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We have developed a hit-and-miss Monte Carlo geometric ray-tracing program to compute the scattering
phase matrix for concentrically stratified spheres. Using typical refractive indices for water and aerosols
in the calculations, numerous rainbow features appear in the phase matrix that deviate from the results
calculated from homogeneous spheres. In the context of geometric ray tracing, rainbows and glory are
identified by means of their ray paths, which provide physical explanation for the features produced by
the “exact” Lorenz–Mie theory. The computed results for the phase matrix, the single-scattering albedo,
and the asymmetry factor for a size parameter of ∼600 compared closely with those evaluated from the
“exact” theory. © 2010 Optical Society of America
OCIS codes: 290.1090, 290.4020, 290.5855.

1. Introduction

An incident plane electromagnetic wave can be
thought of as a bundle of separate rays or a flow of
photons impinging onto a scattering particle when
the ratio of particle size to the incident wavelength
approaches infinity. In this case, each localized ray
or photon can be traced geometrically using Snell’s
law when it hits a particle’s boundary. Fresnel’s for-
mula and the rotation of incident planes can be fol-
lowed for the evaluation of intensity and polarization
of a light ray, which can undergo (1) external reflec-
tion, (2) two refractions, (3) a number of internal
reflections, and (4) internal absorption, along a tra-
versed path. Also, a ray passing by a particle is dif-
fracted in a narrow forward lobe with the same
amount of energy as the reflected and refracted
ray, which results in the extinction cross section
becoming twice the particle’s geometric cross section,
a concept referred to as the geometric-optics approx-

imation [1]. We have applied this concept to light
scattering by nonspherical and irregular ice particles
[2,3].

To the best of our knowledge, the geometric-optics
approach has not been applied to light scattering and
absorption by inhomogeneous spheres, except the
work of Lock et al. [4]. We have developed a geo-
metric-optics (GO) program for a concentric sphere
following a ray-tracing program, which is coupled
with a hit-and-miss Monte Carlo method specifically
for application to nonspherical particles [2,3]. Our
objective is to provide the means to understand the
features in the phasematrix that are produced by the
more “exact” Lorenz–Mie solution.

We have organized this paper as follows. In
Section 2, we outline the fundamental equations
that are required for the computation of the geo-
metric ray-tracing program for a two-layer sphere.
Computed results are subsequently presented and
discussed in Section 3 in terms of ray paths, includ-
ing external reflection, two refractions, and internal
reflections, and the mixing rule. Finally, a summary
is given in Section 4.
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2. Geometric Ray-Tracing Method for a Concentrically
Stratified Sphere

In the following, we outline the basic equations for
the calculation of phase matrix within the context
of geometric optics. The scattering phase matrix in-
volving a group of homogeneous or inhomogeneous
spheres with different sizes can be expressed by

P ¼

2
664
P11 P12 0 0
P12 P22 0 0
0 0 P33 −P43

0 0 P43 P44

3
775: ð1Þ

The four independent phase matrix elements Pij in
the matrix are given by

Pij ¼
X
γ

X
n

pij;n

p11;n sin θn
; ð2Þ

where the first summation denoted by γ covers the
cross-sectional area of a scattering particle, and the
second summation is over the localized rays denoted
by the subscript nð¼ 1; 2; 3;…Þ. pij;n are phase matrix
elements for a photon scattered at a direction defined
by a scattering angle θn. Equation (2) denotes that
the phase function P11 is proportional to the number
of scattered photons per unit solid angle. Suppres-
sing the subscript n, pij in Eq. (2) can be expressed
in terms of a 2 × 2 amplitude matrix Sklðk; l ¼ 1; 2Þ
as follows:

p11 ¼ 1
2
ðM2 þM3 þM4 þM1Þ; ð3Þ

p12 ¼ 1
2
ðM2 −M3 þM4 −M1Þ; ð4Þ

p22 ¼ 1
2
ðM2 −M3 −M4 þM1Þ; ð5Þ

p33 ¼ S21 þ S34; ð6Þ

p44 ¼ S21 − S34; ð7Þ

p43 ¼ D21 þD34; ð8Þ

where

Mk ¼ jSkj2; ð9Þ

Skl ¼ Slk ¼ ðSlS�
k þ SkS�

l Þ=2; ð10Þ

Dkl ¼ −Dlk ¼ ðSlS�
k − SkS�

l Þi=2: ð11Þ

In these equations, the asterisk denotes a complex
conjugate number. A scattering matrix Sn of an nth
ray can be expressed by a product of transmission T,
reflection R, and rotation P matrices [5], combining
geometric reflection–refraction and Fraunhofer dif-
fraction contributions in the form ([2,3])

