have 

p,(x) = z ' ( X -  ~) -"~(x  - ~ )  '+"~, x E I , .  (28) 

In order  to find the probabilities for the shorter  phases to occur we iterate 

the left escape region Iesc, L backwards in time (under f2(x)). The successive 

pre-images of Iesc, L form a structure on the x-axis whose complement is a 

(multifractal) Cantor set, as illustrated in fig. 11. 

,2X e 
i j  

I - - ? -  - 

,J- L/ 

J 
I 

1 2 01 2 1 2 

- j ,  , . . . .  I . . . .  , • 

6 

R m ~ .  

Fig. 11. The map f2(x) for z = 3 at a = 1.63. Only the part  coriesponding to the left box is plotted. 

Some pre-images under f~(x) of I .... t. are depicted. They art; grouped in a tree structure along the 

r-axis. The complement is a multifractal Cantor set. 
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An orbit of f2(x) that lands in one of the 2 n nth pre-images of Iesc, L will 

switch to the right region after precisely n + 1 iterations (of f2(x)). The 

corresponding phase length in the left region is then t L = n + 2 because to land 

left in the first place counts already for one iteration. The probability for a 

phase of length t L in the left region to occur equals then 

2 1 - 2  

PL(t) = ~ f Pl(X) d x ,  
i=1 

f ~ / 2 ( t - 2 ) l l e s c  L )  (-) 

(29) 

where i labels the ( t -  2)th pre-images of Iesc ,  L. 

The overlap of an arbitrary interval [a, b] in the left region with Pl (x) can be 

simply calculated to be 

b 

fPl  (x) dx 
a 

X-- ~3 )l/z] max(b'~3) 

"- [ (X- -  ~" 3 dmax(a,£3) 

= O ( b  - a73) [ (b  - .~3) ' / :  - O ( a  - . ~ 3 ) ( a  - ~ 3 ) ' / : ] ( X -  .~3) - ' / :  9 

(30) 

O(x) being the step function. So, by iterating backward (under fE(x)) the left 

escape region, which is given by 

[(1 l+xtl/z) '/z (tl+Xt/z) l / z ] l  
Iesc L - -  - -  " a a ' a a 

(31) 

and by applying eqs. (2~) and (30) we obtain theoretically the probabilities for 

all possible phase lengths. 

In practice this method can only be used for short phase lengths, since in 

order t<; ~b~ain the P L ( t )  w e  must calculate 2 t - 2  pre-images of Iesc, L and their 

corresonding overlaps. We have done this for several z and e = a - a~ > 0 and 

for values of c not too close to a periodic window we find a good agreement 

between the predicted probabilities according to (29) and (30) and numerically 
obtained nha~e length prahahilitie~ I n  r io  19  w e  n r o ~ n t  t h e  r e , n i t  n f  ~ :nch  n 

confrontation for z = 2 and a = 1.55 (a 1 = 1.543689...).  The stars represent 

the theoretical values, and the bars represent the numerically measured values, 

togzther with their error estimates. The latter are given by 

AP= ~/P(1NP) , (32) 

where p is Pc(t) and N the total number of measured phases. 
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P L ( t )  
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Fig. 12. Comparison between numerically obtained phase length probabilties (bars) for z = 2 and 

a = 1.55, and their  theoretically predicted values (stars) (see text).  Here tm,,.L = 6, i.e. Pr(t) = 0 for 

t < 6 .  

Clearly the first pre-image of Iesc, L that starts having an overlap with Pl(X) is 

the (tmi,. L - 2)th pre-image of Iesc. L that is the closest to the fixed point X. We 

expect that the probability of this shortest phase length Pm.x.L(tmi,.L) is 

maximal when pt(x) has the greatest overlap with the relevant pre-image of 

Iesc. L, i.e. when 

_ - ~ )  ~ 

x 3~ = max f (,-20m'"'L) - (X ° _ 1 L ) ,  (33) 
i 

where L is the width of the left escape region. 

The width of the successive right-hand side pre-images of l esc.L reduces 

approximately with a factor [ f ' ( X ) ]  2 each step, so the width of the relevant 
pre-image is L [ f ' ( X ) ]  -2(tmin'e-2) • Hence the maximal probability for the 

minimal phase length (in the left region) is estimated to be 

- 2 ( t r a i n , L -  2)  
.~3+ Llf '(X)! 

p t t  ) =  f z " m a x . L ' , ' m m , t  

L -2)] 
= [ ( x -  

( L ) - _  l / z  2 

X + ½ L  .--e 

- ' ( X -  .,~)- l/=(x - .~3) - '  + ' ' - "  dx 

! / z  

In the last steps we have used eq. (12) and the fact that L--- e 
I / z  

(34) 
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Fig. 13. Numerically obtained (logarithmic) probabilities of/min.L for z = 1.1, z = 2 and z = 3, for 

values of e where a maximal value of PL(tmi,,L) is expected. The measured values are represented 
by bars, and they are compared to the estimates based on eq. (34), represented by the lines with 
slope 1/z". 

