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Abstract

Optical parametric oscillators are widely used as pulsed and continuous-wave tunable sources for innumerable
applications, such as quantum technologies, imaging, and biophysics. A key drawback is material dispersion, which
imposes a phase-matching condition that generally entails a complex design and setup, thus hindering tunability and
miniaturization. Here we show that the burden of phase-matching is surprisingly absent in parametric micro-
resonators utilizing mono-layer transition-metal dichalcogenides as quadratic nonlinear materials. By the exact solution
of nonlinear Maxwell equations and first-principle calculations of the semiconductor nonlinear response, we devise a
novel kind of phase-matching-free miniaturized parametric oscillator operating at conventional pump intensities. We
find that different two-dimensional semiconductors yield degenerate and non-degenerate emission at various spectral
regions due to doubly resonant mode excitation, which can be tuned by varying the incidence angle of the external
pump laser. In addition, we show that high-frequency electrical modulation can be achieved by doping via electrical
gating, which can be used to efficiently shift the threshold for parametric oscillation. Our results pave the way for the
realization of novel ultra-fast tunable micron-sized sources of entangled photons—a key device underpinning any
quantum protocol. Highly miniaturized optical parametric oscillators may also be employed in lab-on-chip
technologies for biophysics, detection of environmental pollution and security.

Introduction

Optical nonlinearity in photonic materials enables a

large number of applications such as frequency conver-

sion1,2, all-optical signal processing3,4, and non-classical

sources5,6. Parametric down-conversion (PDC) furnishes

tunable sources of coherent radiation7–14 and generators

of entangled photons and squeezed states of light15,16. In

traditional configurations, a nonlinear crystal with broken

centrosymmetry and second-order nonlinearity is used to

sustain PDC;7–12 more recently, effective PDC was

reported in centrosymmetric crystals with third-order

nonlinearity13,14 and semiconductor micro-cavities17–19.

Since three-wave parametric coupling is intrinsically

weak, one can only achieve low oscillation thresholds by

using doubly or triply resonant optical cavities. In addi-

tion, parametric effects are severely hampered by the

destructive interference among the three waves propa-

gating with different wavenumbers k1,2,3 in the dispersive

nonlinear medium because of a generally non-vanishing

wavevector mismatch Δk= k3− k2−k 1 (see Fig. 1a). To

avoid this highly detrimental effect, the use of phase-

matching (PM) strategies is imperative, i.e., following the

standard nonlinear optics terminology, fulfillment of

momentum conservation Δk= 0 to prevent destructive

interference. The commonly adopted birefringence-PM

method20 is critically sensitive to the nonlinear medium

orientation. Quasi-PM21,22 exploits the momentum due to

a manufactured long-scale periodic reversal of the sign of

the nonlinear susceptibility, which cannot be easily

applied in miniaturized systems. In semiconductors, PM

is achieved by S-shaped energy-momentum polariton
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dispersion in the strong coupling regime for excitons and

photons23,24 that is only accessible at low temperatures

and large pump angles. Cavity PM25, also denoted

“relaxed” PM26, occurs in Fabry–Perot micro-cavities with

cavity length ‘ shorter than the coherence length π/Δk;

this technique can be used to drastically reduce the

effective quadratic susceptibility χ
2ð Þ
eff (see Fig. 1a). All of

the above-mentioned PM techniques require a non-trivial

experimental design and setup that is further constrained

by the need for resonant operation.

In this manuscript, we show that two-dimensional (2D)

materials with high quadratic nonlinearity, currently

emerging as important nonlinear photonic elements27–29,

open up unprecedented possibilities for tunable para-

metric micro-sources. Remarkably, when illuminated by

different visible and infrared waves, such novel 2D

materials provide negligible dispersive dephasing Δϕ

owing to their atomic-scale thickness ‘ � λ, where λ is

the optical wavelength (see Fig. 1b). In turn, the three

waves interacting within the 2D material do not undergo

destructive interference due to the surface-like nonlinear

interaction. Hence, the PM requirement in the standard

nonlinear optics jargon (i.e., the momentum conservation

requirement Δk= 0), is removed here. Furthermore, such

“phase-matching-free” devices turn out to be very versa-

tile and compact, with additional tunability afforded by

electrical gating of 2D materials, which provides ultrafast

electrical-modulation functionality.

