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Irene Sendiña-Nadal1, Javier M. Buldú1, Inmaculada Leyva1, Stefano Boccaletti2,3*
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Abstract

An initial unsynchronized ensemble of networking phase oscillators is further subjected to a growing process where a set of
forcing oscillators, each one of them following the dynamics of a frequency pacemaker, are added to the pristine graph.
Linking rules based on dynamical criteria are followed in the attachment process to force phase locking of the network with
the external pacemaker. We show that the eventual locking occurs in correspondence to the arousal of a scale-free degree
distribution in the original graph.
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Introduction

Many biological, neural, chemical and technological systems

find a suitable representation as growing networks of intercon-

nected dynamical units [1–3]. It is nowadays established that such

networks, as they are observed in their mature state, are

characterized by specific topological features, as, for instance,

relatively small characteristic distances between any two nodes,

high clustering properties, and fat tailed shapes in the distribution

of their connectivities. In particular, most of them are known to

exhibit the so-called scale-free (SF) property [4] consisting in the

fact that they feature a power-law distribution P(k),k2c in the

node connectivity k (degree). From the other side, it is observed

that their complex functioning and organization is often associated

with the adjustment of all (or a relevant portion of) their dynamical

components into a collective synchronized motion.

It is therefore crucial to understand the intimate relationship

between the topological structure displayed in the resulting graphs,

and the mechanisms leading to the arousal of such synchronized

behaviors. For instance, recent studies have shown that i) the

ability of a graph to give rise to a synchronous behavior can be

greatly enhanced by exploiting the topological structure emerging

from independent statistically driven growth processes [5–7]; ii)

proper topological mechanisms of rewiring/decoupling can

enhance the arousal of a synchronized behavior [8]; iii) a

dynamical evolution of the underlying topology of a graph is

eventually able to stabilize a synchronous motion also in those

cases in which synchronization would be prevented in static graph

configurations [9–11].

However, the question of how node dynamics can shape the

network has not been extensively addressed. The issue has only

been considered within the game theory framework [12,13], where

a not growing network of players is shaped in a decision game. In

this Letter, we show that a growing process entirely guided by

dynamical criteria to force frequency and phase locking of an

original set of networking oscillators is able to fully reshape the

connectivity of the graph, and that the entrainment process

induces a scale-free degree distribution in the pristine network.

Methods

Without lack of generality, we exemplify our discussion with

reference to an initial t=0 graph G0 of bi-directionally coupled

Kuramoto phase oscillators [14,15], ruled by _wwi~v0iz

d1

ki t~0ð Þ

Xn1

j~1
aij sin wj{wi

� �

where i runs from 1 to n1, {v0i}

is the set of natural frequencies of the phase oscillators, uniformly

distributed within the range 0.560.25, ki(t=0) is the initial degree

of (the number of connections pertinent to) the ith oscillator, d1 is a

coupling constant, and the set {aij} are the elements of the n16n1
adjacency matrix A= (aij) describing the structure and topology of

the wiring of connections in G0 (aij=1 if oscillators i and j are

connected, while aij=0 otherwise). Time integration is here

performed by means of the Heun method with an integration

step Dtin=0.1.

Though the main results of our study are independent on the

initial choice of G0, from the time being we generate G0 by means

of the model introduced in Ref. [16]. Precisely, we start with a ring

lattice of n1 nodes, each one connected to its k0i=2m0 nearest

neighbors, and obtain G0 by randomly rewiring each link with

probability p= log n1/n1. The resulting G0 approximates the so

called small world property, featuring an average shortest path

length / log n1, and an exponentially decaying degree distribution

P0(k) that is well peaked around the mean value Ækæ=2m0.

Furthermore, the coupling constant d1 is selected so as the initial

graph does not display a phase synchronized motion.

