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Phase measurement constitutes a key task in many fields of science, both in the classical and
quantum regime. The higher precision of such measurement offers significant advances, and can
also be utilised to achieve finer estimates for quantities such as distance, the gravitational constant,
electromagnetic field amplitude, etc. Here we theoretically model the use of a quantum network,
composed of a randomly coupled set of two-level systems, as a processing device for phase mea-
surement. An incoming resource state carrying the phase information interacts with the quantum
network, whose emission is trained to produce a desired output signal. We demonstrate phase pre-
cision scaling following the standard quantum limit, the Heisenberg limit, and beyond. This can be
achieved using quantum resource states such as NOON states or other entangled states, however,
we also find that classically correlated mixtures of states are alone sufficient, provided that they
exhibit quantum coherence. Our proposed setup does not require conditional measurements, and
is compatible with many different types of coupling between the quantum network and the phase
encoding state, hence making it attractive to a wide range of possible physical implementations.

Keywords: Phase estimation, standard quantum limit, Heisenberg limit, quantum neural network, quantum reservoir
processing, quantum metrology.

I. INTRODUCTION

Superior precision in measurements is of great value
in ample situations, across many scientific disciplines.
For the case of optical phase measurements, conventional
methods involve the use of classical light (laser), passing
through a material (sample) after which the signal under-
goes interference with a reference, resulting in an output
containing phase information from the sample. However,
this method can be detrimental, especially for sensitive
samples with a large number of penetrating photons,
which can alter their phase. Furthermore, for samples
with fluctuating phases, a method capable of perform-
ing rapid phase estimation is desired. In this case, the
laser power limits the number of photons emitted per unit
time. Consequently the race is towards performing phase
estimation with limited number of photons and obtain-
ing high precision output, the regime of which quantum
systems offer supremacy over classical counterparts.

In this direction, the classical limitation for the preci-
sion of phase φ is given by the so-called standard quan-
tum limit (SQL), which lower bounds the error ∆φ as

in the central limit theorem, i.e., ∆φ ∝ 1/
√
N , where

N is the number of particles used in the measurement.
To overcome this, quantum states possessing quantum
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properties such as entanglement have been proposed as
a resource to obtain precision below the SQL and reach
a scaling ∆φ ∝ 1/N , i.e., the so-called Heisenberg limit
(HL) [1]. Going beyond the SQL has been demonstrated
in a number of experiments, for example: optical phase
measurements [2–5]; matter phase [6, 7]; sensing of a sin-
gle ion mechanical oscillator [8]; and for magnetic field [9–
11] as well as electric field sensing [12]. It is also expected
to enhance the detection of gravitational waves at the
LIGO [13].

A phase estimation setup overcoming the SQL, con-
ventionally involves a Mach-Zehnder interferometer or
an improved version [1–7], from which the output re-
trieves the phase information. One of the forms of re-
source state known as a NOON state was proven use-
ful, i.e., (|N0〉 + |0N〉)/

√
2, where N denotes the num-

ber of excitations. Earlier work utilised these states to
demonstrate phase super resolution, corresponding to in-
terference oscillation N times that of single photon re-
source states [14–16]. Super sensitivity, which is associ-
ated with phase precision beating the SQL, was reported
for N = 2 [4], N = 4 [2], and approaching the HL for
N = 3 [5]. However, following this method, going to-
wards the HL for higher N -NOON states comes with
an increasing complexity, requiring conditional measure-
ments.

Recently, neural networks have been fruitful for solving
complex problems in a number of fields [17–26]. In gen-
eral, one has an input, a trained network composed of
connected nodes that acts as a processing device, and
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an output. Among the different forms of neural net-
work architectures, reservoir computing transpires as one
of the competitive candidates [27–36], particularly for
direct hardware implementation. Reservoir computing
does not require training over the internal connections
between network nodes, rather, it is performed only on
a single output layer, in which the signals from the net-
work are processed to produce a desired output. The
vast progress of this field has also reached the quan-
tum regime – termed quantum reservoir computing or
processing. In this case, a quantum network is utilised
to execute classical tasks outperforming classical net-
works [37–40] and also quantum information tasks, such
as: state characterisation [41, 42]; preparation of quan-
tum resource states [43, 44]; and a platform for quantum
computing [45]. See also Refs. [46, 47] for comparison of
different implementations.

Motivated by the direction towards high precision mea-
surements and the vastly growing field of neural net-
works, here we demonstrate theoretically the use of a
quantum network as a processing device for high preci-
sion phase measurement. In particular, a resource state
carrying phase information after passing through a sam-
ple acts as an input, which then interacts with a quantum
network (QN) composed of randomly coupled two-level
quantum systems, which we refer to as network nodes.
The emission from the network (or the measured occu-
pations of the network nodes) is then linearly combined
through an output layer, which is trained using ridge re-
gression, in order to generate a desired output signal.
We show that our method can perform phase estima-
tion with precision adhering to the SQL, HL, and be-
yond. We also show that higher QN size offers improved
precision and that one can utilise time-integrated mea-
surements for the emission from the QN before combi-
nation through an output layer, which is experimentally
friendly. We also discuss different types of noise that may
affect the QN nodes. Our method is applicable for dif-
ferent types of coupling involved between the input and
the network, thus making it desirable for a wide range
of physical implementations. Last, we compare our re-
sults to the quantum Cramér-Rao bound and show that
for some QN parameters, one may obtain near-saturation
phase estimation errors.

II. THE SETUP

Here we consider a generic simple model and note
that our treatment can potentially be applied to phys-
ical systems for experimental realisations, such as: ran-
domly coupled quantum dots [48, 49]; arrays of atomic
systems [50–55]; photonic modes in connected optical
resonators [56–58] or coupled waveguides [59]; interact-
ing exciton-polariton systems [60–63]; superconducting
qubits [64–67]; and programmable QN with a multimode
fibre [68].

