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The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents
a new paradigm in the field of quantum optics and waveguide QED. In this paper, we investigate the
single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom.
Thanks to the natural interference induced by the back and forth photon transmitted/reflected
between the atom-waveguide coupling points, the photon transmission can be dynamically controlled
by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-
atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven
three-level giant-atom setup, it is of great interest that, the Autler-Townes splitting is dramatically
modulated by the giant atom, in which the width of the transmission valleys (reflection range) is
tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon
control in quantum network based on mesoscopical or even macroscopical quantum nodes involving
the giant atom.

I. INTRODUCTION

In the field of quantum optics, the study of the inter-
action between light and matter is one of the long-lived
subjects. Recently, the light-matter interaction in waveg-
uide structures has attracted much attention, which leads
to lots of theoretical and experimental works in waveg-
uide QED community [1–8], such as dressed or bound
states [9–15], phase transitions [16–18], single-photon
devices [19–21], exotic topological and chiral phenom-
ena [22–27], where the wavelength of light (or microwave
field) is usually tens or hundreds of times larger than
the size of the natural/artificial atoms constituting the
matter [28–32]. Therefore, the light-matter interaction is
usually modelled by the dipole approximation, where the
atoms are regarded as point-like dipoles [33].
However, in recent years, the artificial superconduct-

ing transmon qubit coupled by the acoustic waves [34–
36], of which the size is comparable to the wavelength
of the phonons, is named as “giant atom” and has been
successfully realized in experiments [37] . Alternatively,
the giant-atom model can also be realized in the super-
conducting transmission line setup, where the capaci-
tive or inductive coupling allows more than one coupling
points between the microwave field and the qubit [38, 39].
Moreover, using the cold atomic system, a theoretical
scheme for the realization of giant atom has been pro-
posed in dynamical state-dependent optical lattices [40].
In the giant-atom community, a lot of new phenomena
not existing in the conventional small atomic system
have been predicted, such as frequency dependent relax-
ation [41], non-exponential decay [42–44], tunable bound
state [45, 46] as well as decoherence free subspace [47, 48]
(For a recent review, see Ref. [49]). The underlying
physics behind these phenomena is the interference and
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retarded effect during the photon/phonon propagating
process between the different coupling points.
On the other hand, the dynamical control of the single-

photon transmission is a hot topic in constructing quan-
tum networks [50–52], motivated by the photon based
quantum information processing. Photons provide a reli-
able transmission of quantum information and the waveg-
uide is often seen as photonic channels in quantum net-
work, with atoms (or artificial atoms) acting as quan-
tum nodes. Along this line, people have proposed lots
of schemes to realize single-photon device, in which the
propagating of the photon in channels is controlled on de-
mand by adjusting the nature of the quantum nodes [19–
21, 53–57]. Furthermore, for a three-level quantum node,
the electromagnetically induced transparency (EIT) [58]
and Autler-Townes splitting (ATS) phenomena have been
investigated both theoretically and experimentally [59–
62]. Meanwhile, it is also possible to control photon by
photon, to realize an all optical routing [63] or microwave-
photon detector [64]. Combined with the interference ef-
fect, it motivates us to study how to modulate the single
photon scattering by the giant atom.
In this paper, we tackle this issue in a one-dimensional

waveguide with a two-level or three-level giant atom. For
the two-level atom setup, we find that the change in the
size of the atom can control its energy shift due to the in-
terference effect between the backward and forward pho-
ton in the waveguide. In the driven three-level giant-
atom system, we demonstrate the controllable phase-
modulated ATS physics. Our results show that, the size
of the giant atom, which serves as a controller, can be
used to tune the width of the transmission valleys (re-
flection range) in a periodical manner. The underlying
physical principal is further revealed in the viewpoint of
quantum open system based on the dressed state repre-
sentation.
The rest of the paper is structured as follows: In Sec. II,

we present the model and discuss the single photon scat-
tering in a two-level giant-atom system. In Sec. III, we
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FIG. 1. Schematic configuration for a linear waveguide cou-
pled to a giant atom at the points x = 0 and x = x0.

demonstrate the Autler-Townes splitting behavior for a
driven three-level giant-atom with Λ-type transition. In
Sec. IV, we discuss the effects of the dissipation for both
of two-level and three-level giant atom setups. At last,
we end up with a brief conclusion in Sec. V.

