Phase measuring algorithm for extraction of
isochromatics of photoelastic fringe patterns
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Introduction

In recent years phase-measuring techniques have been applied to the problem of extracting information
of photoelastic data. We present a new phase-measuring algorithm for extraction of the isochromatics
of photoelastic fringe patterns. The algorithm permits the extraction of the isochromatic phase with
almost no influence from the isoclinics, thus avoiding the usual problems of low-modulation areas
associated with isoclinics. The isochromatic phase map obtained with this algorithm is well suited for
a full separation of the stress components in a sample. The algorithm can be used with any commercial
diffuse-light circular polariscope. © 1997 Optical Society of America
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The methods based on phase-measuring techniques

Photoelasticity is a well-established technique for
stress analysis, and it has a wide range of industrial
and research applications.! Recently several meth-
ods of analyzing photoelastic fringe patterns by
means of phase-measuring techniques have been
presented.2-10

The main problem of these techniques when they
are applied to photoelasticity is that the isoclinic and
isochromatic fringe patterns are completely mixed.
The modulation of the isoclinic phase map depends on
the isochromatics, and vice versa. For that reason
the unwrapping of the corresponding phase maps is
difficult because of the appearance of logical incon-
sistencies associated with low-modulation areas.

The methods for the isoclinic calculation proposed
in the literature solve these problems adequately.
In this case low-modulation areas associated with the
isochromatic fringes appear when monochromatic
light is used. The use of a white-light source allows
us to overcome these problems.23

These kinds of low-modulation problems are more
difficult to solve in the isochromatic calculation.
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that exist in the literature present several problems.
The method of Brown and Sullivan4 can be applied
only when there is half an isochromatic fringe in the
field of interest; therefore the stresses must be small,
the photoelastic constant of the studied material
must be low, or the thickness of the sample must not
be great. In general, it is difficult to obtain samples
with these characteristics.

The isochromatic calculation proposed by Buck-
berry and Towers® and Wernicke et al.® presents
problems of sign ambiguity in the isochromatic pa-
rameter. Buckberry and Towers use three different
wavelengths, taking six images for each wavelength.
Wernicke et al. mark interactively the regions where
the sign changes and they perform the corresponding
correction. Asundi? presents the application of
phase-measuring techniques to the Tardi compensa-
tion method, but the isochromatics are calculated
only for a fixed value of the isoclinic parameter. The
method of Carazo-Alvarez et al.2 and Patterson and
Wang? is based on an equation that presents some
problems when applied to practical situations, as we
show later. Also, the technique of Carazo-Alvarez et
al. and the method of Sarma et al.? for different rea-
sons require nonstressed reference samples so they
are difficult to use with frozen stressed samples.

We present here a new technique for the isochro-
matic calculation that uses only one wavelength
where no sign ambiguity appears. It requires a set
of eight (or six) images. The use of this technique
reduces the transmission to the isochromatic calcu-
lation of the errors that are produced in the isoclinic
computation. The technique consists of two four-
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Fig. 1. Arrangement of optical elements for the general configu-
ration of a circular polariscope. F and S stand for fast and slow
axes, respectively. P, A, and @ stand for polarizer, analyzer, and
quarter-wave plate, respectively, and R, (3) for the stressed sample
taken as a retardation plate of retardation 3 and whose fast axis is
at an angle a with the x axis. The polarizer and the first quarter-
wave plate form an angle of 45° with respect to each other; there-
fore the light incident upon the sample is circularly polarized.

step phase-shift algorithms together with a weighted-
averaging process. No reference samples are
required. The algorithm can be used with any com-
mercial diffuse-light circular polariscope.

2. Experimental Setup

For the isochromatic calculation a diffuse-light circu-
lar polariscope is used (Fig. 1). The sample—
denoted by R, (8)—is placed between the two quarter-
wave plates and it is taken as a retardation plate
whose fast axis makes an angle a with the x axis and
whose retardation is & (3 and « have a value that is
different for each point of the sample). The physical
origin of the retardation 3 is the stress-induced opti-
cal anisotropy of the sample. For a given wave-
length, this retardation is proportional to the
difference of principal stresses for each point.