We define a quantum network as a collection of two-

level quantum systems with random energies and all-to-
all couplings as illustrated in Fig. 1. In this paper, we
utilise a bipartite (two-mode) state |ψN 〉, which, after
obtaining a phase information φ through the sample, in-
teracts with the network. We take all couplings to be
energy-preserving, i.e., Josephson or Jaynes-Cummings
type, such that the Hamiltonian is written as

Ĥ =

Q∑
j

Ej b̂
†
j b̂j +

Q∑
jj′

Cjj′
(
b̂†j b̂j′ + b̂†j′ b̂j

)

+

Q∑
j

∑
k=1,2

Wjk

(
â†k b̂j + b̂†j âk

)
, (1)

where Ej is the energy of the jth node, whose anni-

hilation (creation) operator is denoted by b̂j (b̂†j), Cjj′
the coupling strengths between the QN nodes, and Wjk

stands for the coupling strength between the network
node j and an input mode k. We have used Q to indicate
the number of nodes used in the QN. We also consider
other types of coupling, i.e., ultra strong non-energy pre-
serving and cascading type – see Appendix A for detailed
expressions.

FIG. 1. Setup for high precision phase measurement. A quan-
tum resource state |ψN 〉 picks up a phase, after which it inter-
acts with a quantum network consisting of randomly coupled
two-level nodes. The phase information is embedded in the
QN and retrieved through its emission (estimated mean val-
ues after a finite number of repetitions), which is processed
via a trained output layer. With this method, we show the
phase precision limit following the standard quantum limit,
the Heisenberg limit, and beyond.

As the input for the QN, we first consider NOON
states, which we write as

|ψN 〉 ≡
1√
2

(|N0〉 − |0N〉) , (2)

where N denotes the number of excitations. The prepa-
ration of NOON states has been demonstrated experi-
mentally, e.g., in Refs. [14, 15, 69]. See also Ref. [44]
for their preparation, specifically in the form of Eq. (2).
Note that a relative phase in the input state, such as the
minus sign in Eq. (2) is irrelevant for the present task.
One can utilise other forms of resource state, e.g., we
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will also use maximally entangled states and classically
correlated states later. After passing one mode of the
state through the sample, the state carrying the phase
information reads (|N0〉 − exp (iNφ)|0N〉) /

√
2.

For the dynamics of our setup, in addition to the co-
herent evolution corresponding to the Hamiltonian of
Eq. (1), we also consider the quantum network being sub-
jected to noises. In particular, we write the evolution of
the density matrix ρ of the whole system as follows:

ρ(t+ ∆t) = D̂(∆t) Û(∆t) [ρ(t)], (3)

where D̂ and Û denote the application of possible noise
channels and unitary exp (−iĤ∆t/~), respectively. We

take into account the energy decay D̂dcy, dephasing D̂dph,

and depolarising D̂dpl processes affecting the QN nodes.
See Appendix B for explicit expressions, where the
strength of the noises is characterised by γdcy, γdph, γdpl,
in units of energy.

We assume that it is possible to estimate the mean ex-
citation numbers of the QN nodes and that they can be
linearly combined with a set of tuneable weights. This
corresponds to the action of an output layer of our net-
work, producing an output signal:

fout = α0 + α1〈n1〉+ α2〈n2〉+ · · ·+ αQ〈nQ〉, (4)

where 〈nj〉 = tr(b̂†j b̂jρ(τ)) denotes the ideal mean excita-
tion of the jth QN node at time τ . The coefficients,
written in a vector form, α ≡ (α0, α1, α2, · · · , αQ)T

are trained such that the error of the output signal is
minimised. The training is performed with ridge re-
gression (see Appendix C for details). Later, we show
that our method also allows for time-integrated measure-
ments (instead of time-resolved at time τ), i.e., fout =
α0 + α1

∫
〈n1〉dt/T + α2

∫
〈n2〉dt/T + · · · , where T is the

measurement duration.

In experimental situations, mean excitation numbers
are determined from a finite number of measurements
and their optimal use is the subject of metrology. To
account for the deviation from the ideal values, which
require an infinite number of measurements, we introduce
a random error as follows

〈nj〉 = 〈nj〉ideal + εj , (5)

where 〈nj〉ideal = tr(b̂†j b̂jρ(τ)) and εj is a random num-
ber normally distributed with zero mean and standard
deviation of the mean (SDM) ξ/2. By the central limit

theorem it follows that ξ ∝ 1/
√
M (the SQL), where

M is the number of measurements. We note that for
ξ → 0, the simulations show that our method reproduces
∆φ → 0 for phase estimation as it should be since this
corresponds to M → ∞. Importantly, the addition of
systematic errors in Eq. (5) has no effect on ∆φ, because
the training procedure learns to overcome them.

III. RESULTS

In what follows, we shall set the network parameters
(Ej , Cjj′ ,Wjk) = (ej , cjj′ , wjk)~Ω, where the lowercase
parameters are dimensionless and ~Ω has units of energy.
To simulate the imperfections in fabrication of the QN,
we generate random parameters (ej , cjj′ , wjk) ∈ [0, 1]
that are uniformly distributed. As the initial condi-
tion for the QN, we assume the experimentally sensible
ground state for all the nodes, i.e., |0〉⊗Q.