II. TWO-LEVEL GIANT ATOM

As schematically shown in Fig. 1, the system we con-
sider is composed of a linear waveguide and a giant atom,
which is actually a two-level system. The giant atom is
connected to the waveguide via two points with x = 0 and
x = x0, respectively. The Hamiltonian H1 of the system
can be divided into three parts, i.e., H1 = Hs+Hω +V1.
The first part Hs is the free Hamiltonian of the giant
atom (Hereafter, we set ~ = 1).

Hs = ωe |e〉 〈e| , (1)

where ωe is the transition frequency between the ground
state |g〉 and the excited state |e〉. As a reference, we
have set the frequency of the ground state |g〉 as ωg = 0.
The second part Hω of the Hamiltonian H1 represents

the free Hamiltonian of the waveguide, and is expressed
as

Hω =

∫

dx{−ivgC
†
R (x)

d

dx
CR (x)+ivgC

†
L (x)

d

dx
CL (x)},

(2)
where vg is the group velocity of photons traveling in the

waveguide. C†
R(x)[C

†
L(x)] is the bosonic creation oper-

ator for the right-going (left-going) photon at position
x.
For the third part V1 of the Hamiltonian H1, we de-

scribe the interaction between the waveguide and the gi-
ant atom. Within the rotating wave approximation, the
Hamiltonian V1 can be expressed as

V1 =f

∫

dxδ(x)
[

σ+CR (x) + σ+CL (x) + H.c.
]

+ f

∫

dxδ (x− x0)
[

σ+CR (x) + σ+CL (x) + H.c.
]

,

(3)

where f is the coupling strength between the waveguide
and the two-level giant atom. σ+ = (σ−)† = |e〉〈g| is
the raising operator of the atom. The Dirac-δ function
in the Hamiltonian V1 indicates that the giant atom has
a length of x0 and connects to the waveguide via its head
and tail, that is, x = 0 and x = x0.
It is noted that, the total excitation of the atom and

the photon in the waveguide is conserved. In the follow-
ing section, we will restrict ourselves in the single exci-
tation subspace, to investigate how to control the single
photon scattering state via adjusting the frequency of the
photon and the size of the two-level giant atom.
In the single-excitation subspace, the eigenstate of the

system can be written as

|E〉 =

∫

dx
[

φR1
(x)C†

R (x) + φL1
(x)C†

L (x)
]

|G〉

+ ueσ
+ |G〉 ,

(4)

where |G〉 represents that the waveguide is in the vac-
uum states while the giant atom is in the ground state
|g〉. φR1

(x) and φL1
(x) are single-photon wave functions

of the right-going and left-going modes in the waveguide,
respectively. ue is the excitation amplitude of the gi-
ant atom. Solving the stationary Schödinger equation
H1 |E〉 = E |E〉, the amplitudes equation can be obtained
as

−ivg
d

dx
φR1

(x) + fueM = EφR1
(x) , (5a)

ivg
d

dx
φL1

(x) + fueM = EφL1
(x) , (5b)

ωeue + fN = Eue. (5c)

whereM = δ(x)+δ(x−x0) and N = φR1
(0)+φR1

(x0)+
φL1

(0) + φL1
(x0).