The most famous 2D material, graphene, is not the best

candidate for PDC owing to the centrosymmetric struc-

ture. In principle, a static external field can be used to

break centrosymmetry and induce a χ
2ð Þ
eff , but the spec-

trally flat absorption of graphene remains severely detri-

mental for PDC. Recent years have witnessed the rise of

transition metal dichalcogenides (TMDs) as promising

photonic 2D materials. TMDs possess several unusual

optical properties dependent on the number of layers.

Bulk TMDs are semiconductors with an indirect bandgap,

but the optical properties of their monolayer (ML)

counterpart are characterized by a direct bandgap ranging
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Fig. 1 Phase-matching-free micron-sized parametric oscillators. a Schematic illustration for conventional three-wave parametric coupling in bulk

nonlinear crystals. The effective quadratic susceptibility χ
2ð Þ
eff is heavily affected by the mismatch Δk among the wavevectors km= nmωm/c of the

pump (3), signal (1), and idler (2) waves, whose destructive interferenceΔk ≠ 0 hinders parametric coupling. b Sketch of the ML-TMD-based
parametric oscillator. The cavity is assembled using two Bragg mirrors separated by a dielectric layer, and the ML-TMD is placed onto the left mirror.
The incident (i) pump field produces both reflected (r) and transmitted (t) pump, signal and idler fields by means of the ML-TMD quadratic surface
conductivity σnm ≠ 0. The mutual dephasing Δϕ ¼ Δk‘ among these three waves becomes negligible within the atomic thickness of the nonlinear
ML-TMD (Δϕ ≈ 10−2, see Supplementary Material) because ‘ � λ, thus enabling phase-matching-free (i.e., free from the momentum conservation
requirement Δk= 0) parametric coupling. c Sketch of the geometry of MX2 ML-TMDs. Fast modulation is enabled by extrinsic doping by a gate
voltage, with gold contacts applied between the ML-TMD and the Bragg mirror.
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from ~1.55 to ~1.9 eV30–32 that is beneficial for several

opto-electronic applications33. In addition, ML-TMDs

have broken centrosymmetry and can thus be used to

facilitate second-order nonlinear processes34–38. Here, we

study PDC in micro-cavities embedded with ML-TMDs;

we find that the cavity design is extremely flexible com-

pared to standard parametric oscillators due to phase-

matching-free operation (see Fig. 1a, b). We demonstrate

that at conventional infrared pump intensities, parametric

oscillation occurs in wavelength-sized micro-cavities

incorporating ML-TMDs. We show that the mode

selectivity of doubly resonant cavities enables one to

engineer the output signal and idler frequencies;

these frequencies are tuned by the pump incidence angle

and can be modulated electrically by an external gate

voltage.

Materials and methods

Parametric down-conversion for MX2
We calculate the linear and PDC mixing surface con-

ductivities of MX2 starting from the tight-binding (TB)

Hamiltonian for the electronic band structure39. Since the

properties of infrared photons with energies smaller than

the bandgap are determined by small electron momenta

around the K and K′ valleys, we approximate the full

TB Hamiltonian as a sum of k ⋅ p Hamiltonians of

first and second order H0(k,τ,s), where k is the

electron wavenumber and τ and s are the valley and spin

indices, respectively. We then derive the light-driven

electron dynamics through a minimal coupling prescrip-

tion leading to the time-dependent Hamiltonian

H0 kþ e=�hð ÞA tð Þ; τ; s½ �, where e is the electron charge, ħ is

the reduced Planck constant, and A(t) is the radiation

potential vector, which is used to obtain Bloch equations

for the interband coherence and the population inversion.

Finally, by solving perturbatively the Bloch equations

for ML-TMDs in the weak excitation limit, we obtain

the surface current density K(t) after integration over

reciprocal space,

K tð Þ ¼ <
P

3

j¼1

σ̂L ωj

� �

Eje
�iωjt

� �

þ σ̂ 1;2ð Þ
E1E2e

�iω3t

(

þσ̂ 1;3ð Þ
E
�
1E3e

�iω2t þ σ̂ 2;3ð Þ
E
�
2E3e

�iω1t
�

ð1Þ

where σ̂L ωj

� �

(j= 1, 2, 3) and σ̂ l;mð Þ (l, m= 1, 2, 3) are the

linear and PDC surface conductivity tensors, respectively.