A. Output signal

Following the discussion from Refs. [1, 2], we take the
following function as the target output signal:

Iideal =
1

2
(1− cos(Nφ)) , (6)

where N corresponds to the degree of NOON states used
in the input. The function Iideal can show both super res-
olution due to its Nφ dependence and super sensitivity,
which we will demonstrate later. For one realisation of
the set of random network parameters (ej , cjj′ , wjk), the
assessment of our method is conducted as follows. For the
training procedure, we generate Ntrain random phases φ,
which lead to Ntrain sets of (〈n1〉, 〈n2〉, · · · , 〈nQ〉) from
the realised QN, and in each set the mean values are es-
timated after M measurements according to Eq. (5). The
coefficients α (output layer) are trained using the Ntrain

training sets with ridge regression (see Appendix C) such
that the estimated output signal,

Iest = α0 + α1〈n1〉+ α2〈n2〉+ · · ·+ αQ〈nQ〉, (7)

is close to the ideal form in Eq. (6). To test the trained
output layer, we generate Ntest random phases, labelled
φl, which consequently give an estimated output signal
Iest,l. We note that the training is performed only once,
after which we obtain the coefficients α that one can use
to retrieve the estimated output of any phase φl.

We present in Fig. 2, an exemplary demonstration of
our method using one realisation of the network parame-
ters, showing estimated output signals (filled circles) and
the corresponding ideal ones (solid curves). We utilised
NOON states N = 1, 2, 3, and 4. In all cases, we
used Ntrain = 10 and Ntest = 50, the measurement error
ξ = 0.01, and a quantum network of size 4 with evolu-
tion time τ = 8/Ω. Fig. 2 shows super resolution for
higher N -NOON states, as seen from the 2π/N period of
oscillations in the range φ ∈ [0, 2π). It is also intuitive
that the retrieval of the phase φest from Iest has different
accuracy for different φ. In particular, the accuracy is
best in the region of highest slope, e.g., φ = π/2N for
the case of N -NOON state. This will be quantified and
demonstrated in more detail in the next section.
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FIG. 2. Exemplary output signals showing super resolution.
Different NOON states |ψN 〉 were used as input for a quantum
network of size 4. The corresponding solid curves indicate the
ideal signals Iideal. In all cases, the training and testing size
is 10 and 50, respectively, with ξ = 0.01.

B. Phase estimation

We evaluate the phase from the output signal (for N -
NOON state) as

φest =
1

N
arccos(1− 2Iest). (8)

The measurement error εj in Eq. (5) can result in an
output signal Iest /∈ [0, 1] at extreme regions, e.g., φ ≈ 0
and π/N in Fig. 2, which further gives a complex φest. To
avoid these instances, we assign φest = 0 and φest = π/N ,
for Iest < 0 and Iest > 1, respectively. The error for the
phase estimation task is quantified as follows:

∆φ̄N =

√√√√Ntest∑
l

(φest,l − φl)2
Ntest(Ntest − 1)

. (9)

Note that the bar notation indicates the testing is per-
formed, where the phases φl are randomly generated over
a range of values, e.g., [0, π/N ]. For a particular value of
the testing phase, i.e., φl = constant, the above expres-
sion reduces to the SDM of that phase, which we shall
write simply as ∆φN hereafter.

We demonstrate the estimated phase vs ideal phase in
Fig. 3 for different strengths of the measurement error:
ξ = 10−2 (a), 5 × 10−3 (b), and 10−3 (c). We have
used a quantum network with 4 nodes that is evolved for
τ = 8/Ω, NOON state |ψ1〉 as the input resource state, 10
training sets, and 100 testing sets. It can be seen that φest
deviates more from the ideal phase near φ = 0 and π (low
output slope, see Fig. 2), while showing best accuracy at
φ = π/2. It is also clear that smaller measurement error
ξ produces less error in the estimated phase.

Fig. 3(d) compares the performance of different QN
sizes, i.e., Q = 2 (squares), 3 (triangles), and 4 (circles)

(a) (b)

QN-2

QN-3
QN-4

(c) (d)

(e)

FIG. 3. Performance of phase estimation task. (a)-(c) Esti-
mated phase vs ideal phase for different measurement error
ξ, indicated on the bottom right of each panel. A QN with
4 nodes was used in these simulations. (d) SDM at different
φ for different network sizes: (2, 3, 4) indicated by (squares,
triangles, circles), respectively, and ξ = 10−3. (e) ∆φ1 at π/2
indicating the scaling with QN size. Each SDM is averaged
over 50 sets of realisations of the random network parameters.
In all considered cases, for each realisation of the network pa-
rameters, |ψ1〉 was used with 10 training and 100 testing sets.

with τ = 8/Ω. NOON state |ψ1〉 and a measurement
error ξ = 10−3 were used in all three cases. We realised 50
sets of the random network parameters, in each of which
we used Ntrain = 10 and Ntest = 100. We computed the
SDM ∆φ1 (averaged over 50 sets of QN realisation) at
different φ. This way, our method is not highly dependent
on a particular realisation of the network parameters.
It is clear that more network nodes produce less error.
Moreover, Fig. 3(d) not only indicates that the least error
is found around φ = π/2, but also how the error behaves
as a function of φ. Additionally, Fig. 3(e) shows how the
phase estimation error ∆φ1 changes with respect to the
QN size Q. The scaling exceeds ∝ Q−1/2, which is the
SQL with respect to the number of QN nodes.

