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Phase-modulated Rice model for statistical distributions
of complex signals

D. Keith Wilson,a) Vladimir E. Ostashev, and Max E. Krackow
U.S. Army Engineer Research and Development Center, 72 Lyme Road, Hanover, New Hampshire 03755, USA

ABSTRACT:
The basic Rice model is commonly used to describe complex signal statistics from randomly scattered waves. It

correctly describes weak (Born) scattering, as well as fully saturated scattering, and smoothly interpolates between

these extremes. However, the basic Rice model is unsuitable for situations involving scattering by random

inhomogeneities spanning a broad range of spatial scales, as commonly occurs for sound scattering by turbulence in

the atmospheric boundary layer and other scenarios. In such scenarios, the phase variations are often considerably

stronger than those predicted by the basic Rice model. Therefore, the basic Rice model is extended to include a

random modulation in the signal phase, which is attributable to the influence of the largest, most energetic

inhomogeneities in the propagation medium. Various joint and marginal distributions for the complex signal

statistics are derived to incorporate the phase-modulation effect. Approximations of the phase-modulated Rice model

involving the Nakagami distribution for amplitude, and the wrapped normal and von Mises distributions for phase,

are also developed and analyzed. The phase-modulated Rice model and various approximations are shown to greatly

improve agreement with simulated data for sound propagation in the near-ground atmosphere.
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I. INTRODUCTION

The amplitude and phase of acoustic signals fluctuate

due to wave scattering by turbulence and other random pro-

cesses in the atmosphere (see, for example, Refs. 1 and 2,

and references therein). Statistical distributions of these fluc-

tuations are important for many contemporary applications

such as source detection probabilities, outdoor noise regula-

tion, and auralization of flying aircraft.3–6 In fact, the impor-

tance of signal amplitude and phase fluctuations in scattered

waves extends to many fields besides atmospheric acoustics,

including radio-wave propagation,7–9 optics,10,11 and ocean

acoustics.12–14 As a result, many physics-based and empiri-

cal statistical models have been proposed. Although ampli-

tude statistics have received the bulk of attention, phase

statistics can be important from the perspective of beam-

forming, passive ranging, travel-time tomography, and other

applications.

This article is motivated by a particular shortcoming in

current models for signal phase statistics. Specifically,

experimental data for acoustic signals transmitted through

the near-ground atmosphere often exhibit large phase varian-

ces relative to the log-amplitude variances.15–18 When sam-

ples of the complex signal are plotted, this behavior leads to

characteristic “arc” and “donut” shapes with few samples

near the origin, indicating the near absence of large fading

events in which the signal amplitude approaches zero. It is

evident, for example, in Figs. 10 and 11 of Norris et al.,15

Fig. 14 (the exception being 1000 Hz at 450 m downwind)

and Fig. 15 (at 1000 Hz, except at 100 m upwind) of

Cheinet et al.,16 and Fig. 9 of Kamrath et al.17 (the excep-
tions being at 3400 Hz, for 130 m on 09/25 at 06:45, for

130 m on 09/25 at 12:45, and for 39 m and 130 m on 09/27

at 12:48). Previously available models for complex signals,

particularly the widely used Rice distribution (which

describes a signal having normally distributed real and

imaginary parts of equal variance and a non-zero determin-

istic mean),12,13,19 do not correctly reproduce this signal

behavior.

To address this problem, a new joint amplitude-phase

distribution is proposed in this article, termed the phase-
modulated Rice model. In this approach, the basic (unmodu-

lated) Rice model is used for scattering by relatively small,

Fresnel-zone scale turbulent eddies, which impact both sig-

nal amplitude and phase. Then, the phase of the “mean” sig-

nal in the basic Rice model is modulated with a von Mises

distribution. This enhanced phase modulation is associated

with relatively strong, large-scale turbulent eddies, which

strongly impact the signal phase but not the amplitude.

Conceptually, this approach bears some similarity to

that of Mamyshev and Odintsov,20 who partition the phase

variations for acoustic signals scattered in the atmosphere

into “local” and “turbulent” contributions (the authors’ usage

of these terms might be roughly interpreted to mean “quasi-

deterministic” and “random,” respectively). However, in the

present formulation, we view both contributions as resulting

from atmospheric turbulence, although at different spatial

scales as distinguished by the size of the Fresnel zone.a)Electronic mail: d.keith.wilson@usace.army.mil
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This article is organized as follows. In Sec. II A, the

basic Rice model is described and some significant results

for the phase distribution are derived and compared to other

models. With this foundation, we introduce the phase-

modulated Rice model, for which the joint and marginal

probability density functions (pdfs) of amplitude and phase

are formulated in Sec. II B. Since applications often involve

explicit characterization of the real and imaginary parts of

the complex signal, those distributions are derived as well,

in Sec. II C. Next, in Sec. III, comparisons are made with

simulations for sound propagation in the near-ground atmo-

sphere, including scattering by turbulence, refraction, and

ground reflections. Section IV summarizes the results. The

Appendix provides additional analytical results based on

approximating the phase-modulated Rice model with a

Nakagami pdf for amplitude and wrapped normal pdf for

phase.