In fig. 13 we compare the numerically measured (logarithmic) probabilities 

of train, L for z = 1.1, z = 2 and z = 3, for values of e where a maximal value of 

PL(tmin,L)  is expected (bars), with their theoretical prediction according to eq. 

(34), represented by the lines with slope 1 / z  2 

The maximal height of the peak as compared to the inverse of the average 

phase length grows with increasing z, since its scaling is governed by a smaller 

power of e. In other words, the enhancement of the shortest phase length 

increases rapidly for growing z. For actual systems such a feature may be used 

to gain information on the z-value of the underlying map. 

We observe that the agreement between theory and numerical mesurement 

is quite good, although for higher values of z the results start diverging. This is 

due to the fact that PM and IB intermittency effects near periodic windows are 

much more persistent for higher values of z. Also the actual size of the periodic 

windows increases for" growing z. These features are discussed in the next 
section. 

6. The influence of windows 

Finally, for e-values in the neighbourhood of windows different probability 

distributions are found [17, 23, 25, 26], since an intricate interplay between 

various types of intermittency occurs here. For small values of e = a - a ~  

almost all windows have odd ( 2 n -  1) period, and they are ordered in a tree 
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structure along the z-axis. For e-values inside these windows we only have the 

phase length t L = n ( t  R = n -  1). In order to see how this comes about we 

consider again the m a p  f2(x) in fig. 11, for z = 3 and a = 1.63. The left escape 

interval Iesc, L is centered around the critical point x'0, and consequently all 

pre-images under f2(x) of lesc ,L a r e  centered around the pre-images of JT0; the 

latter are thus ordered in the same (tree)- structure as the former. 

Now, when a is increased from a~ to a 0 = 2, or e from 0 to 2 -  a l ,  the value 

of £3 = f3(£0) moves leftward monotonically from the fixed point X to the left 

attractor boundary £2. Each time £3 passes a pre-image f-2i(£0) we have a 

superstable period m = 2i + 3-cycle, characterizing a window of the same 

period around it. From this it is inferred that there is a family of odd windows 

which is organized in a tree structure along the a-axis, with a = a~ as an 

accumulation point. 

The widths of the windows in this family can be calculated explicitly [24, 27], 

and for small e an accurate scaling for the width as well as the position can be 

estimated. In fig. 14 below we have given a plot of the log of the mean phase 

length ~°log(tL) a s  a function of ~°log e, for z = 3. The plateaus correspond to 

the periodic windows, and the tree structure is clearly discernible. This plot is 

reminiscent of fig. 3 in ref. [17], but there only part of the odd windows were 

discussed. 

Just before the opening of a perodic window we observe PM imermili:tency 

and just after the closing intermittent bursting (IB) takes place. These inter- 

mittencies occur simultaneously with the switching process. In fig. 15 a time 

series is depicted of the m a p  rE(x), for z -- 2 and a = 1.57471, just before the 

opening of the first period-7 window at a = 1.57471570. . .  From this picture 

the interplay between PM intermittency and intermittent switching is evident. 

As one observes we still have intermittent switching during the laminar phases 

of the PM intermittency. Indeed, during the latter we alternatingly have 4 

Xelog<tL>l 1 

7 

5 

I i , ,, , , i , i i , , I i . a  

-Z -2 -I 

ZelOg S ---.-~ 

Fig. 14. l° log( tL)  versus ~°log e, for z = 3. Within a per iod  2n - 1 window we have (tL) = t~. 
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Fig. 15. A time series of the map f2(x), f(x) = 1 - alxl 2, for a = 1.57471, just before the opening of 
the 7-window at a = 1.57471570... One can easily discern Pomeau-Manneville type 1 inter- 
mittency (e.g. between t = 70 and t = 180) and intermittent switching (e.g. between t = 230 and 
t = 430). Successive iterates are joined by straight lines for clarity. 

consecutive orbit points of f2(x)  in the left region and after that  3 in the right 

region. 