For any to-be-measured phase φ, one can train the QN
with a “shift”, i.e., Iideal = (1− cos(N(φ+ θ))) /2. The
shift θ is chosen such that the highest output slope is
located around φ, resulting in the minimum SDM of the
phase. See a demonstration in Appendix D. Hereafter,
the SDM ∆φN for any random φ will be assumed at the
highest output slope. Note that this procedure is all done
in the data processing step (post measurements). The
next section quantifies and expands on the observations
made about Fig. 3.
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FIG. 4. Phase precision showing the standard quantum limit and Heisenberg limit. (a) Phase estimation errors ∆φ̄N and the

SDM at highest output slope ∆φN , plotted against the measurement error ξ (∝ 1/
√
M). We have used N to denote the use

of N -NOON state. (b) The ratio of phase estimation errors, see Eq. (10). Empty triangles are for η̄12, empty squares for η̄13,
and empty diamonds for η̄14. Also the corresponding filled ones: η12 (triangles), η13 (squares), and η14 (diamonds). We report

that ∆φ̄N ,∆φN ∝ 1/
√
M – demonstrating the SQL limit, and ∆φ̄N ,∆φN ∝ 1/N – demonstrating the HL limit. Panels (c)

and (d) are the phase estimation errors and their ratios, respectively, using the classically correlated state ρN in Eq. (11). (e)
Estimation errors using ρN dephased in the Fock basis, modelled by multiplying the off-diagonal elements of ρN with a positive
coefficient p ≤ 1. The inset shows the amount of coherence in the state ρN with respect to p. In all cases, each data point
represents an error evaluation of a trained output layer with 10 training and 100 testing sets, which is averaged over 50 different
realisations of network parameters.

C. Phase precision scaling

Here we demonstrate phase precision scaling, which
follows the SQL, and HL by utilising higher degree N -
NOON states. For this purpose, we used a QN composed
of 4 nodes, evolved for τ = 12/Ω. Fig. 4(a) presents the
phase estimation errors, both ∆φ̄N and the SDM ∆φN
at the highest output slope, where N indicates the use
of N -NOON state. These errors were plotted against the
measurement error ξ, defined in Eq. (5). We generated 50
different sets of realisations of the network parameters.
In each of these sets, we performed the training of the

output layer with Ntrain = 10 and the phase estimation
error was tested with Ntest = 100. Each data point in
Fig. 4(a) is the average phase estimation error of the 50
different realisations. One can see that ∆φ̄N ,∆φN ∝ ξ.
As ξ ∝ 1/

√
M , where M denotes the number of measure-

ments, it follows that ∆φ̄N ,∆φN ∝ 1/
√
M , which is the

SQL statement.

We now evaluate closer the use of higher N -NOON
states for a better scaling option. The argument goes
as follows: for example, instead of having double the
number of measurements with |ψ1〉 one can utilise |ψ2〉,
and harness the quantum advantage for precision beyond
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the SQL. Note that the comparison is made, where in
both cases, one has the same number of photons pass-
ing through the sample. For a more general scenario, in
order to beat the SQL, one has to show that the phase
error for N -NOON state (N > 1) gives a ratio

η̄1N ≡ ∆φ̄1/∆φ̄N >
√
N, (10)

or for the case of SDM, η1N ≡ ∆φ1/∆φN >
√
N .

Fig. 4(b) shows the ratio η̄1N : empty triangles (N = 2),
squares (3), and diamonds (4), and the corresponding
filled ones for η1N . Indeed, not only the ratios exceed
the SQL scaling indicated by the dash-dotted lines, they
also approach η̄1N , η1N → N – the HL scaling.

The quantum network platform allows for precision be-
yond the SQL even if the input resource states do not
posses quantum correlations. In this case, we consider
states of the form

ρN =
1

2
|ψN 〉〈ψN |+

1

2
|ψ̃N 〉〈ψ̃N | (11)

=
1

2
|+−〉〈+− |+ 1

2
| −+〉〈−+ |, (12)

where we introduced two-mode state |ψ̃N 〉 ≡ (|00〉 −
|NN〉)/

√
2 and single-mode states |±〉 = (|0〉± |N〉)/

√
2.

In order to understand the resources present in ρN , let
us recall that quantum entanglement is a special type
of quantum correlation present between quantum sys-
tems [70], and can be quantified, e.g., with negativ-
ity [71]. A broader class of quantum correlations is known
as quantum discord [72, 73]. It draws the border between
quantum and classical correlations, and has been shown
as a necessary ingredient for entanglement gain between
mediated systems [74–77]. One can infer that not only
the state ρN is separable (not entangled) E1:2 = 0, it
also has zero quantum discord D1|2 = D2|1 = 0, and
hence, contains only classical correlations. This is appar-
ent (without calculations) since ρN can be written in a
form that only requires orthogonal states for the subsys-
tems, i.e., the |±〉 in Eq. (12). However, it has coherence
(off-diagonal elements) when represented in the Fock ba-
sis. Also, note that the state ρN can be thought of as
embedded in a two qubit space, with the levels given by
|0〉 and |N〉. This way, ρN is simply an equal mixture of
two Bell-like states.

With the state ρN , we performed phase estimation
tasks, similar to those in Fig. 4(a). The results are plot-
ted in Fig. 4(c), where the parameters and notation are
the same as in Fig. 4(a). Although the phase estima-
tion errors are slightly higher than those in Fig. 4(a), the
scaling for higher N still beats the SQL and approaches
the HL, see Fig. 4(d). This finding opens up a new path
of performing super sensitive phase measurements using
resource states that do not have quantum correlations
and are relatively easier to prepare. We note that pre-
vious work conjectured the role of quantum discord in
mixed state quantum metrology [78]. Our work extends
this direction and presents metrology without quantum
discord. In this case, the coherence of the state ρN plays

an important role. In order to demonstrate this more
closely, suppose the off-diagonal elements of the state ρN
are multiplied by a positive number p ≤ 1, which simu-
lates dephasing in the Fock basis. Complete dephasing
is given when p = 0, in which case the state, now com-
pletely diagonal, cannot carry the phase information φ.
Phase estimation errors for different values of p are plot-
ted in Fig. 4(e). The inset shows how the coherence,
quantified as Sn(ρN (p = 0)) − Sn(ρN (p)) [79], where
Sn(ρ) ≡ −tr(ρ ln ρ) denotes the von Neumann entropy,
changes with respect to the variable p. It is clear that
states with larger coherence result in less phase estima-
tion errors.

