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ABSTRACT

Aims. This paper presents 2.5D numerical experiments of Alfvén wave phase mixing and aims to assess the effects of nonlinearities on
wave behaviour and dissipation. In addition, this paper aims to quantify how effective the model presented in this work is at providing
energy to the coronal volume.
Methods. The model is presented and explored through the use of several numerical experiments which were carried out using the
Lare2D code. The experiments study footpoint driven Alfvén waves in the neighbourhood of a two-dimensional x-type null point with
initially uniform density and plasma pressure. A continuous sinusoidal driver with a constant frequency is used. Each experiment uses
different driver amplitudes to compare weakly nonlinear experiments with linear experiments.
Results. We find that the wave trains phase-mix owing to variations in the length of each field line and variations in the field strength.
The nonlinearities reduce the amount of energy entering the domain, as they reduce the effectiveness of the driver, but they have
relatively little effect on the damping rate (for the range of amplitudes studied). The nonlinearities produce density structures which
change the natural frequencies of the field lines and hence cause the resonant locations to move. The shifting of the resonant location
causes the Poynting flux associated with the driver to decrease. Reducing the magnetic diffusivity increases the energy build-up on
the resonant field lines, however, it has little effect on the total amount of energy entering the system. From an order of magnitude
estimate, we show that the Poynting flux in our experiments is comparable to the energy requirements of the quiet Sun corona.
However a (possibly unphysically) large amount of magnetic diffusion was used however and it remains unclear if the model is able
to provide enough energy under actual coronal conditions.
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1. Introduction

It has been hypothesised as early as Schatzman (1949) that the
solar corona could be heated largely by the dissipation of mag-
netohydrodynamic (MHD) waves generated in the lower layers
of the Sun. Heating by MHD waves is still one of the mecha-
nisms under consideration for heating the corona; see for exam-
ple Klimchuk (2006, 2015), Parnell & De Moortel (2012), and
De Moortel & Browning (2015) for an overview of the coro-
nal heating problem and the open questions that still need to
be addressed. Magnetohydrodynamic waves are commonplace
in the solar atmosphere and have been observed over the last
two decades as a consequence of improved imaging and spectro-
scopic instruments (see e.g. De Moortel & Nakariakov 2012).

A review of the linear behaviour of MHD waves can be
found in, for example Goossens et al. (2011). The dissipation
of Alfvén waves has been the basis of many coronal heating
models (see review by Arregui et al. 2008; Arregui 2015 and
references therein). The main mechanisms for converting the
energy associated with Alfvén waves into heat are Ohmic and
viscous dissipation. Both of these heating mechanisms are pro-
portional to gradients in either magnetic field or velocity. The
steeper the gradients, the more efficient the wave energy is con-
verted into thermal energy. Two main mechanisms for generating
steep gradients have been proposed, namely, phase mixing
(Heyvaerts & Priest 1983) and resonant absorption (Ionson
1978). Phase mixing occurs when Alfvén waves propagating on
magnetic surfaces move out of phase with neighbouring waves
on nearby surfaces and this means that steep cross field gra-

dients form. Resonant absorption occurs when driven standing
Alfvén waves resonate while their neighbours on different mag-
netic surfaces are not resonating. Other mechanisms such as a
turbulent cascade of wave energy (e.g. Hollweg 1986; Cranmer
et al. 2007; van Ballegooijen et al. 2011) or coupling with com-
pressive wave modes (Kudoh & Shibata 1999; Antolin & Shibata
2010) have also been proposed to increase the damping rate of
Alfvén waves.

Phase mixing has been investigated as a mechanism for heat-
ing in many parts of the atmosphere, including coronal holes
(e.g. Hood et al. 2002) and inside flux tubes (e.g. Pagano et al.
2018). In this paper, we evaluate the effect of nonlinearities on
the amount of energy which can be provided to a coronal domain
by Alfvén waves to account for the energy lost through optically
thin radiation and thermal conduction. The energy required to
keep a loop at coronal temperatures has been researched exten-
sively (see for example Rosner et al. 1978; Martens 2010; Priest
2014 and references therein).

Nonlinear effects have been studied in a variety of settings.
The magnetic tension force associated with an Alfvén wave is
a linear force whereas the associated magnetic pressure force
is a nonlinear force, often called the ponderomotive force (e.g.
Verwichte et al. 1999.)

In this paper, our model combines several nonlinear effects,
the most important of which is the generation of density structures
(e.g. Terradas & Ofman 2004). Other nonlinear effects consid-
ered in our model are as follows: nonlinear coupling from Alfvén
waves to magnetoacoustic waves (e.g. Verwichte et al. 1999;
Tsiklauri et al. 2001; Thurgood & McLaughlin 2013a) and Alfvén
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wave steepening due to the Alfvén speed being dependent on the
perturbed magnetic energy associated with the Alfvén wave (e.g.
Verwichte et al. 1999; Tsiklauri et al. 2002). However, these latter
effects appear to play a less significant role.

The generation of density structures and the coupling to mag-
netoacoustic waves are generated by the ponderomotive force.
Verwichte et al. (1999) showed that every time two Alfvén pulses
superimpose each other they generate slow magnetoacoustic
waves (in β ≪ 1 plasma) due to a force they call the cross-
ponderomotive force, which is a subset of the nonlinear magnetic
pressure force. The same is true whenever Alfvén waves reflect
off a solid boundary. Thurgood & McLaughlin (2013a) showed
that if there are gradients in the Alfvén speed perpendicular
to the magnetic field then fast waves are generated. Terradas
& Ofman (2004) showed that a line-tied standing Alfvén wave
pushes plasma towards the antinodes and away from the nodes
due to the nonlinear magnetic pressure force and this creates
a loop aligned density profile. They showed that in a β = 0
plasma, the amplitude of the generated density profile grows al-
gebraically with a t2 profile, but this growth is limited by the
plasma pressure force if β , 0.

In this paper, we focus on the nonlinear aspects of Alfvén
wave propagation and dissipation in a simplified version of a
coronal arcade system. The paper is structured as follows: In
Sect. 2 the phase mixing model is presented and a linear and
ideal solution to the model is calculated, which is used to com-
pare with the nonlinear experiments. In Sect. 3 the linear results
are presented. Section 4 assesses how the nonlinearities affect
the heating in the model. Section 5 is a discussion on quantify-
ing how effective the system is at converting wave energy into
heat for typical coronal values. Finally, in Sect. 6 conclusions
are presented.

