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We propose a different approach to obtain phase-matched generation of high-order harmonics based on the
use of pulsed Bessel beams as pump pulses. By means of the “coherence map” technique, we show that it is
possible to maximize the generation of a chosen harmonic of interest by properly adjusting the phase front tilt
of the pulsed Bessel beam to compensate the mismatch arising from material and plasma dispersion and atomic
phase.
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Since the 1990s it is well known that a crucial require-
ment for high-order harmonic generation �HHG� is phase
matching �PM� between the pump and the harmonic field
�1,2�. Many efforts have been made and different techniques
have been proposed to overcome the mismatch factors which
afflict the process and severely reduce its efficiency. The
phase mismatch in HHG �k on axis can be expressed as
�3,4�

�k = qklaser − kq =
q2��1 − ��

�
�n + P�Natmre��

q
− q��

+ �geometric term� + �atomic phase� ,

�1�

where q is the harmonic order, � is the laser wavelength, P,
�, Natm, re are the gas pressure in atmospheres, the ionization
fraction, the gas density at 1 atm, and the classical electron
radius, respectively, and �n=nlaser−nq with nlaser the refrac-
tive index for the laser and nq for the harmonic. The first
�positive� and second �negative� terms refer to material dis-
persion and plasma dispersion, respectively; the geometric
term has positive sign for the focused Gaussian geometry
and negative in a waveguided �5� or self-guided �6� geom-
etry, while the sign of the atomic dipole phase term �related
to the quantum paths of the electrons involved in the HHG
process� is in general not fixed during propagation since it is
proportional to dI /dz �7�.

Once phase matching is established, the ultimate limit for
the harmonic generation at a given laser intensity is deter-
mined by the reabsorption of the harmonic by the gas itself
�8�. This condition, known as “absorption-limited HHG” is
resonably fulfilled when Lcoh�10Labs, where Lcoh is the co-
herence length, i.e., the distance over which the harmonic
signal builds up coherently and Labs is the absorption length
in the gas. Although in literature there exist some works
where this regime has been reached �9�, this remains limited
to very specific operating conditions, and phase-matching

techniques for HHG are still an open and debated topic, as a
number of recent works show �e.g., Refs. �4,10–12��.

In this Rapid Communication we address the working re-
gime where the material dispersion term is greater than the
plasma dispersion term, i.e., below the so-called “critical
ionization” limit �13�. Hollow waveguides have been shown
to give rise to phase matching in this regime, however their
application is limited to low gas pressures and they can com-
pensate only a relatively small phase mismatch: moreover,
coupling at the input of the waveguide limits the maximum
pump energies and energy loss is unavoidable. Conversely,
we theoretically show how the appropriate choice of a pulsed
Bessel beam �PBB� as a pump pulse permits one to achieve
good phase matching for virtually any operating condition,
i.e., any gas and harmonic of interest, even at high pressures
�e.g., 1 atm�.

Pulsed Bessel beams �14� are peculiar wave packets in
which the pulse wave vectors are aligned along a conical
surface such that the resulting interference pattern is charac-
terized by a central intense peak �Fig. 1�. PBBs may be ef-
ficently generated by sending a laser pulse through an axicon
or a suitable hologram. Two properties of PBBs make them
promising for HHG: first, compared to the Rayleigh range of
a Gaussian pulse having the same width, the PBB is nondif-
fractive over a much longer distance �known as “Bessel
zone”�. This in turn implies a propagation with a smoother
intensity and phase evolution �15� and a great stabilization of
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FIG. 1. �Color online� Bidimensional sketch of the generation of
a PBB by sending a Gaussian pulse into an axicon. The phase fronts
acquire a tilt �. The interference between the off-axis propagating
fronts creates the peculiar radial intensity distribution.
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the fluctuations in the atomic phase term in Eq. �1� which
may be caused by oscillations in the pump pulse intensity
and have a detrimental role for phase matching. The second
crucial property of PBB is the possibility to control the phase
velocity by simply changing the angle of the Bessel cone. In
particular, the axial wavevector kz will always be shortened
with respect to the plane wave k0 by an amount � given by
�=k0�1−cos ��, where � is the angle of the Bessel cone.
Substituting kz=k0−� into Eq. �1�, we obtain for the PBB

�k = qklaser − kq = q�k0 − �� − kq

=
q2��1 − ��

�
�n − P�Natmreq�

+ �atomic phase� − q� , �2�

where we have neglected the plasma dispersion relative to
the harmonic signal �e.g., Ref. �5��. The peculiar contribution
given by −q� has the same sign as the plasma dispersion
term. Therefore, for pump intensities below the critical ion-
ization threshold one can think to choose a suitable � �i.e., a
suitable axicon or a hologram pattern� to compensate the
phase mismatch between pump and signal. We note that the
contribution to phase matching given by −q� plays the same
role as the waveguide geometric term, but in a much wider
range: in waveguides the contribution �k scales as 1 /a2, and
with a diameter a=100 �m, �k�36 m−1. In contrast, with a
simple axicon having, for example, �=2.8° one obtains �k
�2337 m−1. A similar �k in the hollow waveguide configu-
ration would require use of a very narrow waveguide with
a=12 �m with extremely difficult alignment and energy
coupling.