The intensity output of the circular polariscope can
be obtained with Jones calculus and, when circularly
polarized light is incident upon the sample, is given
by

I=1-sin2() — ¢)cos & — sin 2(¢ — a)
X cos 2(J — ¢)sin , (1

where ¢ and s are the angles that the second quarter-
wave plate and the analyzer, respectively, form with
the x axis.2

For phase-measuring techniques, the angles o and
d play the role of the phase of interferograms, which
we extract with those techniques. We call isoclinics
to the loci of points where « is constant and, in the
same way, we call isochromatics to the loci of points
with & constant. In this way we speak of the isoclinic
and the isochromatic phase maps.

The isoclinic parameter « can be determined by
any of the algorithms present in the literature. We
use the method of Refs. 2 and 3 to compute this
parameter, and we take it as known for the isochro-
matic calculation.
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We used a commercial diffuse-light Tiedemann po-
lariscope with no modifications. It was computer
controlled and each element could be rotated inde-
pendently. The image-processing system consisted
of a Sony Model AVC-D5CE CCD camera and a Data
Translation Model DT-2861 image-processing board.
All the components of the system were controlled by
the FRAMES program on a 486-33-MHz PC. The func-
tions for the isoclinic and isochromatic computing
were written in C programming language as modules
of this program.1!

3. Isochromatic Computation

We present here a new algorithm for the extraction of
the isochromatic parameter 8. This algorithm is a
modification of the one in Refs. 2 and 3. Monochro-
matic light illumination (sodium discharge lamp) was
used.

Unlike isoclinics, isochromatics depend on the
wavelength of the light source and on the photoelastic
constant and the thickness of the sample. In this
way isochromatics do not change with a rotation of
the whole polariscope.

For simplicity we establish the following notation:
We denote by P, @, and A the polarizer, the quarter-
wave plate, and the analyzer, respectively; and we
specify the orientation of the elements by writing as
a subscript the angle with respect to the x axis formed
by the transmission axis of the polarizers or by the
fast axis of the retardation plates. For example, by
Py, we indicate a polarizer whose transmission axis is
perpendicular to the chosen x axis. We express the
elements in the order in which the light finds them.
The sample is taken, as we said before, as a retarda-
tion plate of retardation 8 and whose fast axis forms
an angle of a with the x axis. For brevity, the sam-
ple will not be included in the expression of the con-
figurations of the polariscope. Therefore by
PyoQ45Q— 4540 we mean: (1) a polarizer at 90°, (2)
a quarter-wave plate with fast axis at 45°, (3) the
sample (not explicitly specified), (4) a quarter-wave
plate with fast axis at —45°, and (5) an analyzer at 0°.

First we use four different configurations for the
polariscope to obtain four intensity distributions.
The configurations and their output intensities are
summarized in Table 1. We see that there are two
configurations for which the cos 3 term can be iso-
lated, namely the numbers 3 and 4 of Table 1, called
circular dark field and circular bright field, respec-
tively. The problem is that no configuration gener-
ates the term sin & alone. This fact makes it
impossible to perform a simple phase-stepping algo-
rithm for the isochromatic calculation.

We denote by W the so-called wrapping operator.12
In this way, if ¢ is a continuous phase map with a free
range of values, W(¢) = ¢ + 2km, with % integer, in
such a way that —m = W(¢) = w. As we have said,
we consider as known the isoclinic parameter a. Ifa
four-step phase-measuring algorithm is used to de-
termine it, we will have W(4a). We can unwrap the
isoclinic phase and afterwards compute cos 2a.