D. Time-resolved and time-integrated processing

Thus far, we have considered processing mean values
{〈nj〉} at a particular time τ . One might ask how the
quantum advantage (beating the SQL) changes with re-
spect to time. To answer this question, we present the
SDM ratio η1N at different times in Fig. 5, both using
Q = 2 (a) and 4 (b) network nodes. In both panels, the
ratios are denoted as: η12 (triangles), η13 (squares), and
η14 (diamonds). The corresponding SQL scaling thresh-

olds are indicated by the dash-dotted lines: blue (
√

2),

red (
√

3), and green (
√

4). All the values η1N are ob-
tained in the same way as in Fig. 4 for ξ = 10−3, i.e.,
with training size 10, testing size 100, and averaged over
50 realisations of the network parameters. It can be seen
that it takes time for the quantum advantage to surface,
especially for the case of QN-4, which involves more net-
work nodes. This is intuitive since it requires time for
the information to be embedded in the quantum network,
even so in one with a bigger size. From Fig. 5, the quan-
tum advantage can reach higher values for QN-2 in the
considered time span. However, this does not mean that
QN-2 performs better than QN-4, as the bigger size QN
offers lower phase estimation errors ∆φN (not shown).
We note that at some times, the quantum advantage ex-
ceeds even the HL scaling, e.g., at Ωt = 8 in Fig. 5(a).
This is inline with the prediction that interacting sys-
tems with multipartite couplings, as it is the case for the
QN here, can indeed go beyond the HL [80–82]. We also
performed similar analysis using different coupling types
and other entangled states as input, see Section III F.

A more experimentally friendly option considers pro-
cessing time-integrated mean values from the QN nodes
to form the estimated output signal, i.e., Iest = α0 +
α1

∫
〈n1〉dt/T +α2

∫
〈n2〉dt/T + · · · , from which the esti-

mated phase φest is calculated. To exemplify this point,
we utilised the time-integrated mean values for the sce-
nario in Fig. 5, where the measurement was conducted
from Ωt = 10.75 to 11.25. For the case of QN-2 the re-
sulting ratios are η12 ≈ 2.1, η13 ≈ 3.7, and η14 ≈ 4.1,
whereas for QN-4 they are given by 2.6, 3.2, and 3.5, re-
spectively. In all cases, the quantum network approach
offers quantum advantage, i.e., the ratio beyond the SQL,
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and often beyond HL.

(a) (b)

R
at
io

R
at
io

QN-2 QN-4

FIG. 5. SDM ratio η1N at different times for quantum net-
work with 2 (a) and 4 (b) nodes. Notation as in Fig. 4(b). At

some times, the ratio η1N exceeds not only the SQL (
√
N) but

also the HL (N). Although the ratio at some times for QN-2
is higher, the QN-4 produces less phase estimation errors be-
cause its performance for single-excitation NOON state (the
reference for the ratio) is much better, see Fig. 3(d).

E. Noises

Here we shall investigate the role of noise, i.e., energy
decay, dephasing, and depolarising channels affecting the
QN nodes. Let us consider QN-4, where the bigger net-
work size is likely to cause more disturbance from noise,
which is evolved for a time τ = 6/Ω. To scrutinise each
source of noise, we shall study the application of the noise
channels: energy decay D̂dcy, dephasing D̂dph, and depo-

larising D̂dpl separately. The strength of these channels
are characterised, respectively, by γdcy, γdph, and γdpl in
units of energy (see Appendix B for details). For sim-
plicity, we have assumed the same noise strength for all
the QN nodes.

In Fig. 6(a) we present the average SDM ∆φN against
the noise-to-QN energy ratio γ/~Ω. The filled (empty)
symbols indicate the use of |ψ1〉 (|ψ2〉), with the shapes
corresponding to the application of energy decay (cir-
cles), dephasing (triangles), and depolarising channel
(squares). Similar to the scenario in Fig. 5(b), the aver-
age is taken over 50 different realisations of the network
parameters, each with 10 training and 100 testing sets.
It is apparent that the use of higher N -NOON state, |ψ2〉
in Fig. 6(a), is affected more severely by all the noises.
This is expected as higher degree NOON states possess
more excitations. We also note that depolarising noise
has the worst effect on the phase estimation error. This
channel corresponds to mixing the state of the QN nodes
with a maximally mixed state, rendering part of the net-
work “capacity” useless for information embedding. Note
that up to γ/~Ω = 10−2, the effects from all the noises
are minute. The error ratio η12 is plotted in Fig. 6(b)
where the affecting noise is energy decay (circles), de-
phasing (triangles), and depolarising (squares). It can
be seen that even in the situation where γ/~Ω = 0.1, the
quantum advantage still persists.

(b)

R
at
io

(a)

E
rr
o
r

FIG. 6. (a) SDM of highest slope ∆φ1 (filled symbols) and
∆φ2 (empty symbols) in the presence of energy decay (cir-
cles), dephasing (triangles), and depolarising (squares) noise.
The axis γ/~Ω refers to the ratio of the strength of respective
noise to the energy unit of the quantum network parameters.
The simulations were conducted averaging over 50 realisations
of network parameters, with 10 training and 100 testing sets.
A QN with size 4 was used, and τ = 6/Ω. (b) The ratio η12
of the SDMs in panel (a) for the case of energy decay (cir-
cles), dephasing (triangles), and depolarising (squares) noise.
Quantum advantage is present for all these noise strengths.