II. PHASE-MODULATED RICE DISTRIBUTION

A. Basic Rice model and approximations

The Rice distribution, which is widely used in both

electromagnetics and acoustics,6,8,10,21 applies to weakly

scattered signals consisting of a deterministic contribution

plus many randomly scattered contributions modeled based

on the Born (single scattering) approximation. It is also

valid in the limit of fully saturated scattering (fully random-

ized scattering with a vanishing deterministic mean), and

furthermore interpolates smoothly between the extremes of

weak scattering and full saturation. These features help to

explain its popularity.

In this article, we will use the terminology Rice model
to refer to a statistical process for a complex signal with nor-

mally distributed real and imaginary parts. Rice distribution
will refer specifically to the amplitude pdf derived from the

Rice model.

Let us designate the complex signal as Z ¼ X

þ iY ¼ AeiU, where X and Y are random variables for the

real and imaginary parts of the signal, A ¼ jZj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2
p

is the random amplitude, and U is the random phase. By

convention, we take the angular interval to be �p < U � p.

The signal power (squared amplitude) is S ¼ A2 ¼ X2 þ Y2.

For the Rice model, the means of X and Y are, in general,

non-zero. We thus write X � Nð�x; r2Þ and Y � Nð�y; r2Þ,
where Nð�; r2Þ indicates a normal pdf with mean � and

variance r2. Furthermore, �x ¼ � cos h; �y ¼ � sin h, where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

x þ �2
y

q
is the amplitude of the mean signal and h

is the phase angle of the mean signal. Hence X ¼ �x þ rnx

and Y ¼ �y þ rny, where nx and ny are independent, zero-

mean normal random variables with unit variance. Note that

the mean power is hSi ¼ hX2i þ hY2i ¼ �2
x þ r2hn2

xi þ �2
y

þ r2hn2
yi ¼ �2 þ 2r2. If we normalize the power to have a

mean of 1, then �2 þ 2r2 ¼ 1, and hence �2 ¼ 1� 2r2. The

Rice model is sometimes written in other forms by defining

the Rice factor K ¼ �2=2r2, which is a ratio of the power in

the steady part of the signal divided by the power in the

varying part. When the mean is set to 1, the other parameters

can be regarded as depending only on K, namely, �2 ¼ K=

ðK þ 1Þ and 2r2 ¼ 1=ðK þ 1Þ.
Based on the definitions of X and Y as independent nor-

mal random variables, their joint pdf is

fXYðx;yj�;h;r2Þ ¼ 1

2pr2
exp �ðx� �xÞ2þðy� �yÞ2

2r2

� �
: (1)

In this article, we follow the convention of indicating ran-

dom variables in upper case, and functional arguments

related to those variables in lower case. From Eq. (1), we

find the joint pdf for the amplitude A and phase U by setting

fAUða;/Þ ¼ ½jJa;/ðx; yÞjfXYðx; yÞ�a;/, where Ja;/ðx; yÞ ¼ a is

the Jacobian. The result is

fAUða;/j�; h; r2Þ ¼ a

2pr2
exp � a2 þ �2

2r2

� �
exp

a~�

r2

� �
; (2)

where ~� ¼ �x cos /þ �y sin / ¼ �ðcos h cos /þ sin h sin /Þ
¼ � cos ð/� hÞ. Note that A and U are not independent in

the Rice model because the second exponential in the pre-

ceding equation cannot be factored into separate functions

of a and ~� .

The pdf of amplitude for the Rice model (simply called

the Rice distribution) is obtained by marginalizing (integrat-

ing) the joint pdf, Eq. (2), over the phase. The result is

fAðaj�; r2Þ ¼ a

r2
exp � a2 þ �2

2r2

� �
I0

a�

r2

� �
: (3)

Here, I0 is the modified Bessel function of the first kind, order

zero. In the limit of full saturation, � ! 0, the Rice pdf

reduces to the Rayleigh pdf, fRðajr2Þ ¼ ða=r2Þ exp ð�a2=
2r2Þ.

The power (amplitude squared) distribution for the Rice

model is obtained by setting fSðsÞ ¼ ½jda=dsjfAðaÞ�s, with

s ¼ a2, leading to

fSðsj�; r2Þ ¼ 1

2r2
exp � sþ �2

2r2

� �
I0

�
ffiffi
s
p

r2

� �
: (4)

This equation is an order 2, noncentral Erlang distribution.6

The variance of this distribution is 4r2ðr2 þ �2Þ. When the

distribution is normalized to unit mean, the variance

depends only on K and is given by ð2K þ 1Þ=ðK þ 1Þ2. The

variance of the normalized power is equivalent to the scintil-

lation index, which is usually defined in the literature as

S2
I ¼ hs2i=hsi2 � 1 ¼ hðs� hsiÞ2i=hsi2. This quantity equals

1 for K¼ 0 and decreases monotonically as K increases.

Thus, the basic Rice model does not predict super scintilla-

tion, i.e., S2
I > 1. (An approach to including super scintilla-

tion in the Rice model, as attributable to modulation of the

signal intensity by turbulent intermittency, is discussed in

Ref. 21. This intensity modulation could potentially be com-

bined with the phase modulation considered in this article to

create a more comprehensive statistical model.)
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Equation (4), normalized to unit mean, is plotted for

K¼ 0, 1, 4, and 16 in Fig. 1. For K¼ 0, the distribution is

exponential. As K is increased, it becomes more peaked

around the mean.