In our generic trials, the initial network G0 is let evolve in its

unsynchronized motion from t=0 to t=30 time units, and, at
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subsequent times tl= t0+lDt, a forcing network is grown on top of

the evolution of G0. Namely, at each time interval Dt (which will

be taken as a multiple of the integration step Dtin, i.e. Dt= sDtin), a

new node is added, forming m connections with nodes in G0. The

added nodes are identical phase oscillators that follow the

instantaneous phase of an external pacemaker _wwp~vp, and all

newly formed links correspond to unidirectional (forcing) interac-

tions to nodes in G0. Notice that such forcing process is fully

equivalent to considering a unique external forcing node (the

pacemaker) which forms successive (and possibly multiple)

connections with oscillators in G0 in the attempt of locking their

frequencies, and, as so, it can be taken as a representation of

phenomena occurring in social science [the emergence of

consensus driven by a leader opinion (media, press, fashion,

publicity, etc..)] or in biological systems (the entrainment of

circadian rhythms driven by the main circadian clock).

The key point is the selection mechanism through which the

added nodes are linked to G0. We here consider a dynamical

criterion fully driven to enhance phase locking: when the lth new

node is attached to G0, it forms m connections preferentially with

those nodes in G0 whose instantaneous phase at time tl, wj(tl), holds
more closely a given phase condition. Specifically, we consider a

generic parameter dM(0,2p) and establish the first of the m

connections with that node jl whose actual value of the phase holds

the condition minj~1,...,n1 d{Dhj mod2p
�

�

�

� with Dhj=wj(tl)2wp(tl).
When m.1, we iteratively repeat the same condition excluding

those nodes that already received a link at the same time step. In

the following, we will set m=1. However, the reported scenario is

independent on the specific choice of m, the only difference being

that for m=1, the added nodes do not form additional cycles nor

loops in the original graph G0. As for the parameter d, we will

show that it will not affect qualitatively the reported scenario. The

only constrain is that it cannot be taken equal to 0 nor to 2p, as
these values correspond to the stable fixed point emerging during

the locking of a single phase oscillator, and therefore these settings

would determine a situation in which the first node in G0

becoming locked with the pacemaker, would, from there on,

attract all the rest of connections.

Each newly formed connection is assigned a coupling coefficient

dp and a coupling direction from the added node to the selected

node in G0 (different kinds of coupling interactions have been also

studied, and a detailed report will be presented elsewhere [17]).

The evolution of the graph is therefore described by

_wwi~

v0iz
d1
ki tð Þ

P

n1

j~1

aij sin wj{wi
� �

z
dp
ki tð Þ

P

l tð Þ

j~1

bij sin wp{wi
� �

8

>

>

>

<

>

>

>

:

where ki(t) is the time evolving degree of the ith node that accounts

for new connections the ith node is receiving from added nodes,

and the matrix B= (bij) is a size evolving matrix of n16l(t) elements

(with l(t)#n2), whose entries bij are equal to 1 if the jth added node

formed a connection with the ith node in G0, and zero otherwise.

Results

Figure 1 reports the quantity R= ÆR(t)æt vs. the parameter space

(vp, dp) for n1=100, d1=0.2, n2=200, s=1, and d= p (anti-phase

coupling condition). Here Æ…æt denotes an average over time

(performed after the growing process is finished), and R(t)

stands for the phase synchronization order parameter [14]

R tð Þ~
1

n1

Xn1

j~1
eiwj tð Þ

�

�

�

�

�

�.

From Figure 1 it is evident that the threshold for the setting of

the phase locking of R(t) (R.1) crucially depends on the frequency

of the external pacemaker vp. Specifically, as far as vp is close to

v̄=0.5 (the average frequency of the oscillators in G0), the locking

process occurs already for a relatively small value of dp, whereas, as

vp deviates significantly from v̄ the value of dp producing phase

locking becomes larger and larger. A more quantitative description

of the process can be gathered by inspection of Figure 2, where we

report the time evolution of the mean frequency of the oscillators

in G0, v tð Þ~
1

n1

Xn1

i~1

_wwi tð Þ, of its frequency dispersion

sv tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1

Xn1

i~1

_wwi{v tð Þ
h i2

r

, and of R(t), for three pacemaker

frequencies (vp=0.1, 0.5 and 0.9) and two distinct coupling

strengths (dp=0.5 and dp=5.5). It is seen that, while the low

coupling regime is not associated to a phase locking of G0 with the

pacemaker, in the high coupling regime v(t) converges (after the
growing process has ended) to the external forcing frequency and,

at the same time R(t) converges to unity, and sv(t) vanishes.