Table 1. Polariscope Configurations and Output Intensities of First Table 2. Polariscope Configurations and Output Intensities of Last
Four Images for Isochromatic Calculation Four Images for Isochromatic Calculation
No. Configuration Output Intensity No. Configuration Output Intensity
1 Pyo@45Qu5A 45 I, = %(1 + cos 2a sin 9) 5 P 45@90Q9040 I; = %(1 + sin 2a sin 9)
2 PoyQusQa5Ass  Io = 5(1 — cos 2a sin §) 6 P 45Q00Q0A00 Is =3 (1 - sin 2a sin d)
3 PgoQ45Q 4540 Iy = l (1 — cos 3) 7 P 45@90Q0A 45 I; = %(1 — cos d)
4 Pgo@45Q4540 _i 7 (@ + cos d) 8 P 45@90Q90A45 = %(1 + cos 3)

With this information we can calculate sin § and cos
d by

1
Sin 81 :7(11 _12), (2)
cos 2«
COS 81 :I4 _13. (3)
From these,
W(3,) = arct L=l 1 4)
V)~ arctan I, —I; cos2a)’

With this equation we compute one wrapped esti-
mation of 3, W(d;). We denote by 8; one estimation of
the “true” isochromatic phase 8 used in all the equa-
tions of Table 1.

If the intensities and, therefore, the differences I,
— I, and I, — I; were continuous, the problem of the
calculation of the isochromatic phase map would be
solved with Eq. (4). However, the images repre-
sented by I, are usually digitized so their values are
discrete (typically 8 bits). If cos 2a is small, the
difference I; — I, is also small; therefore, for the
regions where the values of cos 2a are low, we calcu-
late 8; by the quotient of two small discrete numbers.
Then the error of the calculation is high, thus causing
regions of low modulation in the phase map. These
regions of low modulation are associated with failures
and problems in the phase map, usually in the form
of fringe breaks and fluctuations in the phase values,
that make almost impossible the phase unwrapping
of W(8;) (necessary for any further quantitative anal-
ysis). These regions of low modulation associated
with small values of cos 2a cannot be avoided because
they are the consequence of the calculation method.

We can calculate mathematically the modulation
function resulting from the isoclinics. The process of
obtaining W(3;) is not exactly a four-step algorithm
because of the division by cos 2a, but we can use the
general results for phase-measuring algorithms to
obtain the modulation. This is directly proportional
to the square root of the sum of the squares of the
denominator and the numerator of Eq. (4) (Ref. 13),
that is

my = [(I,

where m; represents the modulation of the phase
map W(3;). Equation (5) states that the modulation
is directly proportional to the absolute value of cos 2a,
as we discussed before.

—1)? + (I, — I;)*cos® 2a]"% = |cos 2],  (5)

To overcome the problem of low modulation, we
obtain four new images that produce a new estima-
tion of  that we denote by W(8,;), whose modulation
is dependent not on cos 2a but on sin 2a. In this
way the low-modulation areas for both estimations
are in opposition. We can achieve this by rotating
the whole polariscope by an angle of B = 45°. After
this global rotation, we repeat the four previous
configurations with respect to the new global orien-
tation. For these configurations the terms in cos
2a are replaced by terms in sin 2a. This can be
checked with Jones calculus or simply with substi-
tuting o by a—45 in the equations of Table 1. The
output intensities of the new configurations are
summarized in Table 2.

As in the previous calculation for 3;, we can calcu-
late again sin 8 and cos 3 if we know a:

(s = Io), (6)

Sin 811 =
sin 2«

cos &y =I5 — I. (7)

And then

W(sy) = arct L=l 1 (8)
W = AT T sin 20 )

Therefore from Eq. (8) we can make a second estima-
tion W(3;;) of the phase map associated with the
“true” isochromatic phase 8.

As before, we find that W(8;;) has low-modulation
regions associated with regions with low values of sin
2a. Ifwe calculate the modulation of the phase map
W(3yp) from Eq. (8), we obtain

n [

Again, m; represents the modulation of W(3;) result-
ing from the isoclinics. Now the modulation term is
proportional to sin 2a, as expected.

Equations (4) and (8) were previously obtained by
Patterson and Wang® and were used by Carazo-
Alvarezetal.2 Aswe discussed, the two estimations
for W(3) are mathematically the same if continuous
variables are used in the arctangent calculation.
But because this is not the case in practical applica-
tions, we must face the problem of combining both
estimations to produce a logically consistent phase
map for d.