Note that our approach is based on the independent-

electron approximation and is thus fully justified only for

infrared photons far from exciton resonances occurring at

photon energies higher than 1.5 eV40,41.

Parametric oscillations

The signal, idler, and pump fields, labeled with sub-

scripts 1, 2, and 3, respectively, have frequencies ωn

satisfying ω1+ ω2= ω3. By the transfer matrix approach, a

full electromagnetic analysis of the cavity (see Supple-

mentary Material) yields the equations

Δ1Q1 þ ~σ23Q
�
2Q3 ¼ 0;

Δ2Q2 þ ~σ13Q
�
1Q3 ¼ 0;

Δ3Q3 þ ~σ12Q1Q2 ¼ P3

ð2Þ

where Q1, Q2, Q3 are complex amplitudes proportional to

the output fields produced by the pump field, which is

proportional to the amplitude P3. Here, ~σnm are scaled

quadratic conductivities for the MX2 ML-TMD and

Δn ¼ ~σn �
c

ωn

qn
r

Rð Þ
n � 1

r
Rð Þ
n þ 1

þ
r

Rð Þ
n eiqnL � e�iqnL

r
Rð Þ
n eiqnL þ e�iqnL

 !

ð3Þ

are parameters characterizing the linear cavity, where ~σn
are scaled linear surface conductivities, qn ¼
ωn=cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε ωnð Þ � sin2 θ
p

are the longitudinal wavenumbers

inside the dielectric slab, ε(ω) is the relative permittivity of

the dielectric slab, θ is the pump incidence angle and r
Rð Þ
n

are the complex reflectivities for right illumination of the

left Bragg mirror (with vacuum and the dielectric slab on

its left and right side). It is worth stressing that the

wavevector mismatch Δk= k3− k1− k2 does not appear

in the basic cavity Eq. (2) because the ML-TMDs are

treated as 2D materials with surface-like conductivity. In

principle, such media possess an atomic-scale thickness of

‘ ¼ 0:65 nm, with the resulting wavevector mismatch Δk

producing a finite but negligibly small phase-shift Δϕ ≈

10−2 among the three waves (see Supplementary Material

for further details). In turn, such a phase-shift (which does

not appear in our formulation based on a surface-like

nonlinearity) does not affect parametric coupling (by the

destructive interference of the fields), and the phase-

matching constraint is heavily relaxed. Parametric oscil-

lations (POs) are solutions of Eqs. (2) with Q1 ≠ 0 and

Q2 ≠ 0, and in this case, the compatibility of the first two

equations yields (see Supplementary Material)

P3j j2�
Δ1Δ

�
2

~σ23~σ
�
13

Δ3j j2 ð4Þ

which is the leading PO condition. As the right hand side

of Eq. (4) is generally a complex number, for the reali-

zation of PO, we have the condition

arg
Δ1

~σ23

� 	

¼ arg
Δ2

~σ13

� 	

ð5Þ

Equation (5) can be physically interpreted as a locking

of the phase difference argQ1 � argQ�
2 allowing the signal

and idler to oscillate. Once Eq. (5) is satisfied, Eq. (4)

provides the pump threshold for the onset of PO. Due to
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the small absolute magnitude of the nonlinear surface

conductivities, the cavity parameters |Δn| must be

minimized to achieve a feasible threshold. This can be

obtained by choosing the doubly resonant condition

for signal and idler corresponding to the minima of |Δ1|

and |Δ2|, respectively. For these minima to be very small,

r
Rð Þ
1

















 and r
Rð Þ
2

















 are required to be very close to one.

Such a constraint can be satisfied by the use of a suitable

Bragg mirror design, with the stop-band centered at

half of the pump frequency ω3/2 since, in this case, the

signal and idler fields experience a large mirror

reflectance.