Sn ¼

8><
>:

R1 forn ¼ 1

PtPs
Q
q

h
TnPn

Q
2
k¼n−1ðRkPkÞT1P1

i
q
Pe forn ≥ 2 ;

ð12Þ

where

Pk ¼
�

cosϕk sinϕk

− sinϕk cosϕk

�
; Rk ¼

�
Rlk 0

0 Rrk

�
;

Tk ¼
�
Tlk 0

0 Trk

�
: ð13Þ

In Eq. (13), ϕk denotes a rotational angle between an
incident plane and the next incident plane; Rlk, Rrk,
Tlk, and Trk are Fresnel reflection and transmission
coefficients; and Pt, Ps, and Pe are rotational matrices
between two coordinate systems [5]. When n − 1 is
less than 2, the term

Q
2
k¼n−1 ðRkPkÞ is an identity

matrix.
Next, we outline a ray-tracing procedure for a con-

centric sphere. As shown in Fig. 1, rays refracted into
a concentric sphere can undergo an additional refrac-
tion into a core. After refraction into the core surface,
a new ray-tracing procedure is performed until the

Fig. 1. Illustrative diagram for light scattering by a concentri-
cally stratified sphere on the basis of the geometric ray-tracing
approach.
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rays emerge out of the core. Subsequently, the pre-
ceding ray-tracing procedure is resumed in the shell
portion of the system. This process is expressed sym-
bolically by the product over q in Eq. (12) and
repeated until the ray emerges out of the concentric
sphere. Absorption in a concentric sphere is ac-
counted for by considering whether a photon exists
inside this sphere [3]. This is done by comparing the
actual path length and the absorption path length
defined by − lnRN=ki, where RN is the random num-
ber from 0 to 1, ki ¼ 4πmi=λ, mi is the imaginary re-
fractive index, and λ is the wavelength. The single-
scattering albedo can be obtained from the ratio of
the number of scattered photons to that of scattered
photons if there were no absorption in a concentric
sphere.

3. Computational Results and Discussion

We have carried out a comparison of the single-
scattering properties for concentric spheres between
GO and the “exact” computation (referred to as “Ex-
act”) to check the accuracy of the GO program. To
smooth out the presentation of phase matrix ele-
ments, we perform a size integration using a modi-
fied gamma function nðaÞ, defined by

nðaÞ ¼ Cað1−3veÞve exp
�
−

a
aeve

�
; ð14Þ

where C is a constant, a is the radius of a sphere, ae is
the effective radius defined by

Fig. 2. Comparison of the phasematrix elements for polydisperse concentric spheres whose xe is 600 betweenGO and the “Exact” Lorenz–
Mie-like theory. Note that the matrix elements P22 ¼ P11 and P44 ¼ P33. The values for P43 ∼ 0 and are not displayed here.
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ae ¼
R
aπa2nðaÞdaR
πa2nðaÞda ; ð15Þ

and ve is the effective variance given by

ve ¼
R ða − aeÞ2πa2nðaÞda

a2
e

R
πa2nðaÞda : ð16Þ

For a concentric sphere, ashell is substituted for a. For
“Exact,” we have followed the Lorenz–Mie-like code
developed by Toon and Ackerman [6] and improved
by Wiscombe [7]. These authors, as well as Kattawar
and Hood [8], developed numerically stable algo-
rithms for the spherical Bessel functions in the Lor-
enz–Mie solution based on the equations presented
in [9].