Because the sine and the cosine are in quadrature,
the regions of low values for cos 2« coincide with re-

—I)* + (Iy — I,)*sin® 2a]"? = |sin 2a|.  (9)
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gions with high values for the sin 2a and vice versa.
This implies that the regions of low modulation (high
error) of W(3,) and W(3y;) are in opposition. Therefore
for every point in the region of interest we have two
estimations for W(8), with different degrees of error
depending on the region. We must decide how to
combine these estimations to get the best possible val-
ues for W(3). In the region with high values for any
cos 2a or sin 2a it is easy to make a decision: we
choose the estimation with the highest value of mod-
ulation. The problem arises in the zones of transition
between regions of high modulation for W(§;) and
W(dy).

There are two possible ways to perform the fusion
of both phase maps: the first is to work with the
phase maps W(3;) and W(3;) and the second is to
work directly with the intensities I,, i = 1,..., 8.
For a perfect acquisition process and for perfect com-
ponents of the polariscope (quarter-wave plates and
polarizers), both approximations must give the same
result. However, some problems appear when a real
measuring process is considered.

The theoretical intensities I; and I are equal to I3
and I, respectively, so the cosine terms of Egs. (3)
and (7) must be equal. But owing to nonuniformi-
ties in the plates, the isochromatics change slightly
when the whole polariscope is rotated, producing in
this way small differences between both cosine terms.
Also electronic noise is present in the process of im-
age acquisition. In addition, we have the above-
mentioned problems of low modulation resulting
from the isoclinics.

For all these reasons the estimations W(3;) and
W) are good results for W(3) in their respective
regions of high modulation, but they do not give the
same results in the overlapping region. This is
shown schematically in Fig. 2. We can see that the
fusion of estimations is a low-pass filtering process in
the transition zone; the fusion algorithm must take
this into account.

To perform the fusion, Franz et al.? produced two
binary masks based in the thresholding of the mod-
ulation functions |cos 2a| and |sin 2a|. Both binary
masks were complementary and divided the area of
interest into several regions. For each region the
value for the isochromatic phase was determined by
these binary masks. This procedure has serious
drawbacks. First, the election of the threshold is a
difficult decision. Second, the two sheets of the
phase map do not fit along the borders of the regions
defined by the masks, with scratches appearing in
the resulting phase map, especially in the areas
containing a phase jump. This poor fit pro-
duces logical inconsistencies in the form of broken
fringes that make impossible the further phase-
unwrapping process.

In a first stage, we tried to modify this method by
using a weighted average of W(;) and W(3y;). The
obvious candidates for weighting functions are the
modulation functions of both phase maps, that is, |cos
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Fig. 2. Schematic representation of the behavior of the estima-
tions I and II of the wrapped isochromatic phase, W(3). A low-
pass filtering is needed to combine smoothly W(3;) and W(8y;) in the
transition zone between the high-modulation areas.

2a| and |sin 2al, which can be expressed mathemati-
cally:

W(3p)|cos 2af" + W(8y)|sin 2a*
|cos 2a/" + |sin 2al”

W) = , (10)

where n is the order of the averaging.

For n = 0, we have just the mean value of the
estimations. If W(§;) and W(3;) were continuous
functions, Eq. (10) would be good enough to assure a
correct fusion of the estimations. But, by definition,
W(®;) and W(3;) are discontinuous functions with
phase jumps. In the regions with no phase jumps,
Eq. (10) will work well, but in the regions with phase
jumps, Eq. (10) will smooth the phase jumps and even
destroy them, making the correct unwrapping of W(8)
impossible. This process is equivalent to trying to
filter a phase map with a moving average filter: the
noise will be suppressed but so also will be the phase
jumps. We could try to unwrap W(8;) and W(3y) to
produce the continuous phase maps associated with
each, but, owing to the low-modulation areas that
they contain, this is not possible. Equation (10) can
be used only if less than half an isochromatic fringe is
present in the field of view because, in this case, W(3;)
and W(3y;) are continuous.