The results reported in Figures 1 and 2 are generic, and the

same qualitative scenario (though for different values of dp and vp)

characterizes the evolution of the system at different system sizes,

for different initial topologies in the connectivity of G0, for

different values of dM(0,2p) and for different values of m.

Let us nowmove to report the central point of this study, related to

the investigation of the peculiar topological structures induced in the

final degree distribution of G0 as a result of the phase locking process.

For instance, in Figure 3 we depict the final graphs obtained for

n1=100 and n2=1000, with the nodes of the original graph (the

added nodes) depicted in black (blue). The left and right networks

correspond to very different situations. In the left network, the

growing process is unable to produce locking of the phases of the

oscillators in G0 to the external pacemaker, and one sees that the

distribution of blue attachments is rather homogeneous. At variance,

the right graph corresponds to a case in which the forcing nodes

eventually succeed to entrain the phases of the oscillators in G0, and

eye inspection reveals a high heterogeneity of the blue attachments,

with the simultaneous presence of few hubs (nodes with very high

degree) and many seldomly connected nodes.
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Figure 1. Time averaged phase synchronization order param-
eter R in the parameter space vp2dp. Time averaged phase
synchronization order parameter R (see text for definition) as a function
of both the pacemaker frequency vp and the coupling strength dp.
Parameters: n1= 100, d1= 0.2,m0=2, n2= 200, d= p and each point is an
average over 10 different realizations of the growing process.
doi:10.1371/journal.pone.0002644.g001
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In order to describe more quantitatively the situation, we perform

large trials of numerical simulations with n1=1000, n2=10000, and

d1=0.2, and we monitor the time evolution of the degree

distribution Pt(k) of all nodes originally belonging to G0 during the

process of locking. In fact, we here measure the cumulative degree

distribution Pc
t kð Þ, given by Pc

t kð Þ~
Pkmax

k0 Pt k
0ð Þ. This is because

the summing process of the P(k) smooths the statistical fluctuations

generally present in the tails of the distribution. As a generic

property, it is important to remark that, if a power law scaling is

observed in the behavior of Pc(k) (i.e. if Pc kð Þ*k{cc ), this implies

that also the degree distribution P(k) is characterized by a power law

scaling P(k),k2c, with c=1+cc.

Figure 4 reports how Pc
t kð Þ evolves in two distinct situations: for

a process that does not lead to any locking (left panel) and for a

process that eventually leads to locking of G0 to the frequency of

the pacemaker (right panel). In the former case, while Pc
t kð Þ

deviates significantly from Pc
0 kð Þ in the course of time, it never

assumes a power-law shape, while in the latter case the locking

process (manifested by the evolution of R(t) to 1 in the inset) is

accompanied by the convergence of Pc
t kð Þ to an asymptotic

distribution Pc
fin kð Þ which features a power-law shape.

The difference in the final distributions for the non locked and

locked networks, and the convergence in this latter case of Pc
t kð Þ to

a SF distribution Pc
fin kð Þ is a generic feature in the parameter
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Figure 2. Time evolution of the entrainment process. Time evolution of the mean frequency (upper row), frequency dispersion (middle row)
and phase synchronization order parameter (lower row) for three pacemaker frequencies (vp= 0.1 red-dotted line, vp=0.5 blue-solid line, and
vp= 0.9 black-dashed line) and coupling strengths dp= 0.5 (left column) and dp= 5.5 (right column). See text for the definition of all reported
quantities. The two vertical lines in the upper row denote the instants at which the growth process starts (dashed) and ends (continuous). Same
parameters as in the caption of Figure 1.
doi:10.1371/journal.pone.0002644.g002

Figure 3. Sketches of two typical output networks. These two networks are constructed for n1= 100, n2=1000, and d=p. The nodes of the
original graph are depicted in black, the forcing nodes are depicted in blue. The left (right) network corresponds to a case in which the forcing nodes
are unable (able) to lock the phases of the oscillators in G0.
doi:10.1371/journal.pone.0002644.g003
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space, as it can be seen in Figures 5(a)–(c). There, we report log-log

plots of Pc
fin kð Þ obtained after an ensemble average over 50

different realizations of the growing process for n1=1000,

n2=10000, d1=0.2 and two distinct values of d [d= p in

Figures 5(a)–(b), and d= p/4 in Figure 5(c)]. In all cases, solid

(dashed) lines correspond to the locked (non locked) regime,

obtained for high (low) values of dp, and solid red lines indicate the

best power-law fits. Whenever the forcing nodes eventually induce

the locking of G0 to the pacemaker frequency, the final degree

distribution displays a power-law (scale-free) behavior P(k),k2c.