For comparison, also plotted in Fig. 1 is the gamma dis-

tribution. The gamma distribution for signal power trans-

forms to the Nakagami pdf for signal amplitude23 [Eq. (A2)

in the Appendix], which is widely used in the communica-

tions literature. The gamma pdf is given by

fC sjk; bð Þ ¼ sk�1

CðkÞbk
exp � s

b

� �
; (5)

where k is the shape parameter and b is the scale parameter.

The mean and variance of the gamma distribution are kb
and kb2, respectively. The scintillation index equals 1=k.

For full saturation conditions, the gamma pdf, like the Rice

model, predicts an exponential pdf for power. However,

unlike the Rice model, which is consistent with the Born

approximation for weak scattering, the gamma pdf is justifi-

able for scattering regimes other than full saturation only

from an empirical perspective. The gamma pdfs plotted in

Fig. 1 correspond to setting the mean to 1 and the variance

to the same value as in the corresponding Rice pdf, i.e.,

k ¼ ðK þ 1Þ2=ð2K þ 1Þ. The corresponding values of k are

1 (for K¼ 0), 1.33 (for K¼ 1), 2.78 (for K¼ 4), and 8.76

(for K¼ 16). The two pdfs agree well for small and large K,

but differ somewhat for moderate values, particularly with

regard to the frequency of deep fading (events with S near

zero).

The phase distribution for the Rice model is obtained

by marginalizing Eq. (2) over amplitude. The resulting inte-

gral can be solved using Eq. (3.462.5) from Ref. [22], and

written in the following form,24 which depends only on K
(rather than � and r2 individually):

fUð/jK;hÞ ¼
1

2p
e�K
h
1þ

ffiffiffiffiffiffiffi
Kp
p

cos ð/� hÞexp K cos2ð/
�

�hÞÞerfc
�
�

ffiffiffiffi
K
p

cos ð/� hÞ
�i
: (6)

Here, erfcðxÞ is the complementary error function. Equation

(6) is plotted in Fig. 2 for K¼ 0, 1, 4, and 16, and h ¼ 0.

When K¼ 0, the phase is uniformly distributed since there

is no mean component. As K is increased, the phase

becomes more strongly peaked around h.

It is of interest to compare the Rice phase distribution to

other common distributions for angular variables. In particu-

lar, the wrapped normal and von Mises distributions are

widely used. Although moments for angular variables can be

defined in the familiar way, alternative definitions account-

ing for the cyclical nature of these variables are typically

employed. In particular, the nth circular moment is defined

as mn ¼ heinUi. The circular mean is thus m1 ¼ heiUi. The

circular variance is defined as 1� R, where R ¼ jm1j.
Because the Rice phase distribution is an even function and

m1 > 0 when h ¼ 0, we have m1 ¼ h cos /i ¼ R. While it

does not appear possible to calculate h cos /i analytically, it

can be readily done by multiplying fUð/jK; 0Þ from Eq. (6)

by cos / and numerically integrating between �p and p.

First let us consider the wrapped normal pdf, defined as

fWN hjr2
u

� �
¼ 1ffiffiffiffiffiffi

2p
p

ru

X1
n¼�1

exp � hþ 2pnð Þ2

2r2
u

" #
; (7)

where r2
u indicates the unwrapped phase variance. The

wrapped normal distribution provides a smooth transition

between weak scattering (r2
u � 1), for which the phase is

normally distributed, and full saturation (r2
u � 1), for which

the phase is uniformly distributed. The circular moments of

the wrapped normal distribution are mn ¼ exp ð�n2r2
u=2Þ.25

FIG. 1. (Color online) Probability density functions (pdfs) for signal power

according to the Rice model, for various values of the Rice factor K (solid

lines). The dashed lines correspond to gamma pdfs when the power vari-

ance is matched to the Rice phase pdf, as described in the text.

FIG. 2. (Color online) Probability density functions for signal phase according

to the Rice model, for various values of the Rice factor K (solid lines). The

dashed and dotted lines correspond to the wrapped normal and von Mises pdfs,

respectively, when the circular variance is matched to the Rice phase pdf.
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The circular variance is thus 1� expð�r2
u=2Þ. Next, con-

sider the von Mises pdf, defined as

fVM hjjð Þ ¼ 1

2pI0ðjÞ
exp j cos hð Þ: (8)

Here, j is a measure of concentration: the larger the value of

j, the smaller the variance. The circular moments of the von

Mises distribution are mn ¼ IjnjðjÞ=I0ðjÞ,25 where In is the

nth-order modified Bessel function of the first kind. The cir-

cular variance of the von Mises distribution is thus

1� I1ðjÞ=I0ðjÞ.
Figure 3 plots the parameters r2

u in the wrapped normal

distribution and j in the von Mises distribution, as determined

by matching the circular variances of these distributions to the

Rice phase distribution as a function of K. In particular, the

value of R in the Rice distribution is determined numerically

by trapezoidal integration for each K. Then, for the wrapped

normal distribution, r2
u is set to �2 ln R. For the von Mises

distribution, j is found such that I1ðjÞ=I0ðjÞ ¼ R.