An example of this fusion procedure is shown in
Fig. 3. The object is an epoxy resin Araldit disk
under diametrical compression. In this case, Eq.
(10) was applied with n = 2. The white arrows point
to the broken fringes produced by the low-pass effect
depicted above. In the regions where W(3;) and
W(8yp) are smooth, that is, with no fringes, the fusion
works well. It can be seen that these broken fringes
make impossible the correct unwrapping of the iso-
chromatic phase map.

From this discussion we see that we cannot obtain
a good estimation of the isochromatic phase working
with the phase maps because of the discontinuities
they contain. Therefore we must look for some con-
tinuous functions related to the isochromatic phase.



Fig. 3. Isochromatic phase map for a diametrically loaded disk,
calculated with Eq. (10) with n = 2. The arrows point to the
broken fringes produced by the low-pass effect of this equation.

These are the intensities I; of Tables 1 and 2. They
are smooth and continuous, with no breaks, and they
are also direct measurements.

In consequence, we developed a new algorithm that
uses these intensities directly. We use as weighting
functions sin 2a and cos 2o and form the following
products:

(I; — Iy)cos 2o + (I — Ig)sin 2a = sin 3,  (11)
1
5[([4 - 13) + (18 - 17)] = COS 8, (12)

and, then,

(I, — I)cos 2a + (I5 — I)sin 2a

2 [y —Iy) + (s — I)]

W() = arctan (13)

We see that, because (I, — I3) and (Ig — I,) are
theoretically equal, we could obtain W(8) only with
six images (not taking into account the last two in-
tensities). But, owing to the above-mentioned prob-
lems of the image acquisition process, we have
confirmed that, although this suppression is possible,
it is not convenient because the acquisition of two
more images is a fast procedure and maintaining the
eight images makes the algorithm more robust and
stable in the presence of any noise.

Now, because the intensities are smooth functions,
the estimation works well over the whole area of
interest. No low-modulation areas appear because
we always have a high-modulation term in the nu-
merator of Eq. (13). In this way the weighted aver-
age of Eq. (13) acts over the intensities, producing an
isochromatic phase map well suited for unwrapping
and further processing. As to its accuracy, this al-

Fig. 4. Isochromatic phase map for the object of Fig. 3 calculated
with Eq. (13). The resulting phase map is valid for unwrapping
and further processing.

Fig. 5. Results of application of the algorithm to a rectangular
plate with a hole and a cut. The diagram shows the compression
force applied.

gorithm shares the main characteristics of other
phase-measuring algorithms,3 with the additional
advantage that possible errors in the determination
of the isoclinic parameter do not propagate into the
determination of isochromatics.

An example of the application of Eq. (13) is shown
in Fig. 4. It can be seen that the resulting phase
map is appropriate for phase unwrapping and further
processing.

The example of a disk is illustrative but perhaps
too academic. We have used a more complicated
sample to check the performance of the algorithm;
the results are shown in Fig. 5. The sample is a
rectangular plate with a hole and a cut that joins the
hole with an edge of the plate. A compression force
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was applied in the extremes of the plate in the points
marked with arrows in the area of the diagram of Fig.
5. We can see that neither fringe breaks nor low-
modulation areas resulting from isoclinics appear in
the isochromatic phase map. This shows that the
algorithm is well suited for realistic samples.

With Eq. (13) we can achieve a correct estimation of
W(3) without sign ambiguity and with any number of
isochromatic fringes in the field of view (obviously
below the Nyquist limit of the detector).

4. Conclusions

We have presented a new algorithm for isochromatic
computation that works directly with eight intensity
distributions, not with phase maps. With this algo-
rithm, no sign ambiguity in the determination of the
isochromatic parameter 8 appears and any number of
isochromatic fringes can be present in the field of view.
Also, only one wavelength is needed for the isochro-
matic calculation. No reference sample is needed.
The algorithm is implementable in any commercial
polariscope (polariscopes are usually equipped with a
white and/or a monochromatic light source), without
the necessity for any additional elements.
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