To investigate phase matching with PBB, we adopted the
well-established technique of the “coherence map,” intro-
ducted by Balcou et al. in �7�. Following the same approach
as Tosa et al. in Ref. �6� we applied this technique to the
calculated solution of the pump propagation equation, which
was obtained by numerically solving the nonlinear
Schrödinger equation �NLSE, for a detailed description of
the code see, e.g., Ref. �16�� taking into account all the
effects—such as plasma generation and material
dispersion—which play a role in the phase matching.
Ammosov-Delone-Krainov �ADK� rates �17� were used to
estimate the tunneling ionization. With this procedure all the
effects that have a role in the phase matching are included in
the calculation and there is no need to consider them sepa-
rately.

We recall very briefly to the reader that the coherence
map gives the coherence length Lcoh for the generation pro-
cess of a given harmonic order q, along the radial profile of
the pump pulse at its intensity peak. The coherence length
describes the propagation length over which the signal adds
up constructively and is defined as Lcoh= �2� /dk�, where dk
=2�qnq /�− �kpol�; nq is the refractive index for the harmonic
signal �taken from Ref. �19��, which allows us to take into
account in our calculation the material dispersion at the har-
monic wavelength, and kpol is the polarization wavevector
given by kpol=q� �	�r ,z��+��
I�r ,z��. Here 	�r ,z� and
I�r ,z� are the fundamental field phase and intensity profile

retrieved by the simulation and 
 is the phase coefficient for
the harmonic field �18�.

In order to illustrate the impact of the phase-matching
capability of PBBs we studied the generation of harmonic
61st in helium at relatively low pump intensities. This regime
allows us to clearly illustrate the role of PBB-induced phase
matching, as the contribution due to plasma dispersion is
relatively small. To compare the harmonic yield with that of
a conventional Gaussian pulse we proceeded in the following
way: for both pulses we fixed the same duration, energy, and
peak intensity, taking typical experimental conditions of, re-
spectively, 35 fs full width at half maximum �FWHM�, 5 mJ,
and 4�1014 W /cm2, which is an intensity slightly above the
cutoff value for the 61st harmonic. Keeping these parameters
always fixed, we optimized our beam with an iterative pro-
cedure by varying the PBB angle and studying the corre-
sponding coherence maps for the 61st harmonic. We ob-
tained the best phase matching conditions for the PBB with a
cone angle of 2.8°, which in turn determined also the diam-
eter of the central peak as 31 �m between the first zeros and
the 1 /e2 radius of the Gaussian apodization of the beam,
86 �m. The Gaussian beam we used for comparision had a
1 /e2 radius w0=113 �m, uniquely determined by energy, du-
ration, and peak intensity. We chose to work at a pressure
P=1 atm, with an absorption length for the 61st harmonic in
helium L
	1.46 mm �19�. Therefore to reach the absorption
limit it is sufficient to optimize the PBB � so as to obtain a
coherence length of a few centimeters.

Figure 2 shows the calculated coherence length map for
the given parameters which correspond to the result of the
optimization process: Since the harmonic 61st is in the cutoff
region for our chosen intensity, the phase coefficient for the
atomic potential is 
=−13.7�10−14 cm2 /W �18�. As it may
be seen, the coherence map exhibits a sharp peak only
	0.5 �m wide and distributed along the propagation direc-
tion z in which the coherence length Lcoh�3 cm. As a result
of the nondiffractive nature and nearly stationarylike propa-
gation of the PBB, this value is maintained over a large
propagation distance.

In the inset of the same figure we also show the coherence
length along the spatiotemporal �r , t� pulse profile, for a fixed
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FIG. 2. �Color online� Coherence length �in cm� for a Bessel
pump beam in helium phase matched with the 61st harmonic over
1 cm of propagation from the beginning of the gas cell. The inset
shows the radial vs local time coherence map along the PBB profile
at z=6 mm �dashed line�.
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position on the propagation axis z=0.6 cm �dashed line in
Fig. 2�. The values of Lcoh remain almost constant along the
pulse temporal axis, so that the harmonic field builds up
coherently over the pump pulse as long as the intensity is
high enough.

To study the harmonic power yield, we made an analytical
estimation based on Eq. �1� in Ref. �8� by assuming as in
Refs. �20,21� the atomic response at the harmonic frequency
Aq to be proportional to the pump intensity Il as Aq� Il

p,
where p=5 is a constant value. We note that this method
gives a useful indication of the relative strengths of the har-
monic signals generated by the PBB and the Gaussian pulse,
but it is unable to predict the effective efficiency conversion,
which would require a full simulation of the HHG process.