Results and discussion

The structure of ML-TMDs is formed by two hexagonal

lattices of chalcogen atoms embedding a plane of metal

atoms arranged at trigonal prismatic sites located between

chalcogen neighbors32. Figure 1c shows the lattice struc-

ture for MX2 ML-TMDs (M=Mo, W, and X= S, Se),

and Fig. 2a, b show the valence and conduction bands for

MoS2 as obtained from tight-binding calculations39. The

electronic band structure of other MX2 materials is con-

sidered to be qualitatively similar. The direct bandgap is

~1.5 eV, which implies optical transparency for infrared

radiation; the linear surface conductivity has a very small

real part (corresponding to absorption) and a higher

imaginary part at infrared wavelengths. Figure 2c shows

the wavelength dependence of the linear surface con-

ductivities of MX2. In the presence of an external pump

field with angular frequency ω3, the ML-TMD second-

order nonlinear processes lead to the generation of down-

converted signal and idler waves with angular frequencies

ω1 and ω2, such that ω3= ω1+ ω2. Figure 2e illustrates

the PDC mixing surface conductivities for MoS2. Both

linear and nonlinear conductivities are calculated by a

perturbative expansion of the tight-binding Hamiltonian

for MX2 (see Methods and Supplementary Material). For

infrared photons with energy smaller than the bandgap,

extrinsic doping by an externally applied gate voltage (see

Fig. 1c) modifies the optical properties, leading to

increased absorption due to free-carrier collisions and to

smaller PDC mixing conductivities. Figure 2d, f show the

dependence of the linear and nonlinear surface con-

ductivities on the Fermi level EF. As detailed below,

extrinsic doping generally leads to a decrease in PDC

efficiency.

Figure 1b shows the parametric oscillator design

incorporating ML-TMDs. The cavity consists of a

dielectric slab (thickness L) surrounded by two Bragg

grating mirrors (BGs); the ML-TMD is placed on the left

BG inside the cavity. The cavity is illuminated from the

left by an incident (i) pump field (frequency ω3), and the

oscillator produces both reflected (r) and transmitted (t)

signal and idler fields with frequencies ω1= (ω3+Δω)/2
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and ω3= (ω3−Δω)/2, where Δω is the beat-note fre-

quency of the parametric oscillation (PO).

As detailed in the Materials and methods, the cavity

equations for the fields do not contain the wavevector

mismatch Δk. Indeed, due to their atomic thickness, ML-

TMDs are not optically characterized by a refractive index

but rather by a surface conductivity. Hence, the para-

metric coupling produced by the quadratic surface cur-

rent in ML-TMDs is not hampered by dispersion; thus, no

PM condition is required. To observe signal and idler

generation, only the PO condition must be satisfied along

with the signal resonance (SR) and idler resonance (IR)

conditions, leading to a significant reduction in the

intensity threshold (see Methods). Since there is no PM

requirement, such conditions can be met by adjusting

either the cavity length L or the pump incidence angle θ as

tuning parameters. For SR and IR, one needs highly

reflective mirrors for both signal and idler (see Materials

and methods), as realized by locating the stop band of the

micron-sized BGs at half of the pump frequency ω3/2.

Figure 3 shows the PO analysis for a cavity composed of

two BGs with polymethyl methacrylate (PMMA) and

MoS2 deposited on the left mirror. The infrared pump has

a wavelength of λ3= 780 nm, which lies in the same

spectral region showing very pronounced nonlinear

properties for MoS2 (see Fig. 2e). The BGs are tuned with

their stop bands centered at 1560 nm (= 2λ3). In

Fig. 3a–i, we consider the case of normal incidence θ= 0

and plot the PO (black), SR (red), and IR (green) curves in

the (L/λ3,Δω/ω3) plane. Doubly resonant POs (DRPOs)

corresponding to the intersection points of these three

curves are labeled by dashed circles. Therefore, for normal

incidence of the pump, degenerate (Δω= 0) and non-

degenerate (Δω ≠ 0) DRPOs exist at specific cavity

lengths. Note that such oscillations also occur for sub-

wavelength cavity lengths (L < λ3). Each oscillation starts

when the incident pump intensity I
ið Þ
3 is increased above a

threshold I
ið Þ
3Th (see Materials and methods). Figure 3b–i

shows the threshold for two specific degenerate and non-

degenerate DRPOs. Figure 3b, f shows the thresholds

(black curves on the shadowed vertical planes) corre-

sponding to the PO (black) curves; one can observe that

the minimum thresholds occur at SR and IR (identified by

the intersection between the red and green curves). The

minimum intensity thresholds are on the order of GW

cm−2, with the non-degenerate DRPO threshold greater

than the degenerate DRPO threshold because the reflec-

tivity of the Bragg mirror is maximum at Δω= 0 (i.e., at

half the pump frequency, as discussed above). Figure 3c–e

(and, analogously, Fig. 3g–i) shows the basic DRPO fea-

tures by plotting the intensities I
tð Þ
1 ; I

tð Þ
2 ; I

tð Þ
3 of the trans-

mitted signal, idler, and pump fields as functions of the

scaled cavity length L/λ3 and the incident pump intensity.