2. Method and set-up

2.1. Equations

All the numerical experiments presented in this paper are per-
formed using the MHD code Lare2D (Arber et al. 2001). The
code solves the following set of MHD equations:

Dρ

Dt
= −ρ∇ · u, (1)

ρ
Du

Dt
= j × B − ∇p + Fshock

ν , (2)

ρ
Dǫ

Dt
= −p(∇ · u) + j2/σ + Hshock

ν , (3)

DB

Dt
= (B · ∇) u − (∇ · u) B + η∇2B, (4)

p =
kB

µmmp

ρT, (5)

where Fshock
ν and Hshock

ν are terms related to the shock viscosity
of the code, which is based on the edge viscosity formulation
in Caramana et al. (1998). The Boltzmann constant is denoted
with kB, the mass of a proton is denoted with mp, and the mass
fraction of the ions in proton masses is denoted with µm = 1/2.
All other variables have their usual meanings. The code uses a
uniform value for the magnetic diffusivity, η, given by

η = 10−3η0, (6)

where

η0 =
L0B0√
µρ0

,

where B0, L0, and ρ0 are normalising constants and where ρ0 also
corresponds to the initial density. The value used for η is unphys-
ically large, but was chosen to be as small as possible without
the effects of numerical diffusion and dispersion becoming too
large. In the corona, the value of η is roughly equal to 1 m2 s−1

(see Priest 2014, p. 79), which means that for η in the code to be
physically accurate, it should be approximately

η = 10−12η0,

if L0 = 1 Mm, B0 = 10−3 T, and ρ0 = 10−12 kg m−3. The effects
of varying the parameter η are explored in Sect. 5. In our experi-
ments, the coefficient of kinematic viscosity is set to zero. Hence,
there is no heating due to this term. However, shock viscosi-
ties are included, along with any heating associated with shocks.
This was chosen partly because according to Van Doorsselaere
et al. (2007) observational evidence favours a resistive (wave)
heating mechanism for coronal loops over viscous dissipation.
In Sect. 3.4, some of the consequences of setting the coefficent
of kinematic viscosity to zero are discussed.

2.2. Initial conditions

Phase mixing and resonant absorption require gradients in the
Alfvén speed and this is often achieved through the use of an
imposed density profile. A recent paper by Cargill et al. (2016)
demonstrated that wave heating cannot sustain the assumed den-
sity structure. For this reason, we do not assume any density
structures in this paper and instead, a uniform initial density pro-
file is used. Our experiment relies on a gradient in magnetic field
strength and also a variation in field line length to provide the
conditions necessary for phase mixing.

An initial static equilibrium is set up with uniform density
( ρ0) and pressure (p0). The initial magnetic field is a potential
2D x-type null point, B0, defined as

B0 =
B0

L0

(x,−y, 0). (7)

The z-direction is taken as the invariant direction, i.e. ∂/∂z ≡
0 throughout all the experiments. Our chosen magnetic field con-
figuration is illustrated at the bottom of Fig. 1. It was chosen to
represent a simplified version of the magnetic field in a mixed
polarity region. The top left image in Fig. 1 shows a magne-
togram of a (generic) mixed polarity region and was taken from
the Hinode spacecraft. A mixed polarity field was used because it
contains strong variations in field strength and field line length.
Two simplifications were made: the first is that the field is ap-
proximated using a 2D model and the second is that an x-type
null point configuration was used. The x-point field is qualita-
tively similar to the top right field, particularly close to the null
point. The top right field is a simplified diagram of the magnetic
field in a mixed polarity region if viewed on the limb. Waves
near an x-point field have been studied extensively; see for ex-
ample McLaughlin et al. (2011), McLaughlin (2013, 2016), and
Thurgood & McLaughlin (2013b).

The initial uniform plasma pressure was chosen such that
most of the domain is a low-beta domain. The β = 1 contour is
a circle occurring at a radius of R/L0 = 0.1 about the null point.
Since the magnetic field strength increases linearly with radius
and the density is initially constant, the Alfvén speed increases
linearly with radius.
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Fig. 1. Top left panel: magnetogram taken from the Hinode spacecraft
of a mixed-polarity region. Top right panel: a simplified diagram of the
magnetic field configuration in a mixed polarity region when viewed
edge on (for example when viewed on the solar limb). Bottom panel:
isolates the centre of the top right panel and is the profile of the magnetic
field used in the numerical experiments of this paper.

2.3. Boundary conditions

To simulate the steep jump in density and temperature between
the chromosphere and the corona, reflective boundary conditions
are used (see Laney 1998, p. 434). In other words, u = 0 and
n̂ ·∇ = 0 for all other variables, where n̂ is a vector normal to the
boundary. The computational domain is given by

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax,

where xmax = ymax = 2L0 and xmin = ymin = −2L0. On the
y = ymin boundary, a continuous driver of the following form is
imposed:

vz = vdriv f (x)g(t), (8)

where vdriv is the driver amplitude and τdriv is the period of the
driver. The spatial profile of the driver is described by the fol-
lowing equation:

f (x) =

{

1 |x| ≤ 1.5L0,

sin2(πx/L0) 1.5L0 ≤ |x| ≤ 2.0L0.
(9)

Equation (9) implies that the spatial profile of the driver is
constant along most of the boundary and smoothly goes to zero
at the ends. To ensure the driver smoothly generates a wave train,
the time profile of the driver is given by

g(t) =























sin2(2πt/τdriv) t ≤ 1
4
τdriv,

sin(2πt/τdriv) 1
4
τdriv ≤ t ≤ tdriv

end
,

0 tdriv
end
≤ t ≤ tend.

(10)

The period of the driver is given by

τdriv =
L0
√
µρ0

B0

4 log (2) , (E.1)

where the function log(2) was chosen for convenience rather
than any physical reason. In particular, it was chosen to be of
the same form as the resonant field line locations (see Eq. (D.6))
such that the resonance occurs on field lines which are easier to
describe analytically (see Sect. 3.2). After 20 driving time peri-
ods have elapsed, the driver is switched off and the experiments
continue to run for another 5 driving time periods, such that

tdriv
end = 20τdriv, (11)

tend = 25τdriv. (12)

One key simplification which is made is that the frequency
spectrum of the driver is discrete, while the frequency spectrum
of the driver which generates waves in the corona likely resem-
bles that of a broadband spectrum. For reference see for example
Wright & Rickard (1995), De Groof et al. (2002), and De Groof
& Goossens (2002). In Sect. 5, the effects of a more random
driver are briefly discussed.

To enable us to assess how nonlinearities affect the energy
evolution in the experiments, we analytically calculate the en-
ergy evolution in a similar set-up which is ideal and linear. The
details of this calculation are given in Appendix A. When re-
ferring to energy values from the linear reference calculation,
the following notation is used: Elin refers to the total energy in-
put from the driver in the analytical ideal and linear set-up and
Eend

lin
= Elin(tdriv

end
) refers to the total energy input from the driver

after the driving has finished. We note that Elin is a function of
vdriv and so each experiment is normalised by a different value
depending on the value of vdriv.

3. Numerical results

Before discussing the nonlinear effects in Sect. 4, we describe
the linear effects that occur in the experiments, which are ob-
tained by using a velocity amplitude of vdriv = 10−3vA0 in the
numerical experiments. In order to reduce the number of figures
in the paper the graphs present linear and nonlinear results. The
linear results are represented by solid blue lines and this section
focusses on these results.

3.1. Phase mixing

The left-hand side of Fig. 2 shows that the wave-front of the
Alfvén wave is initially parallel to the x-axis. The right-hand
side of the figure shows that at a later time, the Alfvén waves are
out of phase with their neighbours. The phase mixing can also
be seen in Fig. 3, which shows the velocity component of the
Alfvén wave, vz, along the line y = x at multiple times. It can
be seen that the length scale across the field lines has shortened
owing to phase mixing. In this particular set-up, there are two
reasons why the phase mixing occurs. The first reason is that
there is a gradient in Alfvén speed across the field lines due to
variations in magnetic field strength. The second reason is that
there is a variation in the length of each field line and so different
waves reflect at different times relative to their neighbours, again
leading to out-of-phase waves on neighbouring field lines.