F. Beating SQL with other coupling mechanisms
and resource states

Now we demonstrate that our method is not limited
to the type of coupling involved between the quantum
systems. We shall vary the coupling type between the
input and QN nodes, which is responsible for embed-
ding the phase information into the QN. In particular,
we consider: energy-preserving type coupling (EP), also
known as Jaynes-Cummings or Josephson coupling; ultra
strong coupling; and cascading [83, 84] of the input into
the QN. The model for ultra strong coupling is similar to
the EP, where the last term in the Hamiltonian of Eq. (1)

changes to
∑Q
j

∑
k=1,2Wjk

(
â†k b̂j + b̂†j âk + âk b̂j + b̂†j â

†
k

)
.

The addition of the last two terms in the summation in-
dicates strong coherent interactions allowing for simul-
taneous annihilation and creation of excitations in the
input party k and QN node j. For the cascading for-
malism, see Appendix A for details. Similarly, it involves
an input-network coupling coefficient Wjk in energy unit.
Also, in this formalism the input k experiences an energy
decay characterised by a coefficient

∑
jW

2
jk/γ, where γ

denotes a constant decay strength for the QN nodes.

Fig. 7 shows the comparison between the EP (a), ul-
tra strong (b), and cascading (c) coupling. In all cases
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FIG. 7. Comparison of different input-network coupling
mechanisms and resource states. (a) Energy-preserving cou-
pling (Jaynes-Cummings or Josephson). (b) Ultra strong co-
herent interactions (note different vertical scale). (c) Cascad-
ing of input into QN nodes. (d) Energy-preserving coupling
with maximally entangled states as the input. In all the pan-
els, SDMs ∆φ1 and ∆φ2 are plotted for different evolution
times. The right axis indicates the ratio η12 = ∆φ1/∆φ2. All
the considered cases are capable of beating the SQL threshold
(red dash-dotted lines).

we used a QN with size 3, measurement error ξ = 10−3,
and 50 realisations of the network parameters. At each
time Ωt, we performed the training with 10 sets and the
testing with 100 sets. For Fig. 7(c) we set the decay
γ = ~Ω. It is worth noting that the ultra strong type
coupling produces lesser errors. This is partly because
the ultra strong interactions allow for faster information
embedding, i.e., the information spreads and occupies the
capacity or Hilbert space of the QN more (with the ad-

dition of the terms âk b̂j + b̂†j â
†
k). The cascading coupling

has an advantage that the phase information travels in
one way (into the QN), unlike the EP and the ultra strong
couplings considered in Fig. 7 where the evolution is co-
herent and part of the information travels back and forth
between the input and the QN. Note that with a decay
coefficient γ = ~Ω, the cascading coupling is capable of
producing nonclassical precision with estimated errors in
the order ∼ 10−3.

Finally, the results in Fig. 7(d) were obtained with
energy-preserving coupling where we used maximally en-

tangled states as the resource (EP-ME). In this case,

|ψ1〉 = (|10〉+|01〉)/
√

2 and |ψ2〉 = (|20〉+|11〉+|02〉)/
√

3.
For the latter, after passing the sample, the input state
reads (|20〉+ exp(iφ)|11〉+ exp(i2φ)|02〉)/

√
3. This state

still carries 2φ dependence, and the QN processing pro-
duces precision beating the SQL. We note that for EP-
ME in Fig. 7(d), we used a slightly modified output
model, i.e., Iest = α0 + α1〈n1〉 + α2〈n2〉 + α3〈n3〉 +
α4〈n1〉〈n2〉+ α5〈n2〉〈n3〉+ α6〈n3〉〈n1〉+ α7〈n1〉〈n2〉〈n3〉,
where the coefficients were trained with ridge regression.
This way, it does not require extra measurements (i.e.,
only the mean values {〈nj〉}, as used in Eq. (7)). We
note that in all panels of Fig. 7, the ratio η12 exceeds the
SQL threshold given by the red dash-dotted lines.

G. The quantum Cramér-Rao bound

In quantum metrology, the minimum phase measure-
ment error follows the so-called quantum Cramér-Rao
(QCR) bound:

δφ ≥ 1√
MFq(ρ)

, (13)

where M is the number of repetitions (measurements)
and Fq(ρ) is the quantum Fisher information (QFI) of a
quantum state ρ. Note that δφ is the standard deviation
of the measurement error, different from that of Eq. (9)
by
√
Ntest. The QFI of a general state ρ can be evaluated

following the expression given in Refs. [85, 86]. In the
present case, we have Fq(|ψN 〉〈ψN |) = Fq(ρN ) = N2,

which gives the QCR bound: δφ ≥ 1/(
√
MN).

To compare our scheme to the QCR bound, we slightly
modify the model for the measurement of the QN emis-
sion, previously described in Eq. (5), to explicitly take
into account the number of repetitions M . Given the
ideal mean excitation of the jth QN node 〈nj〉ideal, M
random numbers are generated, labelled µm ∈ [0, 1]. New
values (0 or 1) are assigned as follows: (i) µ̃m = 0 if
µm ≥ 〈nj〉ideal and (ii) µ̃m = 1 if µm < 〈nj〉ideal. This
way, µ̃ms mimic real experimental data, the average of
which converges to 〈nj〉ideal, with a standard deviation

of the mean ∝ 1/
√
M .