Next, we consider the scattering behavior when a single
photon with wave vector k is incident from the left side of
the waveguide. In this case, the wave functions of φR1

(x)
and φL1

(x) can be expressed as

φR1
(x) =eikx{θ (−x) +A1 [θ (x) − θ (x− x0)]

+ t1θ (x− x0)},
(6)

φL1
(x) = e−ikx {r1θ (−x) +B1 [θ (x)− θ (x− x0)]} ,

(7)
with

θ (x) =











1 x > 0
1
2 x = 0

0 x < 0

. (8)

We explain the expression of the above wave functions
physically as follows. When the right-going photon inci-
dent from the region x < 0 reaches the first connection
point x = 0 between the giant atom and the waveguide,
it can be transmitted or reflected, with the amplitudes of
A1 and r1, respectively. The photon transmitted at the
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FIG. 2. (a) The transmission rate T1 as functions of x0 and
∆. (b) The transmission rate T1 as a function of ∆. (c) The
transmission rate T ′

1 as a function of ∆. The parameters are
set as ωe = 3GHz, vg = 3 × 108 m/s, f/

√
vgωe = 0.05. The

other parameters is γe = 10−3ωe for (c).

first connection point at x = 0 will travel freely in the
waveguide until it reaches the second connection point at
x = x0, it will be then reflected or transmitted secondly,
with the amplitudes B1 and t1, respectively.
Now, we substitute Eq. (6-8) into the amplitude

Eq. (5), it yields the dispersion relation E = vgk, and

t1 =
i∆vg − 2if2 sin (kx0)

i∆vg − 2f2 (1 + eikx0)
. (9)

where ∆ = E−ωe is the detuning between the atom and
the propagating photon in the waveguide.
Furthermore, the transmission rate T1 = |t1|

2
can be

obtained as

T1 =

(

∆vg − 2f2 sin (kx0)
)2

(∆vg − 2f2 sin (kx0))
2
+ 4f4 (1 + cos (kx0))

2 ,

(10)
In the small atom scenario (x0 = 0) which is studied

in Ref. [19], it is obvious that the incident photon will

be completely reflected (T1 = 0) when it is resonant with
the atom, that is, ∆ = 0. However, for the giant atom in
our setup, the incident photon will propagate back and
forth in the spatial regime covered by the giant atom,
leading to an interference effect. As a result, as shown
in Fig. 2(a), the transmission rate can be controlled by
adjusting the photon-atom detuning ∆ and the size of
the giant atom x0.
Furthermore, considering the atomic spontaneous

emission, where we replace ωe by ωe − iγe, the trans-
mission amplitudes t′1 becomes

t′1 =
i (∆ + iγe) vg − 2if2 sin (kx0)

i (∆ + iγe) vg − 2f2 (1 + eikx0)
, (11)

where γe is the spontaneous emission of the giant atom.
As shown in Fig. 2(b) and (c), we plot the transmission

rates T1 and T
′
1 = |t′1|

2
as functions of the detuning ∆, re-

spectively, to compare the results with and without spon-
taneous emission. It shows that the spontaneous emission
breaks the complete transmission and makes the trans-
mission valleys become wider and shallower. However,
the locations of the valleys are not changed. It implies
that the environment nearly doesn’t change the energy
structure of the system.
More interestingly, in the giant-atom situation (x0 6=

0), the detuning for complete reflection is determined by
the transcendental equation

∆r =
2f2 sin (krx0)

vg
, (12)

where ∆r is the detuning between the atom and the prop-
agating photon when the incident photon is completely
reflected, and kr is the corresponding photonic wave vec-
tor, ∆r is dependent on kr via ∆r = vgkr − ωe. It is
well known that the atomic frequency is determined by
the location of the complete reflection of the incident
photon [19]. Therefore, in Fig. 2(b), we can observe an
atomic frequency shift which originates from the interfer-
ence effect as discussed above, compared with the small
atom system. Since |sin krx0| ≤ 1, Eq. (12) implies that
only when the frequency of the incident photon satisfies
|∆r| ≤ 2f2/vg, that is, ωe+2f2/vg ≥ vgkr ≥ ωe−2f2/vg,
it is possible to be completely reflected. Within this
regime, we plot the dependence of ∆r on the size of giant
atom x0 in Fig. 3(a) (solid line), which shows a sinusoidal
shape. The exact sinusoidal shape by the numerical fit-
ting (empty circles) is also shown in the figure and the
fitting function is obtained by