The remainder of this subsection shows that the dominant
reason for the formation of magnetic field gradients is indeed be-
cause of phase mixing and not other effects such as wave steep-
ening as the waves approach the null. Phase mixing generates
gradients in the magnetic field across different magnetic field
lines, whereas wave steepening generates gradients parallel to
the magnetic field lines. In other words, phase mixing generates
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Fig. 2. Contour plots of the (normalised) Alfvén wave velocity pertur-
bations, vz, at different times.

Fig. 3. Absolute value of the velocity, |vz|, associated with the Alfvén
waves along the line y = x at different times. The line y = x is per-
pendicular to the field lines and this shows the variation in vz across the
field lines. The figure shows that the length scale across the field lines
is shortened as time progresses and so phase mixing is occurring.

∇⊥Bz gradients whereas wave steepening generates ∇||Bz gradi-
ents, namely,

∇|| =
B0 · ∇
|B0|

, ∇⊥ =
ẑ × B0 · ∇
|B0|

,

where || refers to the component parallel to the magnetic field and
⊥ refers to the perpendicular component in the ẑ × B0 direction.
In Fig. 4, the Ohmic heating contributions from both types of
gradients are plotted, where

POhmic
|| =

1

σ

(

∇||Bz

µ

)2

,

POhmic
⊥ =

1

σ

(

∇⊥Bz

µ

)2

.

Figure 4 clearly shows that substantially more heating oc-
curs from gradients perpendicular to the magnetic field rather
than parallel gradients, which confirms that phase mixing is in-
deed the dominant mechanism for generating the heating in this
experiment.

Fig. 4. Ohmic heating contributions from ∇||Bz and ∇⊥Bz. Labels are
provided on the right-hand side of the figure. The plots have been nor-
malised by Eend

lin
/tdriv

end
(see Sect. 2.3), which gives the average power in-

put from the driver in an equivalent but linear and ideal set-up.

3.2. Resonance

On the right-hand side of Fig. 2 and the final snapshots in Fig. 3,
the signs of resonance occurring on discrete field lines can be
seen. This section focusses on explaining why and where the
resonance occurs. The harmonic time periods (τn) of each field
line at the initial time are given by the following equation:

τn =
L0
√
µρ0

B0

2

n
log













A0

L2
0

xmaxymax

|A|













, (D.6)

which is derived in Appendix D. In this case, A = A ẑ is the
vector potential of the magnetic field lines with flux function A,
given by

A =
B0

L0

xy · (D.1)

In 2D, lines of constant A define the field lines and A = 0
corresponds to the separatrices passing through the null point.
The periods are plotted in Fig. 5 as a function of A. The pe-
riod of the driver, given by Eq. (E.1), is overplotted as the red
horizontal line. Resonance occurs on field lines where the pe-
riod of the driver equals one of the harmonic periods. It can be
seen that changing the period of the driver merely changes the
location of the resonance but does not remove the resonance. In
Appendix E, the locations at which resonance occurs for these
waves are shown to lie on field lines described by the following
equation:

xy

L2
0

= ±41−n, y ≤ 0, (E.2)

where the integer n is the harmonic number. The above formula
provides the resonance locations for linear waves in an ideal
plasma. However, in Sect. 4, we show that some of the resonance
locations shift outwards in the nonlinear experiments.

3.3. Energy evolution and driver effectiveness

With the exception of the driver, the velocity components are set
to zero on all the boundaries. This implies that the Poynting flux
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Fig. 5. First three harmonic periods (τn) of each field as a function of
the vector potential (A) normalised by the period of the driver (τdriv).

is the only term responsible for changes in the total energy of the
system (see Appendix B for proof). The change in total energy,
Etot, of the system is given by

dEtot

dt
= −

By

µ

∫

y=ymin

vzBz dx, (B.6)

where Etot is defined as

Etot =

∫

S

p

γ − 1
+

B2

2µ
+

1

2
ρv2 dS , (B.3)

where S is the computational domain. The driver velocity, vz, is
imposed on the boundary by the driver given by Eq. (8). How-
ever, Bz is free to adjust its value, which means the Poynting
flux can be positive as well as negative. The value By is positive
and does not change on the driver boundary. Hence, the Poynt-
ing flux is determined by the relationship between Bz and vz. We
introduce the dimensionless parameter K(x, t), given by

Bz√
µ
= −K

√
ρ0vz,

which defines the relationship between vz and Bz. The equation
K = 1 corresponds to a single upward propagating linear Alfvén
wave. We define the driver effectiveness, Kdriv(x), on the bottom
boundary as

Kdriv =
1
√
ρ0µ

∫ tdriv
end

0
Bzvzdt

∫ tdriv
end

0
v2z dt

, (13)

where Kdriv is a weighted time average of K. Kdriv gives a measure
of how effectively the driver provides energy to a given field line.
To see this more clearly, the above equation is equivalent to

Kdriv =
−By/µ

∫ tdriv
end

0
vzBzdt

−By/µ
∫ tdriv

end

0
vz(−
√
ρ0µvz) dt

,

where the denominator corresponds to the Poynting flux through
the boundary for an upward propagating linear Alfvén wave.

For a field line which has only upward propagating linear
Alfvén waves at the driven boundary, Bz = −

√
µρ0vz, hence,

Fig. 6. Driver effectiveness Kdriv (Eq. (13)) on the bottom boundary.

Kdriv = 1. A field line may only have upward propagating waves
at the driven boundary because the waves are efficiently damped
before they can reflect or the field is open. If the waves are re-
flected then the relationship is more complicated as there are now
upward propagating and downward propagating waves at the
driven boundary. In most cases, reflection acts to reduce driver
effectiveness as reflection opens up the possibility for destructive
interference to occur. However, if the frequency of the driver is
such that it sets up a resonance, then this has the effect of in-
creasing the driver effectiveness. This reflects the fact that res-
onant field lines have the property that a relatively small driver
amplitude produces a large growth in energy.

The driver effectiveness on the bottom boundary is plotted
as a function of x in Fig. 6. The plot clearly shows the locations
of the resonating field lines, where most of the Poynting flux
is concentrated. Figure 6 confirms that near the resonating field
lines the driver effectiveness is greater than unity and away from
the resonant lines it is much less than unity. The position of the
resonant field line varies as the amplitude of the driver increases,
due to nonlinear effects (see Sect. 4). The total energy in the
domain is shown in Fig. 7 where the step-like profile corresponds
to the period of the driver.

Figure 8 shows that the total energy associated with the
Alfvén waves, EA, grows to a maximum, after which the en-
ergy oscillates about its time-averaged value (about 0.12Eend

lin
).