Our  probability analysis for the phase lengths does not hold anymore in 

cases like the above, because the requirement  that the points of entrance in the 

escape intervals are uniformly distributed is violated here. However,  if we 

consider all phase lengths other  than 4 (in the left region), and normalize the 

remaining theoretically and numerically obtained distributions in the proper  

way, we still have a good agreement,  as can be checked in fig. 16 where we 

have compared theory and numerics for the above parameter  values discarding 

t L = 4 .  

Finally, in fig. 17, a discrete Fourier spectrum is given of a time series of 

N = 217 iterations of the single map f(x), still for z = 2 and a = 1.57471. We can 

clearly distinguish the peaks in the spectrum for period 7 and period 2. In the 
figure we have platted t h p  lag ~ f  q = I~ ~ 12 . , ; t h  

N-I 
r - % '  - 2 ~ i  k t  
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Fig. 16. Comparison between numerically obtained phase length probabilities (bars) for z = 2 and 
a = 1.57471, and their theoretically predicted values (stars). The minimal length t = 4 is left out of 

consideration (see text). 

period 2" spectral peaks as a function of e = a -  a,, is discussed in refs. 

[5, 17, 28]; they obey the same scaling law ~s the reciprocal mean phase length, 

namely Ak--- e ~/z. 

In refs. [24, 27] it is shown that the portion of parameter space that is 

covered by the periodic windows is a monotonically increasing function of z. 
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The PM intermittency, and especially the intermittent bursting behaviour that 

are associated with the windows also cover a larger part of parameter space for 

larger values of z. 

Appendix A 

The position of the 2 k chaotic bands between ak+ l and a k 

In this appendix we discuss a simple recipe to obtain the exact position of the 

chaotic bands in the band merging cascade. 

Firstly, we observe that the eventual 2 k chaos bands are bounded by the 

values of the extrema of f2k(x) and their images under the mentioned compo- 

site function. The values of the extrema are just the xi, i = 1 , . . . ,  2 k (with 

£i=f f (~o) ,  £o being the single critical point ( f ' (£o)=O)  of tile unimodal 
mapping). 

Proof. For an extremum of y = f " ( x )  we have d f" (x ) /dx=O.  Applying the 

chain rule this reads 

f ' ( f " - l ( x ) ) f ' ( f " - 2 ( x ) ) "  • • f ' ( f ( x ) ) f ' ( x )  = 0,  (36) 

so we have 

f " - ' ( x )  = & v f " - " ( x ) =  & v . .  . v f ( x )  = & v x = & , (37) 

and hence the value y = f " (x )  of an extremum is given by 

y = £ , v y = £ 2 v ' " v y = £ , _ , v y = £ , ,  i (38) 

Thus the boundaries of either of the 2 k chaos bands are JT, and £2k+i, 

i =  1 , . . .  ,2 k. Their ordering follows from the observation that the band 

merging cascade is the "reverse" of the period-doubling process. However 

imperfect this mirror-image may be, a sure thing is that for a < a k (the value 

where 2 k bands merge into 2 k-l) the quantities £ 0 , . - .  ,X2k+~ have the same 

order as the corresponding elements of a superstable 2 k+ i-cycle in the period- 
doubling tree. 

The order of superstable cycle elements follows from the theory of Met- 

ropolis, Stein and Stein (MSS) [22]. According to this theory any superstable 

n-cycle is characterized by a pattern of n - 1 binary symbols. The first element 

of the cycle (numbered 0 or n) is always the critical point x~l of the map and is 
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not explicitly written in the pattern. The subsequent n -  1 elements are 

represented by an L or an R according to their position being to the left or to 

the right of the critical point. 

Now assume the map has a maximum. Then the superstable 2-cycle is 

represented by a single R. According to MSS the period-doubled version of 

any pattern P (called the harmonic  H or P) is obtained by applying the 

following rule: 

if the number  of R's in P is odd 

if the number  of R's in P is even 

H = P L P ,  
H = P R P .  (39) 

So the pat tern of any superstable 2k-cycle is obtained by repeatedly applying 

the above rule to the 2-cycle: 

R ~ R L R  ~ R L R R R L R  ~ R L R R R L R L R L R R R L R - - ~  . . . (40) 

Since the cycle elements in the period-doubling tree cannot cross each other 

as a is increased the order of the original cycle elements is preserved at each 

subsequent bifurcation (as also reflected by the rule (39)). At the kth bifurca- 

tion at each cycle element labeled i another  one labeled i + 2 k is added 

immediately to the left or to the right of it. For the element labeled 0 or n the 

choice left/right is dictated by the letter in the rule (39). 