∆r ≈ S sin(ωex0/vg), (13)

where the fitting parameters S ≈ 2f2/vg is plotted as
a function of atom-waveguide coupling strength f in
Fig. 3(b). We recall that, when two identical small atoms
are coupled to the waveguide at the position x = 0 and
x0, the photon will also propagate back and forth be-
tween the two atoms. However, as shown in Appendix,
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FIG. 3. (a) The detuning ∆r as a function of x0 for ωe =
3GHz, vg = 3 × 108 m/s, f/

√
vgωe = 0.05. The solid line

is given by the solution of the transcendental equation in
Eq. (12) and the empty circles are the results from the nu-
merical fitting. (b) The fitting parameters S in Eq. (13) as a
function of the atom-waveguide coupling strength f .

we can not observe the shift, that is T = 0 occurs at
∆ = 0. The reason is that, small atoms do not interfere
with themselves. However, in giant atoms, the interfer-
ence within an atom promotes the apparent frequency
shift in its energy levels.

In experiments, the giant atom setup can be realized
by the superconducting circuits, and the transition fre-
quency is in the order of GHz [38, 39], while the in-
trinsic decoherence time of the superconducting qubit is
achieved by 20µs [65] or even longer [66]. The natu-
ral line width of the giant atom is then γ = 0.05MHz
. In Fig. 3(a), the energy shift is with the regime of
|∆r| = 5 × 10−3ωe = 15MHz, for some x0 so that
∆r ≫ γ, and ∆r is about 300 times larger than γ. There-
fore, the energy shift of the giant atom can be larger than
its natural line width and observed experimentally by in-
creasing the atom-waveguide coupling strength.

FIG. 4. Schematic configuration for a linear waveguide cou-
pled to a Λ-type three-level giant atom at the points x = 0
and x = x0.

III. THREE-LEVEL GIANT ATOM

In this section, let us consider the single-photon scat-
tering on a three-level giant atom driven in Λ type. As
schematically shown in Fig. 4, the atom is characterized
by the ground state |g〉, excited state |e〉 and metastable
state |f〉. Here, there are two types of physical processes
in this system. One is similar to that in two-level giant
atom system, that is, the interplay between the multi-
ple backward and forward photons of the transmission
and reflection in the waveguide; the other is peculiar for
such a three-level atomic system, i.e., that the strong
driving field couples the states |e〉 and |f〉 and a weak
field (the incident photon in the waveguide) probes the
states |e〉 and |g〉 will induce the ATS phenomenon. The
incorporation between these two processes may provide
a possibility of the extra and interesting single-photon
scattering spectrum for the giant-atom setup.

The Hamiltonian H2 of the current system can be di-
vided into three parts, i.e., H2 = Hw+Ha+V2. Here, Hw

is the free Hamiltonian of the waveguide which is given
in Eq. (2). Ha is the Hamiltonian of the giant atom

Ha =ωe |e〉 〈e|+ ωf |f〉 〈f |

+ η(|e〉 〈f | e−iωdt + |f〉 〈e| eiωdt),
(14)

where ωe and ωf (ωf < ωe) are the frequencies of the
state |e〉 and |f〉, respectively. As a reference, we have
set ωg = 0. η and ωd are, respectively, the strength and
frequency of the classical field, which drives |f〉 ↔ |e〉
transition. In the rotating frame, the time independent
Hamiltonian becomes

H̃a = ωe |e〉 〈e|+ δ |f〉 〈f |+ η(|e〉 〈f |+ |f〉 〈e|), (15)

where δ = ωf + ωd.

The third part V2 of the Hamiltonian H2 describes the
interaction between the waveguide and the giant atom.
Within the rotating wave approximation, it can be ex-
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pressed as

V2 = f

∫

dxδ(x)
{[

C†
R(x) + C†

L(x)
]

|g〉 〈e|+H.c.
}

+ f

∫

dxδ(x − x0)
{[

C†
R(x) + C†

L(x)
]

|g〉 〈e|+H.c.
}

,

(16)

where f is the coupling strength between the waveguide
and giant atom.
In the single-excitation subspace, the eigenstate of the

system can be expressed as

|E〉 =

∫

dx
[

φR2
(x)C†

R + φL2
(x)C†

L

]

|∅, g〉

+ λe |∅, e〉+ λf |∅, f〉 ,
(17)

where |∅,m〉(m = e, g, f) represents that the waveguide
is in the vacuum state while the giant atom is in the
state |m〉. φR2