The Alfvén waves oscillate in the z-direction and so the energy
density of an Alfvén wave, eA, at a point in space is given by

eA =
1

2
ρv2z +

B2
z

2µ
·

The total Alfvén wave energy in the domain, EA, is then given
by

EA =

∫

S

eA dS , (14)

where S is the computational domain. The magneto-acoustic en-
ergy, Eacoustic, is defined to be the magnetic and kinetic energy
associated with all perturbations which are not Alfvén waves and
is defined as

Eacoustic =

∫

S

1

2
ρ
(

v2x + v
2
y

)

+
B2

x + B2
y

2µ
dS . (15)
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Fig. 7. Change in total energy (Eq. (B.3)) from its initial value (Etot0)
for different driver amplitudes. The plots have been normalised by
Eend

lin
/tdriv

end
, which gives the total energy input from the driver in an equiv-

alent but linear and ideal set-up.

Fig. 8. Alfvén wave energy (EA) for different driver amplitudes. The
plots have been normalised by Eend

lin
/tdriv

end
, which gives the total energy

input from the driver in an equivalent but linear and ideal experiment.

Although the Alfvén wave energy stops growing (see Fig. 8),
the total energy of the system continues to grow (see Fig. 7)
until t = 20τdriv when the driver is switched off. Therefore, a
steady state is reached, where all the energy generated by the
time average of the Poynting flux goes into thermal energy and
magneto-acoustic energy. In Sect. 5 it is shown that most of the
energy goes into heat and not magneto-acoustic energy. Since
a steady state is reached, Fig. 6 also gives a good indication of
which field lines are heated most. From Fig. 8, it can be seen that
steady state is reached at about t = 5τdriv in the linear experiment
(blue curve). It is interesting to note that the transition from a
transient state to a steady state does not have a noticeable impact
on the total energy evolution (see Fig. 7) in the linear experiment.

From Fig. 7, it can be seen that the growth of the total en-
ergy is linear. This is not surprising during steady state, as the
amplitudes of the waves have stopped growing and so all the

Fig. 9. Contour plot showing the change in temperature relative to the
initial temperature at t = tdriv

end
.

Poynting flux is transferred into heat at a constant rate. However,
even during the transient phase (t < 5τdriv), the energy growth is
linear. The linear growth during the transient phase occurs be-
cause the amplitude of the resonant wave grows quadratically
with time, whereas the width of the resonant region decreases
linearly with time (in accordance with resonant absorption the-
ory Ionson 1978). Hence, the total energy growth is linear.

3.4. Location of the heating

Most of the heating occurs at the nodes of the resonating stand-
ing field lines and this can be seen in Fig. 9. As stated in Sect. 2.1,
there is no viscous dissipation (besides shock viscosity) and
therefore most of the heating occurs from Ohmic heating. Since
most of the heating is generated by gradients in Bz perpendicular
to the magnetic field this means that most of the heating occurs
where Bz is largest. For standing Alfvén waves, the magnetic
field component of the Alfvén wave is largest at the nodes of the
standing wave and so most of the heating occurs at the nodes
of the standing waves. Conversely, viscous dissipation acts on
gradients in velocity and this would lead to heating occurring at
the antinodes. However, Van Doorsselaere et al. (2007) showed
from observational evidence that heating occurs mainly at loop
footpoints and from this, they inferred that resistive heating dom-
inates over viscous heating for wave heating mechanisms.

Perhaps unexpectedly, significantly more heating occurs near
(x, y)/L0 = (±2, 0) compared with (x, y)/L0 = (0,−2). A simi-
lar phenomenon has been shown in, for example, McLaughlin
(2013). The author showed that the wavefronts of Alfvén waves
which are not reflective remain planar as they approach the null
and the current builds up exponentially with time, causing most
of the heating to occur at the horizontal separatrices and furthest
from the null.

4. Nonlinear aspects

The effects of nonlinear Alfvén waves have been researched ex-
tensively; see for example Verwichte et al. (1999) for details on
Alfvén waves in 1D and Thurgood & McLaughlin (2013a) for
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Fig. 10. Left panel: contour of the density after the driving has finished
for the experiment where a driver amplitude of vdriv = 10−2vA0 is used.
Right panel: density along one of the outer most resonant field lines
for all three experiments, where the same colour scheme is used as in
previous plots. The value lmax is equal to twice the length of the field
line and l is a variable giving the distance from the centre of the field
line.

details in 2D and Terradas & Ofman (2004) for details on stand-
ing Alfvén waves. We analyse the effects of nonlinear density
structures and investigate how the damping rate is affected by
the nonlinearities.

4.1. Density structures

The nonlinearities generate density structures which can be seen
in Fig. 10, where red/yellow indicates density enhancement and
green/blue indicates density reduction in the contour plots. Den-
sity structures are most pronounced along the resonating field
lines where standing waves have been established. The density
is largest at the antinodes of the standing waves and smallest at
the nodes for two reasons. Firstly, as we only consider resistive
heating and do not include viscosity, most of the heating takes
place at the nodes. This causes the plasma pressure to increase
at the nodes and hence a plasma pressure force is set up which
pushes plasma away from the nodes towards the antinodes. If
viscosity was included, it is likely some heating would also oc-
cur near the loop apex, reducing this effect. The second reason
is that Bz has its maximum amplitude at the nodes and smallest
amplitude at the antinodes. This means that the nonlinear mag-
netic pressure force/ponderomotive force, ∇B2

z/(2µ), also acts to
push plasma towards the antinodes, away from the nodes. The
right-hand side of Fig. 10 shows the density along one of the
resonating field lines which are oscillating at the fundamental
harmonic. It can be seen that plasma has been concentrated to-
wards the apex/antinode of the field line and moved away from
the footpoints/nodes of the field lines. For a more detailed anal-
ysis of the density structures formed by standing Alfvén waves,
see Terradas & Ofman (2004). These authors show that the am-
plitude of the density structures is proportional to vA/vs, where
vs is the sound speed. Hence, if a higher plasma-beta were used
then the amplitude of the density structures would be reduced.

One key effect these density structures have is that they cause
the natural periods of the field lines to change, which in turn
changes the location of the resonance. Indeed, in Fig. 6, it can be
seen that the peaks have shifted away from the origin for higher
amplitude drivers. The density structures result in the natural pe-
riods of the field lines increasing. As the Alfvén speed is now a
function of position along the field lines, even in a field-aligned
coordinate system, the period is not simply given by the wave-
length divided by the wave speed. The density structures have
an enhancement in density at the antinodes and as the amplitude

Fig. 11. x-coordinate of where the resonant field lines crosses the bot-
tom boundary as a function of time (normalised by the period of the
driver). The resonant location was calculated by finding the field line
with a fundamental time period, given by Eq. (18), which is closest in
value to the driving time period.

of the plasma velocity is highest at the antinodes, changes to the
Alfvén speed at the antinodes affect the period the most. Since
the density is enhanced at the antinodes, this results in a decrease
in Alfvén speed at the antinodes and thus an increase in the pe-
riod.