Note that, in the considered example, the range of L/λ3

where the oscillation actually occurs is rather narrow due

to the high reflectivity of the adopted BG.

We emphasize that tuning of the PO may be realized by

adjusting the pump incidence angle θ, with negligible

effect on the oscillation thresholds. In Fig. 3j–n, we ana-

lyze the DRPOs by using θ as a tuning parameter for a

given cavity length. In particular, in Fig. 3j, k, we consider

a cavity with a fixed length, as in Fig. 3b–e. The PO, SR,

and IR curves of Fig. 3j intersect at a degenerate DRPO

point at θ ’ 6�. In Fig. 3k, we plot the transmitted signal

intensity I
tð Þ
1 as a function of the pump incidence angle

and intensity I
ið Þ
3 ; one can observe that the intensity

threshold is comparable to the case shown in Fig. 3b–e,

with PO occurring for a range of angles θ on the order of a

hundredth of a degree, which is experimentally feasible.

We show similar results in Fig. 3m, n, where the non-

degenerate DRPO of Fig. 3f–i is investigated for a cavity

with a slightly different length and is shown to exist at a

finite incident angle with unchanged note-beat frequency

Δω. A more accurate analysis of Fig. 3l also reveals that,

for a given L, the cavity sustains multiple DRPOs (both

degenerate and non-degenerate) at different incidence

angles θ. In Fig. 3n, we plot the transmitted intensity of a

degenerate DRPO that grows with pump intensity above

the ignition threshold.

Until now, our analysis has been based on the basic

oscillator geometry sketched in Fig. 1b, where the ML-

TMD is placed on top of the right mirror. It is, however,

also instructive to investigate the dependence of the PO

phenomenology on the location of the ML-TMD inside

the cavity. Consequently, we consider a different para-

metric oscillator design whose geometry is sketched in

Fig. 4a, with the same Bragg mirrors and cavity dielectric

(of thickness L= 3.05λ3) as above but with the ML-TMD

placed at a distance 0 < d < L from the left mirror. For

simplicity, we focus here on degenerate DRPOs (Δω= 0),

triggered by the same pump as above (λ3= 780 nm), as in

this case, due to the physical coincidence of the signal and

idler fields, the SR and IR conditions coincide and the PO

condition is automatically satisfied (see Materials and

methods). In Fig. 4b, we plot the SR= IR curve identifying

the incidence angle θ at which the DRPO occurs as a

function of the normalized distance d/L. Note that the PO

angle periodically depends on d/L and is always close to

θ 0ð Þ ¼ 38:57 � (compare with Fig. 3n) as a consequence

of the slight modification of the free cavity modes pro-

duced by the presence of the ML-TMD. In Fig. 4c, we plot

the pump intensity threshold I
ið Þ
3Th of the POs shown in

Fig. 4b as a function of d/L. The marked periodic

dependence of the intensity threshold on the location of

the ML-TMD is particularly evident, together with the

existence of minima and very large maxima. Such features

can be easily understood by noting that at different

locations inside the cavity, the ML-TMD experiences a
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spatially periodic cavity modal field (which is observed, as

detailed above, to be slightly dependent on the location of

the ML-TMD) and therefore shows minima and maxima

for the intensity threshold at the anti-node and node

positions (where the modal field strength is maximal and

zero, respectively).

It is also worth stressing that such features are strictly a

consequence of the two-dimensional character of the ML-

TMD, which can additionally be exploited to tune and

control the parametric oscillator behavior.

The novel PO utilizing ML-TMDs as nonlinear media

are PM free because of the atomic size of the ML-TMDs.
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Several examples of POs with MoS2 can also be designed