The wrapped normal and von Mises distributions, with cir-

cular variances thus matched, are compared to the Rice phase

distribution in Fig. 2. The corresponding values of the circular

variance are 1 (for K¼ 0), 0.290 (for K¼ 1), 0.072 (for K¼ 4),

and 0.016 (for K¼ 16). Clearly, the three distributions approxi-

mate each other closely. Agreement is best for small and large

K, but deviates more noticeably for moderate values.

Based on results thus far, the pdf for signal power in the

Rice model can be reasonably approximated with a gamma

pdf (and the pdf for signal amplitude by a Nakagami pdf),

whereas the pdf for signal phase can be reasonably approxi-

mated with a wrapped normal or a von Mises pdf. In fact, a

recent analysis26 indicates excellent agreement between

experimental data for sound scattering in the atmosphere

and a model combining the Nakagami and wrapped normal

pdfs. However, some care should be taken with ad hoc,

independent combinations of amplitude and phase distribu-

tions. As pointed out earlier, the amplitude and phase statis-

tics predicted by the Rice model are dependent. This

dependence is physically significant; for example, the phase

variance is intrinsically large when a signal amplitude is

fully saturated. However, mathematically, a Nakagami pdf

characteristic of a saturated signal can be readily combined

with a phase pdf exhibiting small variance. Some efforts

have been made to construct consistent models for complex

signals by extending a Nakagami pdf for the amplitude to

also include phase.27,28 However, those models do not

appear applicable in the context of random wave scattering

as considered in this article.

Figure 4 shows the joint pdf of the real and imaginary

parts according to the Rice model [Eq. (1)]. Figure 5 shows

the corresponding joint pdf based on assuming that the

amplitude and phase are independent, with the amplitude

given by a Nakagami pdf and the phase by a wrapped nor-

mal pdf [Eq. (A9)]. As before, the shape parameter in the

Nakagami pdf is chosen such that the power variance

matches the Rice model, and the variance parameter in the

wrapped normal pdf is chosen such that the circular variance

matches the Rice model. Subplots for Rice factors of K¼ 0,

K¼ 1, K¼ 4 and K¼ 16 are shown. For K¼ 0, the models

coincide. When K> 0, in comparison to the Rice model the

Nakagami/wrapped normal pdfs are noticeably flattened on

the side of the meshes for negative real part.

B. Random phase modulation

Sound propagation in the atmospheric boundary layer

(ABL) is influenced by turbulent eddies across a broad range

FIG. 3. Variance parameter r2
u for the wrapped normal distribution (solid

line) and dispersion parameter j from the von Mises distribution (dashed

line) as a function of the Rice factor K, as determined by matching the cir-

cular variances in the distributions, as described in the text.

FIG. 4. (Color online) Joint pdf for the real and imaginary parts of a com-

plex signal according to the unmodulated Rice model. The mean power is

normalized to one and the mean phase is zero. Each subplot is for a particu-

lar value of the Rice factor K. (a) K¼ 0. (b) K¼ 1. (c) K¼ 4. (d) K¼ 16.
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of spatial scales, from centimeters to kilometers.1

Particularly in conditions of weak scattering [defined as sit-

uations where the log-amplitude, v ¼ ln ðA=A0Þ, in which A0

is the unscattered amplitude, has a variance such that

hv2i � 1; see, for example, the discussion in Ref. 29], the

amplitude fluctuations are caused by relatively small-scale

turbulent eddies with sizes on the order of the Fresnel zone,

whereas phase fluctuations are strongly impacted by the

largest, most energetic eddies. As a result, the phase vari-

ance is often much larger than the log-amplitude variance.

The Rice model, as described in Sec. II A, does not capture

the relatively large phase variance induced by the large-

scale turbulent eddies.

To address this problem, one possible modeling

approach is to view fAUða;/j�; h; r2Þ, Eq. (2), as the pdf for

sound scattering by the small-scale (Fresnel-zone size) tur-

bulence only. Phase fluctuations due to large-scale eddies

can then be included by varying (modulating) the phase

angle h randomly over a relatively long time scale. This con-

cept is depicted in Fig. 6. The various colors represent sam-

ples collected over a relatively short time window, for which

the basic (unmodulated) Rice model provides a reasonable

description of the scattering statistics. Over these short time

windows, signal samples appear as circular “clouds” of

points offset at a fixed amplitude from the origin. The phase

modulation taking place over relatively long time scales

sweeps the clouds around an arc or the entire unit circle.

Mathematically, we describe the large-scale phase mod-

ulation with a pdf fHðhjchÞ, where ch represents one or more

statistical parameters upon which H depends. Based on this

approach, a compound (integral) pdf is formulated for the

overall process as

fAUða;/j�;r2;chÞ¼
ð

fAUða;/j�;h;r2ÞfHðhjchÞdh; (9)

where H is the randomized phase angle averaged over the

long time scale. Note that the phase modulation impacts

only the phase statistics; it does not impact the amplitude

statistics because Eq. (3) is independent of h. Thus, the

mean power of the phase-modulated Rice distribution is

given by �2 þ 2r2, as before.