More rigorously, this result can be derived by considering the
wave equation (see Appendix D)

∂2vz

∂t2
=

B2
0

µL2
0

1

ρ(s)

∂2vz

∂s2
, (16)

where s is related to the distance along a field line. For simplic-
ity, the density is assumed to be a function of only space and
not time. In Terradas & Ofman (2004), it was shown that for a
standing Alfvén wave with angular frequency, ω, given by

ω = kvA

then the density structures will oscillate with a frequency, ωs,
which is approximately given by

ωs = 2vsk,

where k is the wave number of the standing Alfvén wave. Hence,
the simplification that the density is constant in time can be made
if vs ≪ vA as this means ωs ≪ ω. A second simplification is
made by assuming the time dependence of vz is given by eiωt. By
multiplying through by vz, replacing time derivatives with iω and
using integration by parts, Eq. (16) can be written as

ω2 =
B2

0

µL2
0

∫

(∂vz/∂s)2 ds
∫

ρ(s)v2z ds
, (17)

provided the integrals are not taken at a time when the denomi-
nator is equal to zero. Hence,

τ = 2π
L0

vA0

√

√ ∫

ρ(s)v2z ds
∫

(∂vz/∂s)2 ds
· (18)
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Equation (18) confirms that the value of the density near
where the velocity is largest (the antinode) is the most important.
Figure 11 shows an approximation of the location of the field line
(in terms of the x-coordinate of where the field line crosses the
bottom boundary) with a fundamental harmonic period which is
closest in value to the period of the driver. In other words, the
figure shows the approximate location of the fundamental har-
monic resonant field line. We note that only the coordinates in
the x > 0 side of the domain are shown. For the nonlinear exper-
iment (black line), Fig. 11 predicts the location of the resonance
to be at about 0.6L0 compared to the actual location of about
0.7L0 (see Fig. 6). Given the number of approximations, this is a
reasonable agreement. In addition, Fig. 11 gives an indication of
how quickly and in which direction the resonance moves. To de-
rive the resonance location more rigorously, the wave equation
would need to be solved as a Sturm-Liouville problem and the
eigenvalues which satisfy the boundary conditions would give
the resonant frequencies.

From Fig. 7, it can be seen that the nonlinearities cause
the system to be less effective at extracting energy from the
driver. This is demonstrated by the fact that the final value for
(Etot − Etot0)/Eend

lin
is lower when a higher amplitude driver is

used. One of the reasons the nonlinearities reduce the driver ef-
fectiveness is because they cause the resonance to shift location.
Resonant field lines are effective at extracting energy from the
driver because they generate a build-up in Bz, which increases
the Poynting flux. Shifting the resonance location results in en-
ergy at the previous resonance location being lost owing to de-
structive interference. Moreover, the nonlinearities reduce the
density at the footpoints, reducing the energy associated with
the Alfvén waves generated by the boundary driver, resulting in
less energy entering the system.

In addition to generating density structures, the ponderomo-
tive force also acts to create a similarly shaped temperature pro-
file. However, as shown in Sect. 3.4, the Ohmic heating is the
dominant effect which determines the shape of the temperature
profile in the experiments. In experiments where η→ 0, there is
no longer any Ohmic heating and the ponderomotive force now
enhances the temperature at the antinodes owing to plasma com-
pression.

4.2. Damping rate

The term damping rate refers to the rate at which Alfvén wave
energy is converted into other forms of energy. The change in
total Alfvén wave energy is given by

dEA

dt
=

dEtot

dt
+

∫

S

u · ∇
(

B2
z

2µ

)

−
1

σ

(

∇Bz

µ

)2

dS , (C.3)

where Eq. (C.3) is derived in Appendix C. Equation (C.3) shows
that in the absence of a driver there are two terms which affect
the energy evolution of the Alfvén wave energy. The first term,

P
pond

A
(t) = −

∫

S

u · ∇
(

B2
z

2µ

)

dS , (19)

is referred to as the ponderomotive power, which is related to the
work done by the magnetic pressure force/ponderomotive force.
The second term,

POhmic
A (t) =

1

σ

∫

S

(

∇Bz

µ

)2

dS , (20)

is referred to as the Alfvén Ohmic power and is related to the
Ohmic heating. The ponderomotive power can both increase or

Fig. 12. Ohmic power, POhmic
A

, and the ponderomotive power, P
pond

A
as

functions of time, for different driver amplitudes. Labels are provided
on the right-hand side of the figure. The plots have been normalised by
Eend

lin
/tdriv

end
, which gives the average power input from the driver in an

equivalent but linear and ideal set-up.

decrease the Alfvén wave energy whereas the direct effect of the
Ohmic heating only ever acts to reduce the Alfvén wave energy.
It is worth noting that Eq. (C.3) shows that it is possible for flows
perpendicular to the invariant direction to increase the amplitude
of the Alfvén waves, however, it is impossible for the flows to
change the amplitude if an Alfvén wave initially has zero ampli-
tude.

Figure 12 shows both the ponderomotive and Ohmic pow-
ers as functions of time. It can be seen that the net effect of the
ponderomotive power is to increase the damping rate, however,
its contribution is small compared to the Ohmic power. The pon-
deromotive power only has a large contribution at t = 2.5τdriv.
As stated in Sect. 4.1, Terradas & Ofman (2004) showed that for
a 1D ideal standing Alfvén wave which is not driven, the ampli-
tude of the density structures oscillates between a maximum and
minimum at an angular frequency given by

ωs = 2vsk,

where k is the wave number of the Alfvén wave. These au-
thors showed that the longitudinal velocity also oscillates with
this frequency. Hence, by energy conservation, if the energy of
the longitudinal flows oscillates, the energy of the Alfvén waves
must also oscillate and this energy change is carried out by the
ponderomotive power. Therefore, the initial increase and then
decrease in the ponderomotive power up to t = 3.5τdriv (see
the black curve in Fig. 12) can be understood as the magnetic
pressure force generating longitudinal flows and then the restor-
ing plasma pressure force acting to return the density structures
to their equilibrium position. After the initial peak in pondero-
motive power, the power becomes negative around t = 4τdriv,
reflecting the fact that the plasma pressure force is acting to
push the density structures back to their equilibrium position.
However, by this point, the system has reached steady state
and so now there is sufficient Ohmic heating for the associ-
ated pressure forces to dominate the motion of the longitudi-
nal flows. As stated in Sect. 4.1, the pressure forces associated
with the Ohmic heating act with the magnetic pressure force
to push plasma away from the nodes. Hence, once steady state

A90, page 8 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834939&pdf_id=12


A. P. K. Prokopyszyn et al.: Phase mixing of nonlinear Alfvén waves

Fig. 13. Internal and acoustic energy for different driver amplitudes.
Labels are provided on the right-hand side of the figure. The plots have
been normalised by Eend

lin
, which gives the total energy input from the

driver in an equivalent but linear and ideal set-up.

is reached, the ponderomotive power rarely becomes negative
and oscillates with a period which is half that of the driving
period.

Figure 12 shows that the Ohmic power dominates over the
ponderomotive power. One reason this property holds is that
the ponderomotive power is a fourth-order nonlinear term be-
cause the velocity perturbations in the plane are second order,
whereas the Ohmic power is a second-order nonlinear term.
The Ohmic heating depends on the conductivity, σ, and so in
a highly conductive plasma, it may at first seem that the pon-
deromotive power should dominate. However, if the plasma is
highly conducting this often results in very short length scales
forming and the Ohmic heating is inversely proportional to
the square of the length scales while the ponderomotive power
is only inversely to proportional to the length scale. Hence,
we suggest that this property is also likely to hold in similar
configurations.