(x) and φL2
(x) are single-photon wave

functions of the right-going and left-going modes in the
waveguide, respectively. λe and λf are the excitation
amplitudes of the giant atom in the excited state |e〉 and
metastable state |f〉, respectively. Similar to the discus-
sion in two-level atom setup, for a right-going incident
photon with wave vector k, the photon amplitude can be
expressed as

φR2
(x) =eikx{θ (−x) +A2 [θ (x)− θ (x− x0)]

+ t2θ (x− x0)},
(18)

φL2
(x) = e−ikx {r2θ (−x) +B2 [θ (x) − θ (x− x0)]} ,

(19)
where t2 and r2 are the transmission and reflection am-
plitudes while A2 (B2) are the amplitudes for finding
a right (left)-going photon inside the regime of the gi-

ant atom. Then, the Schödinger equation H̃ |E〉 = E|E〉
(where H̃ = Hw + H̃a + V2) yields

t2 =
(E − δ)

[

i (E − ωe) vg − 2if2 sin (kx0)
]

− ivgη
2

(E − δ) [i (E − ωe) vg − 2f2 (1 + eikx0 )]− ivgη2
,

(20)

r2 =
2f2(E − δ) (1 + cos (kx0)) e

ikx0

(E − δ) [i (E − ωe) vg − 2f2 (1 + eikx0)]− ivgη2
.

(21)
Then the transmission rate T2 = |t2|

2 and reflection rate
R2 = |r2|2 satisfy T2 + R2 = 1 due to the neglect of the
natural relaxations in the atom.
In Fig. 5, we plot the transmission rate T2 as functions

of the detuning ∆ = E − ωe between the incident pho-
ton and atomic |g〉 ↔ |e〉 transition and the size of the
giant atom x0. Here, we illustrate the result for reso-
nantly driving the atom by the field η in Fig. 5(a) and
(d), and non-resonantly in Fig. 5(b),(c) and (e). All of
the results are characterized by two narrow transmission

valleys (T2 ≃ 0) and a relatively wide transmission win-
dows (T2 ≃ 1) between them around the two-photon res-
onance.
First, we focus on the transmission window (T2 ≃

1, R2 ≃ 0). It can be observed in Eqs. (21) that R2=0
when E − δ = E − ωf − ωd = 0, which implies the two-
photon resonance condition ωe−E = ωe−ωf −ωd. This
transmission window is caused by the usual ATS mecha-
nism, which is true for both of the small and giant atom
setup. Moreover, we can also observe that R2 = 0 when
1 + cos kx0 = 0, that is kx0 = (2m+ 1)π where m is an
integer, and the dependence of the position is peculiar for
the giant atom setup. Note that kx0 is the accumulated
phase as the travelling photon moves from one coupling
point to the other. Therefore, such a ATS transmission is
also related to the position-dependent phase introduced
by the interference effect from the back and forth photons
inside the regime covered by the giant atom.
Next, we discuss the two valleys, which represent the

complete reflection (T2 ≃ 0, R2 ≃ 1). Based on Eq. (20),
the complete reflection occurs when

E± = ωe + f2 sin(kx0)/vg −
∆2

2

±

√

(∆2 + 2f2 sin (kx0) /vg)
2
+ 4η2

2
, (22)

where ∆2 = ωe−ωf−ωd is the detuning between the driv-
ing field and the atomic |f〉 ↔ |e〉 transition. This fact
can be explained intuitively in the dressed state presen-
tation. The eigenfrequencies of the driving Hamiltonian
H̃a in Eqs. (15) are

ω± = ωe −
∆2

2
±

√

∆2
2 + 4η2

2
. (23)

and the corresponding states are

|ψ+〉 = cos
θ

2
|e〉+ sin

θ

2
|f〉, (24)

|ψ−〉 = − sin
θ

2
|e〉+ cos

θ

2
|f〉. (25)