The wrapped normal and von Mises distributions are

both reasonable candidates for fHðhjchÞ. For the former, we

set fHðhjchÞ ¼ fWNðhjr2
hÞ, where r2

h is the unwrapped phase

variance due to the large-scale variations. We then find by

substituting Eqs. (2) and (7) into Eq. (9),

fAUða;/j�;r2;r2
hÞ

¼ a

ð2pÞ3=2r2rh

exp �a2þ�2

2r2

� �

�
X1

n¼�1

ðp

�p
exp

a~�

r2

� �
exp � hþ2pnð Þ2

2r2
h

" #
dh: (10)

One potential advantage of this approach is that since the Rice

phase pdf is approximately normal, the overall phase pdf

should be well approximated by a wrapped normal pdf with

unwrapped variance r2
h þ r2

u, where r2
u is the small-scale

phase variance obtained by matching the circular variances of

the Rice and unwrapped normal pdfs, as described in Sec. II A.

This hypothesis will be examined later. A disadvantage of Eq.

(10) is that neither the integral nor the sum can be evaluated

analytically, which complicates subsequent analysis. Some

approximate analytical results for the wrapped normal phase

FIG. 5. (Color online) Joint pdf for the real and imaginary parts of a com-

plex signal according to a model assuming independent amplitude and

phase, with the power (squared amplitude) given by a gamma pdf and the

phase by a wrapped normal pdf. The shape parameter in the gamma pdf is

chosen such that the power variance matches the Rice model. The variance

parameter in the wrapped normal pdf is chosen such that the circular vari-

ance matches the Rice model. The mean power is normalized to one and the

mean phase is zero. Each subplot is for a particular value of the Rice factor

K. (a) K¼ 0. (b) K¼ 1. (c) K¼ 4. (d) K¼ 16.

FIG. 6. (Color online) Conceptual depiction of the phase-modulated Rice

distribution. The various colors represent samples collected over a rela-

tively short time window, during which the basic Rice model is applicable.

The modulation varies the mean angle (as defined over the short time win-

dow) along the unit circle over a relatively longer time scale.
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distribution, based on assuming that the signal amplitude fol-

lows a Nakagami distribution, are provided in the Appendix.

Alternatively, we can use the von Mises pdf for

fHðhjchÞ. Substituting Eqs. (2) and (8) into Eq. (9) leads to

fAUða;/j�; r2; jÞ ¼ a

4p2r2I0ðjÞ
exp � a2 þ �2

2r2

� �

�
ðp

�p
exp

	
a�

r2
cos ð/� hÞ

þ j cos h



dh: (11)

This result can be recast as

fAUða;/j�; r2; jÞ ¼ a

4p2r2I0ðjÞ
exp � a2 þ �2

2r2

� �

�
ðp

�p
exp

	
jþ a� cos /

r2

� �
cos h

þ a� sin /
r2

sin h



dh: (12)

Introducing the angle a, where tan a ¼ a� sin /=ðjr2

þ a� cos /Þ, we obtain

fAUða;/j�;r2;jÞ¼ a

4p2r2I0ðjÞ
exp �a2þ�2

2r2

� �

�
ðp

�p
exp

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2þ2j�acos/

r2
þ�

2a2

r4

r

�sin h�að Þ
#

dh: (13)

Recognizing the integral over h as the modified Bessel func-

tion of the first kind I0 results in

fAUða;/j�; r2; jÞ ¼ a

2pr2I0ðjÞ
exp � a2 þ �2

2r2

� �

� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 2j�a cos /

r2
þ �

2a2

r4

r !
:

(14)

This formula gives the phase-modulated Rice distribution

when the modulation is modeled with the von Mises pdf. Its

simplicity relative to Eq. (10) for the wrapped normal pdf

facilitates calculations of the distributions for the phase fluc-

tuations and real and imaginary parts of the complex signal.

We obtain the joint distribution of the real and imagi-

nary parts of the complex signal from Eq. (14) using the

relationship fXYðx; yÞ ¼ fAUða;/Þ½jJx;yða;/Þj�a;/, where

Jx;yða;/Þ ¼ 1=a is the Jacobian. The result is

fXYðx;yj�;r2;jÞ¼
exp �x2þy2þ�2

2r2

� �
2pr2I0ðjÞ

�I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2þ2j�x

r2
þ�

2 x2þy2ð Þ
r4

r !
: (15)

Figure 7 shows joint pdfs for the Rice model with phase

modulation from the von Mises pdf [Eq. (15)]. Shown are

results for K¼ 4 and K¼ 16, with j ¼ 0:5 and j ¼ 4.

(Unlike in Fig. 4, small values of K are not shown because the

phase is already close to uniform for those cases, so the mod-

ulation has little impact.) We see that the phase-modulated

Rice model is able to qualitatively reproduce cases such as

those in Fig. 9 of Ref. 17 involving large phase variances.

This behavior cannot be reproduced with the unmodulated

Rice model.