Figure 8 shows that in all the experiments, the Alfvén wave
energy decays to zero at nearly the same rate when the driver is
switched off. This is somewhat unexpected given that, in Fig. 10,
it can be seen that the nonlinearities generate large density struc-
tures and density structuring is usually associated with the en-
hancement of phase mixing and thus increased wave dissipation.
It would seem that because the density is only redistributed along
the field lines in this figure, this does little to change the time
taken for Alfvén waves to travel from one footpoint to another
and so does little to enhance the phase mixing. In addition, the
nonlinearities cause there to be an increase in coupling to com-
pressive modes (Thurgood & McLaughlin 2013b,a). As stated
in the introduction, coupling to compressive modes has been
proposed as an efficient mechanism for damping Alfvén waves.
However, its contribution is relatively small; the coupling is a
nonlinear effect and very quickly becomes negligible as the am-
plitude of the Alfvén wave decreases to zero. Evidence for this
can be seen in Fig. 12, where the ponderomotive power reaches
zero much more quickly than the Ohmic power. For a more de-
tailed analysis of the evolution of the compressive modes see
Thurgood & McLaughlin (2013b), who study a nonlinear Alfvén
pulse near an x-point with a similar magnetic field to that pre-
sented in this work.

Fig. 14. Ratio of the root mean square velocity in the bottom half of the
domain to the driver amplitude.

5. Discussion

This section aims to assess whether the model and driver pre-
sented in this work can provide sufficient heat to balance con-
ductive and radiative losses in the quiet Sun. Let us assume that
100% of the net energy provided by the driver (the Poynting flux)
goes into heating the domain. The viability of this assumption is
discussed at the end of this section.

The average Poynting flux at a point along the driver bound-
ary is given by

〈

E × B

µ

〉

= vAyρ0v
2
driv〈Kdriv〉, (21)

for t > τdriv/4, where 〈Kdriv〉 is defined as

〈Kdriv〉 =
1

(xmax − xmin)

∫ xmax

xmin

Kdriv(x) f (x) dx. (22)

In the experiments presented in this section, 〈Kdriv〉 ≈ 0.55, 0.53,
0.45 corresponding to vdriv/vA0 = 10−3, 10−2, 10−1, respectively.
McIntosh et al. (2011) observed Alfvén waves with an average
amplitude between 20 and 25 km s−1 at a height of 15 Mm in
the quiet region of the solar corona. This velocity seems plau-
sible, as the amplitude of an Alfvén wave scales with ρ−1/4,
provided there is no reflection. Photospheric motions are ap-
proximately 1−2 km s−1 (Beliën et al. 1999; Moriyasu & Shibata
2004), giving a velocity amplitude around 100 times larger at the
top of the chromosphere. There is some reflection at the transi-
tion region, and therefore the value at the top of the transition
region observed by McIntosh et al. (2011) is not unreasonable.
From Fig. 14 it can be seen that at steady state, the ratio of the
average amplitude to driver amplitude is approximately unity.
Therefore, if the following values (taken from McIntosh et al.
2011) are used: vdriv = 20−25 km s−1, vAy = 200−250 km s−1,

ρ0 = (5−10) × 10−13 kg m−3, 〈Kdriv〉 = 0.5, then the Poynting
flux is given by

vAyρ0v
2
driv〈Kdriv〉 ≈ 20−80 W m−2. (23)

At steady state, the wave energy stops growing and so 100%
Poynting flux provided by the driver goes into heat. The Poynt-
ing flux obtained above is of the order of the required flux to
balance energy losses in the quiet Sun (see Table 1), suggesting
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Table 1. Total coronal energy losses from conduction, radiation, and
the solar wind in different regions of the corona, based on Withbroe &
Noyes (1977).

Quiet Coronal Active
sun hole region

Total coronal

Energy losses 3 × 102 8 × 102 104

(W m−2)

Fig. 15. Total energy of the domain for different values of η. In the
η = 0 experiment there is no energy transfer due to Ohmic heating,
however, there are still energy losses through numerical dissipation. The
total energy was calculated using the Poynting flux on the boundary,
therefore, any numerical energy losses in the domain are accounted for.
The plots have been normalised by Eend

lin
, which gives the total energy

input from the driver in an equivalent but linear and ideal set-up.

that phase mixing of Alfvén waves, as in this model, may indeed
play a significant role in the heating of the corona. However, the
model presented made many simplifications and the remainder
of this section discusses the potential consequences of some of
these simplifications.

In Sect. 2, it was shown that η is too large by about a factor
of 109. Figure 15 shows results from experiments where η was
varied. For these figures, the driver amplitude is set equal to

vdriv = 10−3vnorm
A ,

and hence, the results are mostly linear. Also, the shock viscosity
was switched off in these experiments such that the experiment
can be considered close to ideal, although some amount of nu-
merical diffusion is still present. We see that the total energy
increases with η, but appears to converge towards a minimum
as η decreases. In the η = 0 experiment, the total energy was
calculated by calculating the amount of Poynting flux entering
the system through the driver. For small η (and for fixed vdriv),
it appears the total energy evolution is independent of η, A sim-
ilar phenomenon has been reported in the literature. For exam-
ple, Wright & Allan (1996) measured the total Ohmic heating in
a similar phase mixing experiment and proved analytically that
once steady state is reached, the total spatially integrated Ohmic
dissipation is independent of η. There is a subtle difference be-
tween the result derived in Wright & Allan (1996) and the result
obtained in this work. The total energy evolution becomes inde-
pendent of η for small η whereas Wright & Allan (1996) showed

Fig. 16. Driver effectiveness (Eq. (13)) for different values of η. We
note that numerical dissipation occurs in all the experiments including
the η = 0 experiment. The plots have been normalised by Eend

lin
, which

gives the total energy input from the driver in an equivalent but linear
and ideal set-up.

that the total Ohmic heating is independent of η once steady
state is reached. The proof in Wright & Allan (1996) assumes
that the simulation has run sufficiently long for steady state to be
reached, however, in this paper, for the η = 0 experiment, steady
state is not reached during the simulation time. Figure 16 helps
to illustrate why the total energy converges to a limit for smaller
η. The figure shows that increasing η acts to increase the width
of the resonating region, however, it also reduces the height and
so there is little change to the total energy.

Even though there is no (explicit) magnetic diffusion in the
η = 0 experiment, wave energy is still dissipated through numer-
ical diffusion. Figure 17 is presented such that the importance of
numerical diffusion can be assessed. The figure shows the ratio
of Enumeric to EOhmic, where Enumeric gives the energy in the do-
main which is lost through numerical diffusion and EOhmic gives
the total amount of energy produced by Ohmic heating. It can be
seen that for η > 10−8η0 Ohmic heating dominates and for this
reason, we only considered experiments with η > 10−8η0.