For the resonantly driving (∆2 = 0), we will have θ =
π/2. For the case of non-resonantly driving, we will have
θ = atan(2η/∆2) for ∆2 > 0 and θ = π + atan(2η/∆2)
for ∆2 < 0.
Comparing Eqs. (23) with (22), we find that the in-

cident photon will be completely reflected when it is
“nearly” resonant with ω±. This fact is verified by the re-
sults shown in Fig. 5. Here, we use the phrase “nearly” to
imply that E± is not exactly equal to ω±, but is slightly
modulated by x0. As a result, the photon transmission
shows a periodic phase modulation in terms of x0, which
is clearly demonstrated in Figs. 5 (a), (b) and (c) for both
of resonantly and non-resonantly driving situations.
It is also shown in Fig. 5 that the two valleys discussed

above possess different widths. For example, see the hor-
izontal lines labelled by “A”, “B”, “C” and “D” in Figs. 5
(a), (b) and (c). This can be explained by the different
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FIG. 5. The transmission rate T2 as functions of the detuning ∆ = E − ωe and the size of the giant atom x0 for resonant
driving. The parameters are set as ωe = 3GHz, vg = 3× 108 m/s, ωf = 0.7ωe, f/

√
vgωe = 0.05, η = 5f = 0.08ωe. The other

parameters are ωd = 0.3ωe, ωd = 0.33ωe, ωd = 0.27ωe for (a), (b) and (c), respectively. (d) The transmission rate T2 for the
lines labelled by “A” (solid) and “B” (dashed) in (a). (e) The transmission rate T2 for the line labelled by “C” (solid) and “D”
(dashed) in (b) and (c), respectively.

TABLE I. The values of x0, ∆2 and corresponding values of |G±,k| for the two valleys in Fig. 6 (d) and (e).

Line Label curve ∆2/ωe x0 |G−,ω
−
/vg |/f |G+,ω+/vg |/f

A solid in Fig. 5(d) 0 1.48 1.2069 0.1783

B dashed in Fig. 5(d) 0 2.43 0.2574 1.1892

C dashed in Fig. 5(e) −0.03 3.98 1.4813 1.2469

D solid in Fig. 5(e) 0.03 3.98 0.7944 1.0316

effective decay rates of the eigenstates with frequency ω±

in the viewpoint of quantum open system by regarding
the waveguide as the effective environment. To this end,
we rewrite the interaction Hamiltonian V2 in the momen-
tum space by performing the Fourier transformation (in
terms of |ψ±〉) as

V2 =
∑

k

{[C†
L(k)+C

†
R(k)]|g〉[G+,k〈ψ+|+G−,k〈ψ−|]+H.c.}

(26)

where

G+,k = f cos
θ

2
(1 + eikx0), G−,k = −f sin

θ

2
(1 + eikx0),

(27)
characterize the coupling strength between the kth mode
in the waveguide and the giant atom. We note that,
|G+,k| and |G−,k| actually reflect the width of the two
valleys when the value of k is taken to satisfy vgk = ω±.
In Table I, we list the values of |G+,k| and |G−,k| for the

horizontal lines in Fig. 5(a) (b) and (c), along which the
transmission rates are plotted as functions of the detun-
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FIG. 6. The transmission rate T ′
2 = |t′2|2 as a function of ∆

within the atomic spontaneous emission for resonant driving
(a) and non-resonant driving (b). The parameters are set as
ωe = 3GHz, vg = 3× 108 m/s, ωf = 0.7ωe, f/

√
vgωe = 0.05,

η = 5f = 0.08ωe, γe = γf = 10−3ωe. The frequency of the
driving field is set as ωd = 0.3ωe in (a).

ing ∆ in Fig. 5 (d) and (e). It shows a good agreement for
the valley width between the table and the curves. For
the resonant driving, which valley is wider depends on
the size of the giant atom x0, as shown in Fig. 5 (a) and
(d). However, for the non-resonant driving, as shown in
Fig 5 (b), (c) and (e), the left valley is nearly always nar-
rower than the right one when ∆2 > 0 and wider when
∆2 < 0. In this sense, the modification to the photon
transmission by the atomic size is more sensitive for the
resonant driving setup.