We can obtain the amplitude and phase distributions by

marginalizing Eq. (14). As mentioned earlier, the phase

modulation does not impact amplitude, and therefore the

amplitude pdf coincides with Eq. (3). The phase pdf is

obtained by marginalizing the joint pdf, Eq. (14), over

amplitude, with the result

fUð/j�; r2; jÞ

¼
ð1

0

fAUða;/j�; r2; jÞ da

¼
exp � �2

2r2

� �
2pr2I0ðjÞ

ð1
0

ae�ða
2=2r2Þ

� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 2j�a cos /

r2
þ �

2a2

r4

r !
da: (16)

Making the substitution �a ¼ a=� (valid for � 6¼ 0), the equa-

tion can be written as a function of K and j only,

FIG. 7. (Color online) Joint pdf for the real and imaginary parts of a com-

plex signal according to the Rice model with phase modulated by a von

Mises pdf. The mean power is normalized to one and the mean phase is

zero. Each subplot is for a different combination of the Rice factor K and

the von Mises factor j. (a) K¼ 4 and j ¼ 4. (b) K¼ 16 and j ¼ 4. (c) K¼ 4

and j ¼ 0:5. (d) K¼ 16 and j ¼ 0:5.
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fUð/jK;jÞ

¼Kexp �Kð Þ
pI0ðjÞ

ð1
0

�ae�K�a2

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2þ4jK�acos/þ4K2�a2

p� �
d�a:

(17)

It follows from this equation that fUð/jK; jÞ is an even func-

tion of / so that the mean value h/i ¼ 0. In the limit

K ! 0, it can be shown that fUð/jK; jÞ ! 1=ð2pÞ, as should

be the case for fully saturated scattering since the phase

modulation can have no impact when the phase distribution

is already uniform.

Figure 8 shows probability density functions for the sig-

nal phase obtained by numerically integrating Eq. (17) by the

trapezoidal rule. The Rice factor K is set to 4, and four values

of j are shown: 1, 8, 2, and 0.5. Note that j ¼ 1 corre-

sponds to the unmodulated case as plotted in Fig. 2 while

decreasing j corresponds to increasing phase modulation. It is

readily apparent that the phase pdf becomes more nearly uni-

form as j is decreased to small values. Also, shown in the fig-

ure are approximations with wrapped normal pdfs. For these

curves (the dashed lines), the total unwrapped phase variance

was set to the sum of contributions from the ordinary Rice

model and the phase-modulation process, i.e., to r2
h þ r2

u, as

suggested earlier in this section. The value of r2
u was deter-

mined from the circular variance of the Rice distribution as

described in Sec. II A, whereas r2
h was chosen such that the

circular variances for the large-scale phase modulation would

match the von Mises pdf, i.e., r2
h ¼ �2 ln ½I1ðjÞ=I0ðjÞ�. The

wrapped normal pdf is seen to provide an excellent approxi-

mation, as it did in the unmodulated case.

C. Real and imaginary parts

In this subsection, we consider statistics of the real and

imaginary parts of the complex signal. The means and

variances readily follow from known properties of the

wrapped normal and von Mises distributions.

As discussed earlier, in the phase-modulated Rice model,

the real and imaginary parts are given by X ¼ � cos Hþ rnx

and Y ¼ � sin Hþ rny, where nx and ny are independent, zero-

mean normal random variables with unit variance, � is the

mean amplitude, and H is the phase angle for the modulating

distribution. Hence, for the means we have hXi ¼ �h cos Hi
and hYi ¼ �h sin Hi. For the variances, r2

x ¼ hX2i � hXi2

¼ �2ðh cos2Hi � h cos Hi2Þ þ r2 and r2
y ¼ hY2i � hYi2

¼ �2ðh sin2Hi � h sin Hi2Þ þ r2. Applying trigonometric iden-

tities results in r2
x ¼ ð�2=2Þð1þhcos ð2HÞi� 2hcosHi2Þ þr2

and r2
y ¼ ð�2=2Þð1�hcos ð2HÞi� 2hsinHi2Þþr2.

The expected values of the trigonometric functions can be

readily determined from the circular moments. As mentioned

earlier, for the wrapped normal distribution, mn¼hexpðinHÞi
¼ expð�n2r2

h=2Þ. Hence hcosHi¼ expð�r2
h=2Þ; hsinHi¼ 0,

and hcosð2HÞi¼ expð�2r2
hÞ. We thus have

hXi ¼ �e�r2
h=2; (18)

hYi ¼ 0; (19)

r2
x ¼

�2

2
1þ e�2r2

h � 2e�r2
h

� �
þ r2; (20)

and

r2
y ¼

�2

2
1� e�2r2

h

� �
þ r2: (21)

For the ratio of the variances of the imaginary part to the

real part, which is a measure of the anisotropy of the joint

distribution, we have

r2
y

r2
x

¼ Kð1� e�2r2
hÞ þ 1

Kð1� 2e�r2
h þ e�2r2

hÞ þ 1
: (22)

Figure 9 shows the ratio r2
y=r

2
x as a function of K and rh=p.

When K ! 0, i.e., fully saturated scattering, the variances

of the real and imaginary parts are always approximately

equal regardless of the phase modulation. The variance ratio

is also close to 1 when rh 	 0 or when rh � 1. In the for-

mer case, there is no phase modulation, so the Rice distribu-

tion has equal real and imaginary parts. In the latter case,

the phase modulation wraps around the unit circle, and thus

the real and imaginary parts have similar pdfs (although the

phasor diagram may look like a “donut” when the Rice

parameter is small). The ratio peaks when K is relatively

large and rh is small but non-zero. This regime corresponds

to an arc of points on the phasor diagram, with relatively

large phase variance and small log-amplitude variance.