Increasing η results in more Alfvén waves leaking across the
separatrices (see Fig. 18). None of the field lines in the bottom
half of the domain enter the top half of the domain, hence, only
a small fraction of the Alfvén waves leak into the top half of
the domain. The Alfvén waves that travel into the top half of
the domain do so via magnetic diffusion, which enables Alfvén
waves to leak onto neighbouring field lines. Figure 18 shows the
amount of Alfvén wave energy in the top half of the domain,

denoted by E
y>0

A
, as a function of time. Figure 18 shows that in-

creasing η results in more leakage, however when compared with
Fig. 15, it can be seen that even in the higher η experiments the
amount of leakage is still negligible when compared with the to-
tal energy increase of the system. Although nonlinearities appear
to increase the amount of wave leakage, even in our most non-
linear experiments, the Alfvén wave energy which leaks across
the separatrices is no more than 0.1% (for η = 10−3η0) and this
tends to zero as η→ 0.

Our earlier assessment of the Poynting flux was based on
comparing vrms in our experiments with the values estimated by
McIntosh et al. (2011) from SDO/AIA observations and assum-
ing that vdriv ∼ vrms (see Fig. 14 for η = 10−3η0). However, for
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Fig. 17. Ratio, Enumeric/EOhmic, for a range of η values. The quantity
Enumeric refers to the energy in the domain which is lost through nu-
merical diffusion and is estimated by comparing the total (volume inte-
grated) energy in the domain with the Poynting flux through the driven
boundary. The quantity EOhmic gives the total amount of energy pro-
duced by Ohmic heating.

Fig. 18. Alfvén wave energy in the top half of the domain, E
y>0

A
, for

different values of η. The plots have been normalised by Eend
lin

, which
gives the total energy input from the driver in an equivalent but linear
and ideal set-up.

smaller values of η, the ratio vrms/vdriv increases as can be seen in
Fig. 19. Therefore, to compare with the same, observed value of
vrms, we would have to reduce vdriv, resulting in a smaller Poynt-
ing flux. At the same time, for smaller values of η, nonlinear
effects become more important as the maximum velocities in the
domain grow substantially (see Fig. 20). McIntosh et al. (2011)
argued that the observed amplitudes in the quiet Sun are of the
order of 10% of the local Alfvén speed. From Fig. 14, we can
see that for amplitudes of this order (vdriv = 10−1vA0), vrms/vdriv

is smaller than in the corresponding linear experiments. This can
be explained by the fact that according to Verwichte et al. (1999)
nonlinear damping mechanisms grow with ∼ (v/vA)2t, where v is
the amplitude of a wave. Hence, we expect the effect of reduc-
ing η on vrms/vdriv to be less significant than for the linear experi-

Fig. 19. Ratio of the root mean square velocity to driver ampli-
tude for different values of magnetic diffusivity. In this case, η/η0 =

[10−1, 10−2, . . . , 10−8] with the bottom curve corresponding to 10−1 with
each successive curve corresponding to the next value of η in the list
above.

Fig. 20. Maximum velocity in the domain for different values of mag-
netic diffusivity. In this case, η/η0 = [10−1, 10−2, . . . , 10−8] with the
bottom curve corresponding to 10−1 with each successive curve cor-
responding to the next value of η in the list above.

ments shown in Fig. 19. Therefore, if observed values of vrms can
be considered to be nonlinear, our assumption that vdriv ∼ vrms is
perhaps not unreasonable, even for smaller values of η.

Finally, we point out that the assumption that 100% of the
net energy provided by the driver goes into heating the domain
depends on the frequency of the driver. For a constant frequency
driver, the system eventually reaches a steady state where 100%
of the Poynting flux from the driver goes into heat. However,
for a non-constant driver frequency, the system may be unable
to reach steady state before the frequency profile of the driver
changes, particularly, if a smaller value of η were used. Us-
ing a random driver could reduce the driver effectiveness as
changes to the driver frequency could lead to destructive inter-
ference with pre-existing waves. The effects of using a random
driver imposed on a zero-dimensional harmonic oscillator are
reviewed in Masoliver & Porra (1993) and Gitterman (2013). A
random driver in a 2D phase mixing experiment is investigated in
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Wright & Rickard (1995). The effects of a random driver im-
posed on a 3D coronal loop are studied in De Groof et al. (2002)
and De Groof & Goossens (2002).

6. Conclusions

In this paper, we demonstrate that phase mixing can occur be-
cause of variations in field strength and field line length with-
out the need for variations in density. The model deliberately
does not impose any initial density structures as demonstrated
by Cargill et al. (2016) that heating from phase mixing cannot
sustain the density structures self-consistently.

We find that the nonlinearities reduce the driver effective-
ness, which results in the total amount of heating being reduced.
For the range of driver amplitudes studied in this paper, the re-
duction in effectiveness is found to be about 20%. Density struc-
tures are generated by the ponderomotive force and by pressure
forces associated with the heating; this causes the resonance lo-
cation to shift, which means energy build up is smaller than
it would be otherwise. In addition to this, since the density at
the boundary is reduced, the energy associated with the Alfvén
waves entering the system is also reduced and so less energy en-
ters the domain. The nonlinearities have a comparatively small
effect on the damping rate (for the range of amplitudes studied in
this work), where the damping rate is related to the rate at which
the energy associated with the Alfvén waves is converted into
other forms of energy.

We calculated an order of magnitude estimate of the Poynt-
ing flux to determine if the model presented in this work pro-
vides enough energy to balance conductive and radiative losses
in the coronal region. We find that the Poytning flux provided
in the model, with a large magnetic diffusion (η = 10−3η0), in-
deed provides energy of the order necessary to balance conduc-
tive and radiative losses in the quiet Sun corona (but not active
regions). We did not consider coronal holes because they are
typically composed of open magnetic field lines and our model
addresses closed loops. The order of magnitude estimate was
constrained by ensuring that the steady-state, root-mean-square
velocity, vrms, matches observations (McIntosh et al. 2011). We
show that as η decreases, the Poynting flux remains approxi-
mately constant. However, vrms increases and this means that
for smaller η the driver amplitude must be reduced to ensure
vrms remains fixed. We estimated from linear experiments that
if a physical value of η were used, the driver amplitude would
have to be reduced by approximately a factor of 10, resulting
in a decrease in Poynting flux by a factor of 100. From Fig. 14
it can be seen that nonlinearities reduce the root-mean-square
velocity. One possible mechanism for this could be the non-
linear self-modification of Alfvén waves which, as shown by
Verwichte et al. (1999), results in the formation of strong cur-
rents and hence strong Ohmic dissipation in a time that is propor-
tional to (v/vA)−2. Thus, although our linear results suggest that
with a realistic value of η the model does not produce enough
heat to balance losses in the corona, it is still plausible that there
might be enough heat in a nonlinear model.