Now, considering the mapping we obsewe the fol!owing: 

- applying the map on two points to the left of £0 preserves the order of the 

points; 
- applying the map on two points to the right of £0 reverses the order of the 

points. 
Fur thermore ,  considering the rule (39) we observe that a cycle point and its 

twin, half a cycle further, are always on the same side of £0 (except £0 itself of 

course). 
So, reading the pattern we can construct the complete order of the cycle 

elements as follows: 
k _ c  , ' r , L _ _  t i l ~  VcxLL,~ . i i i  ,..,x ,.z.~.. Suppose we know the order  of the 2 ycle. ~ no .  from .k . . . .  **.~... ,~ ,h ,  

2k÷~-cycle we read the order  of the elements 0 (2 k÷l) and 2 k. If the 2kth 

element of the pattern is R we have £2k > £0, otherwise £2 k < £0. In either case, 

since Xo is a maximum, we have £2k ÷ ~ < £1. Next,  observing that the first letter 

of any pat tern is R, the subsequent pair has its order flipped: £2~ ÷2 > £2. The 

second letter of any pattern is always L, so the next pair has the same order as 

the previous one: £2k÷3 > £3. Reading the whole pattern we reconstruct the 

complete order  of the cycle elements. 

However ,  watching the rule (39) again, we can simplify this procedure 
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RLRRRLR L RLRRRI.R 

RLR R RLIR 

RLR 

R 

Fig. 18. Schemata,: representation of a part of the bifurcation tree of a unimodal map with a 

maximum. The ordering of the cycle elements as well as the corresponding pattern is indicated. 

considerably. Firstly, we observe that that the added pattern element (number 

2 k) in the middle of the harmonic alternates from bifurcation to bifurcation. 

Secondly, as remarked above, we always have £2k+1> £1- Thirdly, up to the 

2kth element the pattern equals the one of the 2k-cycle, and from this we infer 

that the order between £i and J~'2k+l is the same as between £i and x~k-l+i. 

Hence for the construction of the bifurcation tree we obtain the following 

simple recipe: 

- In going from a 1-cycle to a 2-cycle the element labeled 1 forks to the 

fight. (And hence the element labeled 0 or 2 to the left.) 

- Goce an element forks in a certain direction it makes the same choice at 

all subseqttent bifurcations. This goes for all elements except for the one 

labeled 0 which forks in alternating directions. However, if we label this 

element 2 ~ instead of 0, it follows the recipe perfectly. 

A labeled bifurcation tree is drawn in fig. 18. 

When ,,7 o is a minimum the recipe is the same, only the first bifurcation has 

the extra element added to the left instead Gf to the right. 

Appendix B 

l'he Frobenius-Perron operator 

In this appendix we show how distributions change when a mapping is 

applied on them (see also e.g. refs. [29, 30]). 

Suppose we have a probability distribution p(x) of poin,s on the real axis. 

We then ask ourselves what the probability distribution p'(x) looks like when 

we apply a map f(x) on these points. Let us consider a plot of a map f as in fig. 
19. 

The probability of finding a mapped point in some infinitesimal interval dx is 

given by p ' (x)dx .  This quantity must be equal to the probability of finding an 

original point in one of the pre-images under f(x) of dx. The width of a 
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f(x) 

II  i i i  
| ; I I  • 
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;X 

Fig. 19. Plot of an arbitrary map f(x).  In this case the points in the small interval dx come from 2 

pre-images of dx under fix). 

pre-image of dx is d x / l f ' ( f - l ( x ) ) [ ,  as can also be verified from fig. 19. This 

continuity argument thus yields 

dx 
p'(x) dx = ~ p ( f  (i)(x)) (41) 

(i) I f ' ( f - ' ( X ) ) l  ' 

where (i) labels the pre-images under f of x. Eq. (41) can also be written as 

f -1 p'(x) = ~ p(x')  t3(x' - f (i)(x)) dx'  . (42) 
( i )  I f ' ( f  o (x))l 

A well-known rule about delta functions states that if a i are all zeroes of a 

function g(x) then 

a,) 
~( g(x)) ~ [.-.,,., ~1 

' 5 \ ~ i J I  

(43) 

Applying this rule to the previous expression we finally have 

p'(x) = f p (x ' )6 ( f (x ' )  - x) d x ' =  pjo p(x) . (44) 

Pr is the so-called Frobenius-Perron operator. 
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