IV. EFFECTS OF DISSIPATION

When the natural relaxation of atoms is taken into
consideration, the transmission amplitude is expressed
as

t′2 =
∆f

[

i (E − ωe + iγe) vg − 2if2 sin (kx0)
]

− ivgη
2

∆f [i (E − ωe + iγe) vg − 2f2 (1 + eikx0)]− ivgη2
,

(28)
where ∆f = E − δ + iγf , and γe(f) is the sponta-
neous emission of the excited (metastable) state |e(f)〉.
The corresponding transmission rate is plotted in Fig. 8.
Compared with the ideal situation without relaxation, it
is found that the valley becomes wider and shallower by
comparing Fig. 5(d),(e) and Fig. 6(a),(b).
In the previous discussion, we have only considered the

effect of spontaneous emission on the transmission rate.
It should be noted that, in the presence of the natural
relaxation, the conservation relation |t1(2)|

2+ |r1(2)|
2 = 1

does not hold on any more. Therefore, it is beneficial to
discuss the reflection rate. Based on Eqs. (6) and (18),
and the Schödinger equation, the reflection amplitudes
of two- and three-level giant atom are expressed by

-0.02 -0.01 0 0.01 0.02
∆/ωe

0

0.5

1

R
1

γe = 0

γe = 10
−3ωe

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
∆/ωe

0

0.5

1

R
2

γe = γf = 0

γe = γf = 10
−3ωe

(a)

(b)

FIG. 7. (a) The reflection rate R1 as a function of ∆. (b)
The reflection rate R2 as a function of ∆. The parameters
are set as ωe = 3GHz, vg = 3 × 108 m/s, ωd = 0.3ωe, ωf =
0.7ωe,f/

√
vgωe = 0.05, η = 5f = 0.08ωe, γe = γf = 10−3ωe.

r1 =
2f2 [1 + cos(kx0)] e

ikx0

i (E − ωe + iγe) vg − 2f2 (1 + eikx0)
, (29)

r2 =
2f2∆f [1 + cos (kx0)] e

ikx0

∆f [i (E − ωe + iγe) vg − 2f2 (1 + eikx0)]− ivgη2
.

(30)

In Fig. 7, we plot the reflection rates R1 = |r1|
2
and

R2 = |r2|
2
as functions of ∆, respectively. Comparing the

results with and without spontaneous emission, it shows
that the spontaneous emission breaks the complete re-
flection and makes the reflection peaks become wider.
However, the locations of the peaks relative to the trans-
mission valleys remain unchanged.

V. CONCLUSION AND REMARKS

In this paper, we have studied the single-photon trans-
mission in a one-dimensional linear waveguide system
coupled with two-level or three-level giant atom. Gen-
erally, in the giant-atom regime, the backward and for-
ward photons propagating in the waveguide can lead to
an interference effect. Thus, for the case of two-level gi-
ant atom, we have shown that the complete reflection
occurs, but not for the case that the incident photon is
exactly resonant to the atom. In other words, the nat-
ural interference leads to an effective small but nonzero
frequency shift, and the shift can be approximately re-
garded as a sinusoidal function of the atomic size. For
the driven three-level giant atom, we obtain an ATS line
shape, and the transparency window can be controlled by
phase modulation in terms of the size of the giant atom.
In addition, the location and width of the transmission
valleys are tunable by adjusting the atomic size.
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Throughout the paper, we have considered the tun-
ability from the viewpoint of the changing coupling dis-
tance, i.e., the giant atomic size. Considering the su-
perconducting transmission line as the linear waveguide,
this distance can be tuned by the coupled inductance
or capacitance [38, 39], to adjust the propagating phase
kx0. Alternatively, one also can also the frequency of the
atom, so that the wave vector k of the resonant mode
in the waveguide will be shifted. As a result, the prop-
agating phase will be changed, and produce the similar
single-photon scattering spectrum. However, the period
on x0, which is relative to k [as shown in Eqs. (10,20,21)]
will be correspondingly modulated.