It has long been known that Alfvén waves can mode convert
to magnetoacoustic waves (as described in Verwichte et al. 1999;
Thurgood & McLaughlin 2013a) and that the Alfvén waves gen-
erate density structures as shown in Terradas & Ofman (2004).
Equation (C.3) shows that the Alfvén waves can transfer energy

into flows perpendicular to the invariant direction and vice versa
by doing work through the magnetic pressure force (pondero-
motive force). Therefore, if a large velocity is imposed in the
longitudinal direction, this could result in large changes to the
energy of the Alfvén wave.
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Appendix A: Ideal and linear analytic solution

The ideal and linear solution was calculated by solving the
wave equation (Eq. (D.3)) using d’Alembert’s formula for both
vz and Bz. We note that the solution is a superposition of
Heaviside functions which enter the domain owing to wave re-
flection. A simplification is made by assuming the driver is
given by

vz = vdriv sin(ωt),

with no ramp-up period involving the square of a sine (as used
in Eq. (10)). Once Bz and vz are calculated, the Poytning flux on
the boundary is calculated as

−
By

µ
vzBz = v

y

A
ρ0v

2
driv sin(ωt)

(

sin

[

ω

(

t −
2ml

vA0

)]

+ 2 cot

(

ωl

vA0

)

sin

(

mωl

vA0

)

sin

[

ω

(

t − ml

vA0

)])

, (A.1)

for ωl/vA0 , kπ, where k is an integer, l = l(x) is the length of
the loop given by s2 − s1 in Appendix D, vAy = By/

√
ρ0µ and m

is an integer given by

m =

⌊

tvA0

2l

⌋

·

The floor brackets, ⌊ ⌋, correspond to the largest integer
smaller than tvA0/(2l). The apparent singularity at ωl/vA0 = kπ,
can be resolved and if ωl/vA0 = kπ then the Poynting flux is
given by

−
By

µ
vzBz = v

y

A
ρ0v

2
driv(2m + 1) sin2(ωt).

This equation shows that the Poynting flux grows linearly
with time along resonant field lines and so the energy grows
quadratically. To calculate Eend

lin
, the Poytning flux was then in-

tegrated along the bottom boundary in space and time, where x
goes from xmin to xmax and t goes from 0 to tdriv

end
.

Appendix B: Total energy evolution

Using Eqs. (1)–(4) as well as Faraday’s law, it can be shown that
the rate of change of energy at a point in space in the domain is
given by

∂

∂t

(

p

γ − 1
+

B2

2µ
+

1

2
ρv2

)

+ ∇ · F = 0, (B.1)

where

F =
γp

γ − 1
u +

E × B

µ
+

1

2
ρv2u.

Taking the integral over the whole domain and making use
of Gauss’ divergence theorem, Eq. (B.1) can be written as

dEtot

dt
= −

∮

∂S

(

E × B

µ

)

· n̂dl, (B.2)

where Etot gives the total energy in the domain S , Etot is defined
as

Etot =

∫

S

p

γ − 1
+

B2

2µ
+

1

2
ρv2 dS . (B.3)

Most of the terms in F can be eliminated because u · n̂ = 0 on
every boundary. The Poynting flux term can be simplified further
by making use of Ohm’s law as follows:

E = j/σ − u × B. (B.4)

Therefore,

E × B

µ
· n̂ = η j × B · n̂−

1

µ
(u × B) × B · n̂,

= η j × B · n̂−
1

µ
(u · B)B · n̂.

This term can be simplified further because j × B · n̂ = 0
on the boundary. To demonstrate this, we first show that By does
not change on the bottom boundary. Consider the y-component
of the induction equation as follows:

∂By

∂t
= ∇ × (u × B) · ŷ + η∇2By,

=
∂

∂x

(

vxBy − Bxvy
)

+ η∇2By,

= 0, (B.5)

where x-derivative term equals zero because u = 0 on the bound-
ary so it is constant along the bottom boundary; the Laplacian
term equals zero because initially By = −B0y/L0 and therefore
remains zero for all time. Now consider the y-component of the
Lorentz force on the bottom boundary as follows:

j × B · ŷ =
(

1

µ
(B · ∇)B − ∇

(

B2

2µ

))

· ŷ,

=
1

µ

(

Bx

∂

∂x
+ By

∂

∂y

)

By −
∂

∂y

(

B2

2µ

)

,

= 0, (B.6)

where the y-derivatives are zero because n̂ · ∇ = 0 on the bound-
ary and the x-derivatives are zero because By = By(y). Hence,
Eq. (B.2) can be written as

dEtot

dt
= −

1

µ

∫

y=ymin

vzBzBy dx, (B.7)

where the integral is taken only over the bottom boundary as this
is where the driver is located. Since By does not depend on x it
can be taken out of the integral to give

dEtot

dt
= −

By

µ

∫

y=ymin

vzBz dx. (B.8)

Appendix C: Total Alfvén wave energy evolution

Using Eqs. (1)–(4) as well as Faraday’s law it can be shown that
the rate of change of Alfvén wave energy density is given by

∂eA

∂t
+ ∇ · FA = u · ∇

(

B2
z

2µ

)

−
1

σ

(

∇Bz

µ

)2

, (C.1)

where FA is the Alfvén wave energy flux and is given by

FA =
1

2
ρv2z u + E × Bz. (C.2)

In Appendix B it was shown that j×B·n̂ = 0 on the boundary,
hence if vx = vy = 0 on the boundary then it can be shown that

E × Bz · n̂ = E × B · n̂,
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on the boundaries of the domain. Consequently, by taking the in-
tegral of Eq. (C.1) and substituting Eq. (B.8) the following equa-
tion is obtained:

dEA

dt
=

dEtot

dt
+

∫

S

u · ∇
(

B2
z

2µ

)

−
1

σ

(

∇Bz

µ

)2

dS . (C.3)

Appendix D: Harmonic periods

The goal of this appendix is to derive an expression for the har-
monic series associated with each field line as a function of the
vector potential (A) at the initial time step. To do this, a change
of coordinates is used to rewrite the wave equation in a form
such that the wave speed is constant. For now, an expression is
derived for the first quadrant where A ≥ 0. Symmetry arguments
can be used to derive the formula for the other quadrants. The
change of coordinates is given by

x =
√

ÂL0es, y =
√

ÂL0e−s,

where

A = A0Â =
B0

L0

xy (D.1)

and A0 = B0L0. The linearised ideal wave equation is given by

∂2vz

∂t2
=

(B0 · ∇)2

µρ0

vz, (D.2)

Using the fact that

B0 · ∇ =
B0

L0

(

dx

ds

∂

∂x
+

dy

ds

∂

∂y

)

=
B0

L0

∂

∂s
,

the wave equation (Eq. (D.2)) can be rewritten as

∂2vz

∂t2
=

B2
0

µρ0L2
0

∂2vz

∂s2
· (D.3)

Thus, the harmonic periods are given by

τn =
2

n

L0

vA0

(s2 − s1), (D.4)

where s1 and s2 are the values of s at each of the footpoints. In
the first quadrant, at s1, y = ymax and at s2, x = xmax, therefore

s1 = − log















ymax

L0

√
Â















, s2 = log















xmax

L0

√
Â















·

Finally, the harmonic periods are given by

τn =
2

n

L0

vA0

log













A0

L2
0

xmaxymax

A













, (D.5)

using symmetry arguments it can be shown that the formula for
all quadrants is given by

τn =
2

n

L0

vA0

log













A0

L2
0

xmaxymax

|A|













· (D.6)

Appendix E: Resonance locations

The driving period is given by

τdriv =
L0
√
µρ0

B0

4 log (2) . (E.1)

The driving period equals one of the harmonic periods,
where τn = τdriv and

|A|
A0

=
|xy|
L2

0

=
xmaxymax

L2
0
4n
,

=⇒
xy

L2
0

= ±41−n, y ≤ 0, (E.2)

where y ≤ 0 because the driver is imposed on the bottom
boundary.
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