Let us next consider the case where H follows a von

Mises distribution. Then mn ¼ h exp ðinHÞi ¼ InðjÞ=I0ðjÞ,
and we find for the means and variances

hXi ¼ �h cos ðHÞi þ rhnxi ¼
�I1ðjÞ
I0ðjÞ

; (23)

FIG. 8. (Color online) Probability density functions for signal phase accord-

ing to the Rice model with von Mises phase modulation, for a Rice factor

K¼ 4 and various values j (solid lines). Also, shown are wrapped normal

pdfs (dashed lines), for which the total unwrapped phase variance is set to

the sum of contributions from the ordinary Rice model and the phase-

modulation process, as described in the text.
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hYi ¼ �h sin ðHÞi þ rhnyi ¼ 0; (24)

r2
x ¼

�2

2
1� 2I2

1ðjÞ
I2
0ðjÞ

þ I2ðjÞ
I0ðjÞ

" #
þ r2; (25)

and

r2
y ¼

�2

2
1� I2ðjÞ

I0ðjÞ

	 

þ r2: (26)

Next, consider the full distributions for the real and

imaginary parts of the complex signal as based upon the

phase-modulated Rice model. These are found by marginal-

izing the joint pdf fXYðx; yÞ, i.e.,

fXðxÞ ¼
ð1
�1

fXYðx; yÞ dy (27)

and

fYðyÞ ¼
ð1
�1

fXYðx; yÞ dx: (28)

Substituting Eq. (15) into Eq. (27), we obtain the pdf for the

real part as

fXðxj�;r2;jÞ

¼
exp ��

2þx2

2r2

� �
pr2I0ðjÞ

�
ð1

0

e�y2=2r2

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2þ2j�x

r2
þ�

2 x2þy2ð Þ
r4

r !
dy: (29)

Here, we took into account that the integrand is an even

function of y. Similarly, we obtain the distribution for the

imaginary part as

fYðyj�;r2;jÞ

¼
exp ��2þy2

2r2

� �
2pr2I0ðjÞ

�
ð1
�1

e�x2=2r2

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2þ2j�x

r2
þ�

2 x2þy2ð Þ
r4

r !
dx: (30)

While the integrals in Eqs. (29) and (30) cannot be eval-

uated analytically, they can readily be evaluated numeri-

cally. Figures 10 and 11 depict the distribution for the

real part as calculated by numerical integration of Eq. (29)

by the trapezoidal rule, for K¼ 1 and K¼ 4, respectively.

FIG. 10. (Color online) Probability density functions for the real compo-

nent, for the phase-modulated Rice model with a Rice factor K¼ 1 and vari-

ous values of the von Mises parameter j (solid lines). The mean power is

normalized to 1. The dashed lines correspond to the combined model with a

Nakagami pdf for the amplitude and wrapped normal pdf for the phase,

with the circular variance matched to the phase-modulated Rice model. The

circles are the analytical approximation to the Nakagami/wrapped normal

model given by Eq. (A14).

FIG. 11. (Color online) Same as Fig. 10, except for K¼ 4.

FIG. 9. (Color online) Variance ratio r2
y=r

2
x for the Rice model with phase

modulation from a wrapped normal distribution. The ratio is plotted as a func-

tion of the Rice parameter K and phase modulation standard deviation rh.
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The mean power is normalized to 1. The four solid lines cor-

respond to j ¼ 1=4, 1, 4, and 16. For relatively large values

of K and j, the real part has a well-defined peak around

x¼ 1. As j is decreased, the peak broadens, and ultimately

the distribution becomes bimodal.

Figures 12 and 13 are the same as Figs. 10 and 11, except

that they show the distribution for the imaginary part as cal-

culated by numerical integration of Eq. (30). For relatively

large values of K and j, the imaginary part has a well-defined

peak around y¼ 0. As with the real part, as j is decreased,

the peak broadens and ultimately becomes bimodal.

The dashed lines and circles in Figs. 10–13 correspond to

the combined model with a Nakagami pdf for the amplitude

and wrapped normal pdf for the phase, with the circular vari-

ance matched to the phase-modulated Rice model. The circles

are based on a Fourier series approximation as willl be dis-

cussed in the Appendix.

III. COMPARISON TO SIMULATIONS

This section compares the phase-modulated Rice model

to numerical simulations of sound propagation in the atmo-

sphere. The simulations realistically represent interactions

of sound with the ground surface, refraction by the vertical

wind and temperature profiles, and scattering by atmo-

spheric turbulence across a wide range of spatial scales. The

propagation calculations were performed with a narrow-

angle Crank-Nicholson parabolic equation (PE);1,30 such

PEs are widely used for acoustic and radio-wave propaga-

tion in the atmosphere and ocean. The primary benefit of the

simulation approach is that it enables the creation of large,

controlled datasets in a manner that would be practically

impossible with actual outdoor experiments. Of course, not

all complexities of the real atmosphere can be captured; in

particular, the simulations assume flat, homogeneous ground

and steady-state atmospheric forcings.

The simulation methodology used in this article was

employed previously to study the impacts of refraction and

scattering on the signal power distribution.31 The reader is

referred to that article for a more detailed description of the

approach. Reference 31 also focused on various forms of the

gamma distribution for the purpose of addressing propaga-

tion uncertainties; the Rice distribution was not considered.