Beyond the specific model here, our work demonstrates
how to use the interplay between (among) the different
physical processes to modify the photon transmission in
the waveguide. In the giant atom scenario, one of the pro-
cesses is provided by interference effect during the pho-
ton propagation, while the other arises from the inner
energy-level coupling, which is induced by, for example,
the classical driving. Motivating by the interplay mech-
anism, we hope that the giant atom can be useful in de-
signing photon or phonon based quantum device, which
goes beyond the conventional small atom setup.
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Appendix A: Two small atoms

In this appendix, we give the results when the gi-
ant atom is replace by two small atoms separated by
x0. Similar to the giant atom setup, we also divide
the Hamiltonian of the system into three parts, i.e.,
H3 = He +Hω + V3. The first part He of the two atoms
is

He = ωe(|e〉1 〈e|+ |e〉2 〈e|), (A1)

where ωe is the transition frequency between the ground
state |g〉 and the excited state |e〉.

For the third part of the Hamiltonian H3, we describe
the interaction between the two small atoms and the
waveguide. Within the rotating wave approximation, it
can be expressed as

V3 =f

∫

dxδ (x)
[

σ+
1 CR (x) + σ+

1 CL (x) + H.c.
]

+ f

∫

dxδ (x− x0)
[

σ+
2 CR (x) + σ+

2 CL (x) + H.c.
]

.

(A2)

where f is the coupling strength between the waveguide
and two small atoms. The Dirac-δ function in the Hamil-
tonian V3 indicates that the two small atoms are located
at x = 0 and x = x0, respectively, and interact with the
linear waveguide at these two points.
The eigenstate in the single-excitation subspace can be

written as

|E〉 =

∫

dx
[

φR3
(x)C†

R (x) + φL3
(x)C†

L (x)
]

|G〉

+ u1σ
+
1 |G〉+ u2σ

+
2 |G〉 ,

(A3)

where |G〉 represents that the waveguide is in the vac-
uum states, while two atoms are in the ground state |g〉.
φR3

(x) and φL3
(x) are single-photon wave functions of

the right-going and left-going modes in the waveguide
respectively. u1 and u2 are the excitation amplitudes
of the two atoms, respectively. Solving the stationary
Schödinger equation H3 |E〉 = E |E〉, the amplitudes
equation can be obtained as

−ivg
d

dx
φR3

(x) + f [δ (x) u1 + δ (x− x0)u2] = EφR3
(x) ,

(A4a)

ivg
d

dx
φL3

(x) + f [δ (x) u1 + δ (x− x0)u2] = EφL3
(x) ,

(A4b)

ωeu1 + f [φR3
(0) + φL3

(0)] = Eu1,(A4c)

ωeu2 + f [φR3
(x0) + φL3

(x0)] = Eu2.(A4d)

Next, we consider the scattering behavior when a single
photon with wave vector k is incident from the left side
of the waveguide. Similar to the discussion in two-level
giant-atom setup, the wave function φR3

(x) and φL3
(x)

can be expressed as

φR3
(x) =eikx{θ (−x) + A3 [θ (x) − θ (x− x0)]

+ t3θ (x− x0)},
(A5)

φL3
(x) = e−ikx {r3θ (−x) +B3 [θ (x)− θ (x− x0)]} ,

(A6)
Then, we substitute Eqs.(A5) and (A6) into Eqs.(A4),

it yields the dispersion relation E = vgk. Furthermore

the transmission rate T3 = |t3|
2
can be obtained as

T3 =

(

∆2vg
)2

(

∆2vg −
2f4

vg
sin2 (kx0)

)2

+
(

2f2∆+ f4

vg
sin (2kx0)

)2 .

(A7)
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where ∆ = E − ωe is the detuning between the atom
and the propagating photon in the waveguide. It clearly

shows that, the incident photon will completely reflected
when ∆ = 0 which is different from that of a single giant
atom, as discussed in the main text.
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