The result can be seen in Fig. 3, which shows the evolu-
tion of the harmonic power �intensity integrated over the
effective area in which the harmonic is generated�. The har-
monic power steadily increases until the absorption limit is
reached around z=2 mm. At this point the harmonic yield
saturates and, following the behavior of the PBB, undergoes
some oscillations around the maximum value and then starts
slowly to decrease when the PBB approaches the end of the
Bessel zone and starts diffracting. The inset to Fig. 3 shows
a detailed comparison of the harmonic power obtained by the
PBB and Gaussian pulse with the same input duration, en-
ergy, and peak intensity of the PBB. The Gaussian pulse
evolution was estimated using the same NLSE model as for
the PBB, so that all nonlinear effects are accounted for. Due
to the larger width of the equivalent Gaussian pulse within
which the conditions for generation of the 61st harmonic are
satisfied �the useful diameter for HHG is 76 �m�, the initial
yield of the Gaussian pulse is higher than that of the PBB.
However the coherence length for a nonphase matched pro-
cess in this regime is only 	3 �m, so that the conversion
process quickly reaches a maximum value followed by quick
oscillations �due to the phase mismatch� and relaxes on a
lower value, about one third of the maximum value in the
inset, determined by the reabsorption process �8�. So, even
comparing the PBB conversion efficiency with the maximum

value obtained by the Gaussian pulse �at z=5 �m�, and even
if the spot size over which the harmonic is generated is only
around 10−5 of the Gaussian case, we still have a factor
greater than 700 improvement thanks to optimal phase
matching and to the fast nonlinear growth of the HHG signal
versus z.

We verified also the effects of PBB-induced phase match-
ing well within the harmonic plateau region. In Fig. 4 we
show the coherence length maps obtained for the 47th har-
monic with the same pump pulse after a reoptimization of
the cone angle, which gave a slightly different value of
2.84°. Since we are now in the plateau region, we have two
different coherence maps corresponding to the short �
=0�
and long �
=−24.8�10−14 cm2 /W� �7� paths. The coher-
ence map of the short path exhibits very high values of the
coherence length �15 cm and more� wherever the intensity is
high enough for the generation process. The long path is
instead well phase matched only in a narrow region on axis.
This shows that in our phase-matching scheme the atomic
phase plays a critical role in limiting the spatial width of the
harmonic beam so that in the cutoff region or for long path
contributions in the plateau we expect to always obtain in the
near field a narrow harmonic beam. By repeating for the 47th
harmonic the comparison with the Gaussian pulse, we found
for the long path an improvement of a factor 100 and for the
short path a much higher factor 25 000 thanks to the wider
radius of the phase-matched region. Before concluding, we
should note that this technique has analogies with a proposed
method where the interference between two beam crossing at
an angle serves as a pump pulse �22�; however, beside the
obvious advantages of a single beam setup, the use of PBBs
avoids the poor spatial quality of the harmonic field that is
almost unavoidable in the two-beam arrangement, where the
interference pattern would be transferred to the harmonic un-
less the two beams are as narrow as a few tens of microns �so
as to obtain a single interference peak�, which in turn would
imply a very short overlap and copropagation. We may com-
pare this situation with PBB-induced phase matching in con-
ditions similar to those adopted in Ref. �22�, i.e., lower-order
harmonic generation in argon gas at P=0.2 atm with a pump
energy of 2.5 mJ and a peak intensity I=1.6�1014 W /cm2.
Figure 5 shows the result for the 27th and 29th harmonics,
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FIG. 3. �Color online� Calculated power in the 61st harmonic
generated in helium using a phase matched PBB pump. The inset
shows in detail the power growth in the first few microns compared
to that obtained with the Gaussian pump pulse with the same input
energy and peak intensity.
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FIG. 4. �Color online� Coherence length �in cm� for the 47th
harmonic. The long path �top� is phase matched only in a small
region on axis, while the short path �bottom� coherence length is
always over 10 cm. Note the different radial scales.
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which are simultaneously phase matched over very long
propagation distances. We underline the very different spatial
distribution of the two harmonics, which would allow one to
select one or the other with a spatial filter.

In conclusion, we have shown that by appropriate choice
of the PBB parameters it is possible to effectively phase
match the HHG and reach the absorption limit for any har-

monic of interest �as long as the pump pulse remains below
the critical ionization threshold�, a result that can be reached
only in very specific operating conditions using Gaussian
pulses, and without the limitations of a hollow waveguide.
Moreover, since the harmonic signal remains high over a
reasonable distance of several millimeters once it reaches the
absorption limit, the experimental realization with a gas cell
should easily be feasible. This technique is studied in specific
cases in He and Ar gases but may be readily applied in other
operating conditions, in particular to higher pump intensites
�while remaining below the critical ionization limit�.

Our results within the approximation of the coherence
map technique give a strong indication of a new possible
approach for phase matching that we believe deserves further
attention.
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FIG. 5. �Color online� Coherence lenghts for the 27th and 29th
harmonics in argon simultaneously phase matched, respectively, on
axis and off axis. The coherence length scale for the 29th harmonic
should be multiplied by 10.
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