Figure 2 shows the comparison of phase matrix
elements for two concentric spheres between GO

and “Exact” for an effective size parameter xe of
600, where xe is 2πae=λ. This value for xe is selected
in expectation of the asymptotic approach of GO to
“Exact” such that surface wave contributions to scat-
tering and absorption are minimum. The effective
variance ve in this case is 1=9. The ratio of the core
radius acore to the shell radius ashell is set as 0.8 for all
sizes. In this figure, mcore and mshell denote the
refractive indices for the core and the shell of a con-
centric sphere, respectively. Rainbow and glory
features are marked by alphabetical and Greek let-
ters. For phase function P11, GO and “Exact” results
for Case 1 (left figure) and Case 2 (right figure) are
reasonably close for all major features. For linear
polarization −P12=P11, some deviation occurs in the
region 100°–120° for Case 1 and 80°–90° for Case 2,
where GO produces more features than “Exact.” For
the P33=P11 element, differences are shown in the

Fig. 3. Geometric rays that contribute to the production of rainbows and glory features, identified by alphabetical and Greek letters as
shown in Fig. 2. The scattering angle for each case is also added beside the letter. The top two rows correspond to the left panel of Fig. 2,
while the bottom two rows correspond to the right panel of Fig. 2.
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region 80°–120°. Values for the phase matrix element
P43=P11 are close to zero and are not presented here.

To understand the rainbow and glory features, we
identify the rays that contribute to their production,
as illustrated in Fig. 3. The most remarkable peaks C
(primary rainbow) and D (glory) in Case 1 are gener-
ated by one internal reflection whose paths are
modified by the shell structure. The other primary
rainbow B is produced by internal reflection at the
boundary between the core and the shell. Because
of low reflectivity values of the inner sphere with a
relative refractive index of 1:5=1:33, the intensity
at B is smaller than that at C by one order of
magnitude. Similarly, intensities of the compound
secondary rainbow (reflections at both inner and out-
er spheres) A and the internal secondary rainbow F
are weak. The weak secondary rainbow E appears
only in the degree of linear polarization −P12=P11

and P33=P11, but not in the phase function because
of the existence of intense twice-refracted rays in
that region. Also, a very faint fourth-order rainbow
G appears in P33=P11. For Case 2, the primary rain-
bow δ and glory η are most noticeable. In GO, the
glory intensity D (Case 1) is larger than η (Case 2)
by one order of magnitude due to an extra internal
reflection in the latter. In “Exact,” the intensity for
glory η is about one third of that for glory D, probably
due to the inclusion of surface wave contributions,
which are not accounted for in the conventional geo-
metric ray-tracing approach, as illustrated in Liou
et al. [10]. The feature ϕ is the second intense rain-
bow, which does not occur clearly in “Exact” P11. The
secondary rainbow γ appears at the opposite side of
the conventional secondary rainbows A, E, F, and ϕ
because the maximum deviation angle becomes the
minimum deviation angle in this case. In “Exact,”

Fig. 4. Same as Fig. 2 except for xe ¼ 2400.
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there is no peak corresponding to γ; however, there is
a faint peak around 175° in P33=P11. This peak would
be closer to the GO peak if the size parameter is
larger than 600. The third intense rainbow β is pro-
duced by one internal reflection. The remaining
peaks α, χ, and ε are generated by external tertiary
or compound tertiary reflections. As illustrated in
Fig. 3, the external tertiary rainbow α is more pro-
nounced than the compound tertiary rainbows χ
and ε associated with intense reflection at the outer
sphere. To clarify differences between GO and “Ex-
act,” such as α rainbow, we perform another compar-
ison for a larger effective size xe of 2400, which is
shown in Fig. 4. “Exact” approaches GO much closer
than that shown in Fig. 2. For example, “Exact” α
rainbow appears in −P12=P11, although there is no
α “Exact” rainbow in Fig. 2. Also, “Exact” ϕ and γ

rainbows are more definitive than those depicted
in Fig. 2. Additionally, the “Exact”G rainbow appears
in −P12=P11. However, the fourth-order rainbow is
not shown in GO. Differences in these features sug-
gest that the “Exact” computer program developed by
Toon and Ackerman [6] and Wiscombe [7] could par-
tially contain issues for very large size parameters
(see also Wolf and Voshchinnikov [11]).