The specific slope c of the power law scaling depends on the

specific choice of the external frequency vp. In our trials, we

always observed values of c in the range (2,3), in accordance to the

values measured for most of the real world networks [1–3].

Discussion

The formation of a scale free degree distribution can be

qualitatively understood as follows. Each node in G0 can be in two

different states: a state in which its phase is locked with that of the

pacemaker (corresponding to Dh=0) and an unlocked state, in

which Dh(t) rotates in the unit circle clockwise or counterclockwise,

depending on whether the difference between the frequency of the

node and that of the pacemaker is positive or negative. Having set
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Figure 4. Time evolution of the cumulative degree distribution for a particular realization of the network growth. vp=0.5 and dp=0.2
(left panel, non locked graph) and dp=0.5 (right panel locked graph). In both cases the inset reports the corresponding time evolution of R(t) (see text
for definition). The time instants at which the distributions are taken (indicated by arrows in the insets) are: t= 0 (*); t= 200 (+); t= 500 (e); t= 800 (#);
t= 1000 (%). Notice that, in the locked case, Pc

t kð Þ converges to an asymptotic distribution Pc
fin kð Þ which features a power-law shape (best fit

sketched with red dashed line).
doi:10.1371/journal.pone.0002644.g004
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(d): final number of connections ki(tfin) acquired by each node as a function of its initial frequency v0i= 0.5 for, d= p, and dp=0.2 (upper plot,
unlocked case) and dp= 0.5 (lower plot, locked case).
doi:10.1371/journal.pone.0002644.g005
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d strictly different from 0, this implies that, once a node reaches

the locked state, it cannot be further attached by the pacemaker.

As a given node is connected to the pacemaker, it is reasonable to

assume that its phase dynamics will be slightly attracted to that of

the pacemaker. Initially, all nodes are not locked, and therefore

the probability to find their phase differences in the proximity of

the attachment condition will not depend on their specific initial

frequency. When dp is small enough so as not to determine locking

of the network, only the very few nodes whose original frequency

was close to that of the pacemaker will reach the locked state,

whereas all the remaining nodes will evolve unsynchronized, and

for them we will have a sort of random attachment with equal

probability leading to a final degree distribution which substan-

tially differs from a scale free network (Figures 5(a)–(c), dashed

lines). On the contrary, at high values of dp, nodes will be

sequentially attracted to the locked state, starting again from those

whose original frequency was close to that of the pacemaker. In

this latter situation, the more nodes gets the locked state (where

any further attachment is prevented), the higher is the probability

that the remaining unlocked nodes will get subsequent connec-

tions, resulting in a kind of preferential attachment process in

which the higher is the absolute value of the difference between

the original frequency of a node and that of the pacemaker, the

higher is the chance that this node will get connections during the

growing process. This is confirmed in Fig. 5(d), where we report

the final number of connections ki(tfin) acquired by each node as a

function of its initial frequency v0i for vp=0.5 and two values of

dp. There, one clearly see that, while in the unlocked regime (upper

plot) the distribution is almost uniform reflecting a random-like

attachment, in the locked regime (lower plot), the distribution is

strongly nonuniform, and promotes those nodes with higher

frequency mismatch with the pacemaker. Notice that the few

points in Figure 5(d) of high degree in proximity to vp correspond

to oscillators whose initial frequency was, indeed, close to vp, but

whose instantaneous frequency at the instant at which the growing

process starts was moved away from vp during the initial,

unforced, evolution of G0.

In conclusion, we have shown that a growing process entirely

guided by dynamical criteria to promote and phase locking of an

original network is able in a robust way to fully reshape the

connectivity of the graph, and that the locking process is associated

with the emergence of a scale-free degree distribution in the

network connectivity. This fact can therefore give new hints on the

fundamental processes that rule the growth of some of the real

world networks, that ubiquitously feature such kind of connectivity

distributions.
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