The phase measurement errors (standard deviation)
are plotted in Fig. 8. The resource states in panels (a)
and (b) are NOON states |ψN 〉, whereas those in pan-
els (c) and (d) are mixed states ρN . The performance
is plotted against the degree of resource state N in pan-
els (a) and (c), as well as against the number of QN
nodes Q in panels (b) and (d). The QCR bound with
M = 104 is plotted as a dashed-dotted curve or line in
all the panels. It can be seen that the minimum stan-
dard deviation δφmin is close to the QCR bound, which
indicates that there exists a set of QN parameters allow-
ing for near-saturation performance. This way, one can
think of the QN as a measuring and processing device to
efficiently extract information from the phase-encoded in-
put state. In principle, one may perform a more rigorous
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FIG. 8. Comparison of the phase measurement errors using a quantum neuromorphic platform to the quantum Cramér-Rao
bound. With respect to 103 realisations of the quantum network parameters, the average and minimum phase measurement
errors are denoted by the black circles and blue triangles, respectively. The errors are plotted against: (a) different NOON
states |ψN 〉 using QN of size Q = 2; (b) QN sizes using |ψ1〉; (c) different mixed states ρN using QN of size 2; and (d) different
QN sizes using ρ1. In all panels, the quantum Cramér-Rao bound is indicated by the black dashed-dotted curve or line, where
the number of repetitions is M = 104. The testing was performed at the highest output slope.

and precise parameter search algorithm to find a better
set of parameters for even smaller δφmin. Here we sim-
ply take 103 random realisations of the QN parameters,
with evolution time τ = 12/Ω. It is expected that the
performance of NOON states is better than the mixed
states, despite having the same QFI. Here, the scheme
might benefit from a more complex QN architecture or
a proper parameter search algorithm. We also note that
both δφave and δφmin are better for higher degree N of
the resource states and number of QN nodes Q.

IV. CONCLUSION

We have presented a platform for phase estimation
tasks, based on a quantum network approach. It con-
sists of three main elements: (1) a resource state car-
rying a phase information as input; (2) a quantum net-
work, which is made of a collection of randomly con-
nected quantum systems (the nodes), acting as a quan-
tum processing device; and (3) an output layer, which
combines the emission or measurement results from the
network nodes, and produces the final output. The train-
ing is performed in the output layer with ridge regression
such that the error of the target output is minimised.
The reported precision scales better than the standard
quantum limit, and even the Heisenberg limit – owing
to the interacting nature of the quantum network. We

have shown that this is possible even with classically cor-
related states as input owing to quantum coherence.

Our proposed platform is versatile, i.e., it is appli-
cable for different types of coupling between the input
and quantum network: the explicit calculations covered
Jaynes-Cummings or Josephson; ultra strong; and cas-
cading coupling. It also allows for both time-resolved
and time-integrated processing of the network emissions.
We show that the resulting quantum advantage is robust
against energy decay, dephasing, and depolarising noises.
One can further explore other forms of resource states as
input or other types of coupling between the quantum
systems involved. This makes our platform attractive for
a wide range of physical implementations.
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Appendix A: Other types of input-network coupling

For ultra strong coupling between the input parties
and the quantum network nodes, the evolution is written
as in Eq. (3) in the main text where the input-network
coupling term in the Hamiltonian of Eq. (1) now reads

Q∑
j

∑
k=1,2

Wjk

(
â†k b̂j + b̂†j âk + âk b̂j + b̂†j â

†
k

)
.

The ultra strong coupling allows for simultaneous an-
nihilation and creation of excitations, i.e., the terms

âk b̂j + b̂†j â
†
k.

We also consider an input-network coupling following
the cascading formalism [83, 84]. The Hamiltonian in
this case reads

Ĥ =

Q∑
j

Ej b̂
†
j b̂j +

Q∑
jj′

Cjj′
(
b̂†j b̂j′ + b̂†j′ b̂j

)
, (A1)

and the cascading master equation has the following
structure:

ρ(t+ ∆t) = ρ(t) +
∆t

~

(
− i[Ĥ, ρ(t)]

+

Q∑
j

γ

2
L(ρ(t), b̂j)

+

Q∑
j

∑
k=1,2

Wjk[âkρ(t), b̂†j ] + [b̂j , ρ(t)â†k]

+
∑
k=1,2

χk
2
L(ρ(t), âk)

)
, (A2)

where we have used L(ρ, Ô) ≡ 2ÔρÔ† − Ô†Ôρ − ρÔ†Ô
and χk =

∑Q
j W

2
jk/γ. In this formalism, γ denotes the

energy decay of the network nodes, while χk is that of
the input party k. The input-network coupling strength
is characterised by Wjk.

Appendix B: Noise channels

Here we provide detailed expressions for the energy de-
cay, dephasing, and depolarising channels. These chan-
nels are applied on the quantum network nodes, which
are two-level quantum systems. See Ref. [87] for a review.

The energy decay channel models the decay of excita-
tions, i.e., from excited state to ground state over time.
It is denoted by the operator D̂dcy(∆t), which is defined
as follows:

ρ(t+ ∆t) = D̂dcy(∆t)[ρ(t)] (B1)

=

Q∑
j

K̂j,1ρ(t)K̂†j,1 + K̂j,2ρ(t)K̂†j,2,

where

K̂j,1 =

[
1 0

0
√

1− γdcy
~ ∆t

]
,

K̂j,2 =

[
0
√

γdcy
~ ∆t

0 0

]
, (B2)

are operators applied on the jth node. For simplicity, we
have assumed that the decay strength γdcy is the same
for all the nodes.

Quantum states may loose their coherence, i.e., the
decay of superposition (off-diagonal elements of ρ(t)). In

this case, the dephasing operator D̂dph(∆t) is defined as:

ρ(t+ ∆t) = D̂dph(∆t)[ρ(t)] (B3)

=

Q∑
j

(1− γdph
2~

∆t)ρ(t) +
γdph
2~

∆t σ̂zj ρ(t)σ̂zj ,

where the dephasing is in the σ̂z basis. The strength of
this channel is characterised by γdph, which is assumed
uniform.