Figure 5 shows three phase matrix elements as in
Fig. 2, except that the imaginary refractive index is
included for both core and shell. A number of rain-
bows (A, E, F, and α), which occur in Fig. 2, disappear
due to accumulated absorption along the ray path in-
side the sphere. Energy contributions from the exter-
nally-reflected and two-refracted rays are more
pronounced than the transmitted rays with internal
reflection(s). For this reason, phase matrix elements

Fig. 5. Same as Fig. 2, except for mcore ¼ 1:5 − i1:0 × 10−3 and mshell ¼ 1:33 − i7:5 × 10−4 in the left panel, and mcore ¼ 1:33 − i7:5 × 10−4

and mshell ¼ 1:5 − i1:0 × 10−3 in the right panel.
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calculated from GO are in better agreement with
those computed from “Exact” in absorbing cases than
in nonabsorbing cases. Finally, we compare the sin-
gle-scattering albedo and the asymmetry factor com-
puted from GO and “Exact,” as listed in Table 1. By
adding different absorption values to the core and
the shell of concentric spheres with an effective size
parameter xe of 600, we can examine the effects of
concentric inhomogeneity on the single-scattering al-
bedo. There is general agreement between GO and
“Exact”; however, smaller differences are evident.
To check these differences, we carried out an addi-
tional comparison using an average complex refrac-
tive index evaluated from the Maxwell–Garnett rule
[12], which is listed in the bottom two rows. We see
that the preceding differences are not produced by
the inhomogeneity of scattering particles, but rather
are caused by differences between GO and “Exact” in
the homogeneous case. In reference to the asymme-
try factor for nonabsorbing particles corresponding
to Fig. 2, we obtain 0.8254 and 0.8236 for Case 1
and 0.8689 and 0.8728 for Case 2, respectively, for
GO and “Exact.” For absorbing cases listed in
Table 1, agreement between the two is closely in line
with the phase function values presented in 5.

4. Conclusions

Extending our previous geometric-optics approach
for light scattering by nonspherical particles [2,3],
we have developed a Monte Carlo/geometric ray-
tracing program (GO) for the calculations of scatter-
ing, absorption, and polarization parameters in-
volving a concentrically layered sphere. The phase
matrix, single-scattering albedo, and asymmetry fac-
tor for concentric spheres are computed for a size
parameter of ∼600, using typical refractive indices
for water and aerosols, and compared with those
computed from the “Exact” Lorenz–Mie-like solution.
In the derivation of the “Exact” solution [9], the
matching of the boundary conditions for the tangen-
tial components of the electric field was performed at
the core surface and the surface of the shell; as such,
this solution was not directly derived from the wave
equations. The shell-core system for spheres pro-
duces numerous rainbow and glory features, which
differ substantially from those generated by homoge-

neous spheres. Based on the geometric ray-tracing
principle, we have interpreted these imprints in
GO and “Exact” in terms of the ray paths that under-
go external reflection, two refractions, and internal
reflections. Except for some weak rainbow features
denoted by α, ε, and G displayed in Fig. 2, we see an
overall agreement between GO and “Exact” for a size
parameter of∼600. This agreement is enhanced for a
size parameter of ∼2400. We also note that differ-
ences in these two approaches could suggest that
there appear to be unsolved problems in the “Exact”
computational program for a two-layer spherical
model for large size parameters.

This research was supported in part by the
National Science Foundation (NSF) under grant
ATM-0331550.
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1:33 − i7:5 × 10−4 1:5 − i1:0 × 10−3 0.6565 0.6430 0.9333 0.9360

1:4155 − i1:7559 × 10−4 1:4155 − i1:7559 × 10−4 0.8721 0.8539 0.8783 0.8830
1:4141 − i8:7298 × 10−4 1:4141 − i8:7298 × 10−4 0.6360 0.6238 0.9343 0.9373
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