using other families of ML-TMDs, leading to qualitatively

similar results. In the Supplementary Material, we com-

pare the calculated dependence of the pump intensity

threshold as a function of wavelength λ3 for parametric

oscillators built using MoS2, WS2, and MoSe2, WSe2; we

find that the chosen material affects the minimal thresh-

old intensity in a given spectral range. One can optimize

the choice of the material for a desired spectral content

and threshold level. In this respect, we emphasize that

these functionalities are enabled by the inherently large

nonlinear surface conductivities of ML-TMDs. A heuristic

comparison with standard photonic media may be

accomplished by introducing an effective second-order

nonlinear mixing susceptibility χ
2ð Þ
eff ω1;ω2ð Þ for the ML-

TMDs, which is found to be of the order χ
2ð Þ
eff ω1;ω2ð Þ �

10�10 mV�1 (≈2 orders of magnitude higher than that of

LiNbO3, which is one of the most widespread and efficient

materials used for second-order nonlinear optical func-

tionalities42). Therefore, by using standard photonic

media instead of ML-TMDs (in the envisaged micro-

cavity), parametric oscillations would require a pump

threshold that is at least 4 orders of magnitude higher

(the threshold intensity depends inversely on the

product ~σ23~σ
�
13











, see Materials and methods), and

second-order nonlinear effects due to other photonic

components of the proposed device are expected to be

irrelevant.

A further degree of freedom offered by ML-TMDs lies

in the electrical tunability afforded by the application of

an external gate voltage, as depicted in Fig. 1c. The gate

voltage increases the Fermi level and hence affects the

nonlinearity and absorption because of electron–electron

collisions in the conduction band (see Fig. 2d, f). Although

electrical tunability of MX2 has not been hitherto

experimentally demonstrated, to the best of our knowl-

edge, we emphasize that such an additional degree of

freedom is absent in traditional parametric oscillators. In

the Supplementary Material, we calculate the pump

intensity threshold as a function of the Fermi level of

MoS2, and we show that the threshold may increase by

one order of magnitude. Consequently, an external gate

voltage can be used to switch-off PO at a fixed optical

pump intensity, with potential for realization of rapid

electrical modulation of the output signal and idler fields.

Finally, we emphasize that experimental realization of

the discussed micron-sized phase-matching-free para-

metric oscillators is heavily facilitated by the inherent

flexibility offered by these devices. Indeed, in contrast to

traditional parametric oscillators, the key tunability (by

means of the external pump incidence angle) unlocks the

cavity size, which remains arbitrary. While the narrow

ML-TMD
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Fig. 4 Effect of ML-TMD location on the parametric oscillations. a Sketch of the parametric oscillator geometry with the ML-TMD placed at a
distance d from the right mirror. b Incidence angle θ of the degenerate (Δω= 0) DRPOs as a function of the normalized distance d/L. The degenerate
DRPOs are triggered by the same pump as above (λ3= 780 nm), and they occur at each d since, due to the physical coincidence of the signal and
idler fields, the SR and IR conditions coincide and the PO condition is automatically satisfied (see Materials and methods). c Pump intensity threshold

I
ið Þ
3Th of the DRPOs reported in b as a function of d/L.
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angular selectivity found in our calculations can be easily

overcome by using focused pump beams with finite size,

the reflectivity of the Bragg mirrors heavily affects the

parametric oscillation threshold. Thus, high-reflectivity

Bragg mirrors with leakage ≈10−4 are desirable for

reaching thresholds on the order of GW cm−2, which are

achievable using pulsed infrared lasers with picosecond-

like single pulse duration. Accurate control of the TMD

layer number remains the only experimentally critical

limiting factor: since TMDs with even layer numbers are

centrosymmetric, it is imperative for the oscillator design

to embed TMDs with an odd layer number. In addition,

increasing the layer number hampers relaxation of the

phase-matching condition; therefore, TMD monolayers

are considered to be the best materials in terms of design

optimization.

Conclusions

POs can be excited in micron-sized cavities embedding

ML-TMDs as nonlinear media at conventional pump

intensities in a PM-free regime. The cavity design remains

inherently free of the complexity imposed by the need for

PM and can be used to realize doubly resonant PDC of

signal and idler waves. The flexibility offered by such

novel oscillator design enables the engineering of selective

degenerate or non-degenerate down-converted excita-

tions by simple modification of the incident angle of the

pump field. Furthermore, electrical tunability of ML-

TMDs can enable one to rapidly modulate the output

signal and idler waves by shifting POs below the thresh-

old. Based on our calculations, we demonstrate that novel

parametric oscillators embedding ML-TMDs highlight a

new technology for all applications in which highly min-

iaturized tunable sources are relevant, including envir-

onmental detection, security, biophysics, imaging and

spectroscopy. PM-free ML-TMD microresonators can

also be potentially used to realize micrometric sources of

entangled photons when pumped slightly below the

threshold, thus paving the way for the development of

integrated quantum processors.
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