Last, experimental conditions can also result in depo-
larisation of the quantum state ρ(t), i.e., mixing with

white noise. This is modelled by D̂dpl(∆t) defined as:

ρ(t+ ∆t) = D̂dpl(∆t)[ρ(t)] (B4)

=

Q∑
j

(1− γdpl
~

∆t)ρ(t)

+

Q∑
j

∑
ν=x,y,z

γdpl
3~

∆t σ̂νj ρ(t)σ̂νj ,

where γdpl indicates the strength.
We have used Pauli matrices with the subscript j de-

noting the application on the jth QN node:

σ̂xj =

[
0 1
1 0

]
, σ̂yj =

[
0 −i
i 0

]
, σ̂zj =

[
1 0
0 −1

]
.(B5)

Appendix C: Training of output layer

Here we describe the training of the output layer,
i.e., the coefficients α ≡ (α0, α1, α2, · · · , αQ)T in
Eq. (7). Consider Ntrain number of training sets,
each of which consists of a known random phase, la-
belled φi, and the resulting mean values from the QN
(〈n1,i〉, 〈n2,i〉, · · · , 〈nQ,i〉) with a measurement error ξ,
where the subscript denotes the ith training set. From
the training sets, the coefficients α are obtained as fol-
lows:

α = (XTX + λ11)−1XTY , (C1)

where

X =


1 〈n1,1〉 〈n2,1〉 · · · 〈nQ,1〉
1 〈n1,2〉 〈n2,2〉 · · · 〈nQ,2〉
...

...
...

. . .
...

1 〈n1,Ntrain
〉 〈n2,Ntrain

〉 · · · 〈nQ,Ntrain
〉

(C2)
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and

Y =
1

2


1− cos(Nφ1)
1− cos(Nφ2)

...
1− cos(NφNtrain)

 . (C3)

The constant value λ > 0 is known as the ridge parame-
ter.

Once we obtain the coefficients α, we can calculate
the output signal, given a set of mean values from exper-
iments, via Iest = α0 + α1〈n1〉+ α2〈n2〉+ · · ·+ αQ〈nQ〉.
Next, from the output signal one can retrieve the phase
φest via

φest =

{
0, Iest < 0
1
N arccos(1− 2Iest), Iest ∈ [0, 1]
π/N, Iest > 1.

(C4)

For testing, we consider Ntest sets, each with a
testing phase φl and the corresponding mean values
(〈n1,l〉, 〈n2,l〉, · · · , 〈nQ,l〉), taking into account the mea-
surement error ξ. To quantify the phase estimation error,
we use

∆φ̄N =

√√√√Ntest∑
l

(φest,l − φl)2
Ntest(Ntest − 1)

, (C5)

where φest,l is calculated as in Eq. (C4) and the subscript
N indicates the use of N -NOON state as a resource.

We show the role of the ridge parameter λ by consid-
ering the exemplary task presented in Fig. 3(c) where
ξ = 10−3. In this case, we used 10 training sets and
100 testing sets. Fig. 9(a) demonstrates the testing error
against the ridge parameter λ. It is clear that the case
where λ → 0 (linear regression limit) leads to overfit-
ting of the training data, i.e., including the measurement
error, and thus overlooking the real behaviour. On the
other hand, higher value of λ leads to underfitting. The
tradeoff results in a minimum error, at λmin. The phase
estimation errors reported in this paper follow this min-
imum error.

(a) (b)

Overfitting

Underfitting

FIG. 9. Phase estimation error vs ridge parameter (a) and
number of training sets (b). The arrow indicates the chosen
Ntrain in this paper.

The number of training sets is another factor affect-
ing the precision. To illustrate this, we plot in Fig. 9(b)
the phase estimation error against the number of training

sets Ntrain. We have used a QN with size 4, ξ = 10−3,
and Ntest = 100. Each point is averaged over 50 reali-
sations of the network parameters. It can be seen that
∆φ̄1 decreases with Ntrain. We have chosen Ntrain = 10
throughout this paper.

Appendix D: Standard deviation of the mean at
highest output slope

For any constant phase φ, one quantifies the phase es-
timation error with SDM ∆φN . Here we demonstrate
the advantage of our platform in the training step. In
particular, we consider a “shifted” ideal output signal:

Iideal =
1

2
(1− cos(N(φ+ θ))) . (D1)

The phase shift θ is chosen such that the SDM of the
phase ∆φN is minimum. This corresponds to the phase
φ situated at the highest slope of the output signal of
Eq. (D1).

To illustrate this, we plotted the estimated output sig-
nal for both θ = 0 and π/4 in Fig. 10 panels (a) and (b),
respectively. We used the same training set (Ntrain = 10)
and testing set (Ntest = 100) in both panels. Also, we
usedQ = 4 with τ = 8/Ω and ξ = 10−2. The highest out-
put slope shifts from φ = π/2 in (a) to π/4 in (b). Phase
estimation in the range indicated by the green dashed
boxes are plotted in panels (c) and (d). It can be seen
that the minimum error is located at the highest output
slope. In the data processing, one simply varies the phase
shift θ until ∆φN is minimised.



12

(b)(a)

(c) (d)

Minimum error Minimum error

FIG. 10. Minimising the SDM with shifted output signal. The same training set and testing set are used for different target
output θ = 0 (a) and π/4 (b). The corresponding phase estimation tasks in the range indicated by the green dashed boxes are
plotted in (c) and (d), respectively. The minimum error shifts from θ = 0 (a) to π/4 (b).
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