In this article, we employ the simulations to characterize sta-

tistics of the full complex signal, including phase.

The simulations employ similarity theory to model the

vertical profiles of wind and temperature, and the atmo-

spheric turbulence spectrum. In particular, the profiles are

modeled with the Monin-Obukhov similarity theory

(MOST), which describes the profiles with four parameters:

(1) the friction velocity, u
 (proportional to the wind shear),

(2) the sensible heat flux from the surface to the overlying

air, QH, (3) the height from the surface, z, and (4) the

Boussinesq buoyancy parameter b ¼ g=Ts, where g is the

gravitational acceleration and Ts the surface temperature in

Kelvin. The profile equations employed in the present article

are described fully in Sec. 2.2.3 of Ostashev and Wilson.11

In the following calculations, we set u
 ¼ 0:6 m/s and QH

¼ 100 Wm�2, as characteristic of windy, mostly cloudy

conditions.

The turbulence is modeled with the von K�arm�an spec-

trum for the inertial and energy-containing subranges, as

fully described by Kamrath et al.17 Three separate contribu-

tions are added together. The first represents temperature

fluctuations, the second shear-induced velocity fluctuations,

and the third buoyancy-induced velocity fluctuations. The

first two contributions obey MOST, with the length scales

being approximately proportional to height. The third is

derived from convective boundary-layer scaling, which

employs QH, b, and the boundary-layer inversion height, zi,

FIG. 12. (Color online) Probability density functions for the imaginary

component, for the phase-modulated Rice model with a Rice factor K¼ 1

and various values of the von Mises parameter j (solid lines). The mean

power is normalized to 1. The dashed lines correspond to the combined

model with a Nakagami pdf for the amplitude and wrapped normal pdf for

the phase, with the circular variance matched to the phase-modulated Rice

model. The circles are the analytical approximation to the Nakagami/

wrapped normal model given by Eq. (A6).

FIG. 13. (Color online) Same as Fig. 12, except for K¼ 4.
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with the length scale being proportional to zi. Here, we set zi

¼ 1000 m. Because MOST has height-dependent parame-

ters, the inhomogeneous spectral method described in Sec.

9.1.2 of Ref. 1 is used to synthesize the random turbulent

fluctuations for input to the PE.

For all of the PE calculations, the source and receiver

heights were set to 5 m and 1.2 m, respectively. The maxi-

mum horizontal range is 1000 m, and the vertical extent of

the domain is 100 m plus a 50-wavelength attenuating layer.

(Beyond this range, signals are typically saturated at audible

frequencies.) A relaxation model (Secs. 10.2.2–10.2.3 of

Ref. 1) is used with parameters for loose soil.

The PE calculations of the complex signals were per-

formed at 100, 200, and 400 Hz. For each of these frequen-

cies, 4096 random realizations were performed in both the

downwind and upwind directions. In the downwind direc-

tion, the positive wind gradient generally leads to ducting

and multipath interference. In the upwind direction, a refrac-

tive shadow zone forms at a distance of about 200 m from

the source, such that much of the sound energy reaching the

receiver is randomly scattered by turbulence.

Figures 14–16 show the simulated joint pdfs for the real

and imaginary parts of the complex signal at 100, 200, and

400 Hz, respectively. The phase angle was adjusted to zero

mean. The top row in each figure shows downwind propaga-

tion at 250, 500, and 1000 m, whereas the bottom row is

upwind propagation at 250, 500, and 1000 m. Although it is

not possible to make direct comparisons, the simulated com-

plex signals have a similar appearance, frequency, and range

dependence to experimental studies of outdoor sound

propagation.15,16,18

We describe the general appearance of the scatter plots

with three informal categories, namely, “arc,” “donut,” and

“disk” shapes. Figures 14(a) and 14(d) exemplify arcs,

whereas Figs. 15(b) and 16(a) exemplify donuts. Figures

14(a) and 15(a) are transitional cases. The remaining figures

exemplify disks. The arcs occur when there is a weak log-

amplitude variance and a moderate phase variance (i.e., the

standard deviation of the phase is smaller than 2p). The

donuts also involve a weak log-amplitude variance, but with

a phase variance large enough to span the unit circle, as

occurs for fully saturated scattering. The disks have a large

enough log-amplitude variance to fill the center. Note that

cases with a disk displaced from the origin, as characteristic

of the basic (unmodulated) Rice model, do not occur in this

simulated dataset.

Figure 17 shows some illustrative marginal pdfs for the

power (top row) and phase (bottom row) for these three

cases. The first column is for an arc case, namely Fig. 14(a)

(100 Hz in the downwind direction at a range of 250 m). The

second column is for a donut case, namely Fig. 15(b)

(200 Hz in the downwind direction at a range of 500 m). The

third column is for a disk case, namely, Fig. 16(e) (400 Hz

in the upwind direction at a range of 500 m). Essentially,

Figs. 17(a) and 17(b) have similar power distributions, with

a maximum at non-zero power, whereas Fig. 17(c) has an

exponential pdf for power. On the other hand, Fig. 17(d) has

a phase distribution with a well-defined peak at zero,

whereas Figs. 17(e) and 17(f) exhibit uniformly distributed

phase.

Also, shown in Fig. 17(a)–17(c) are fits to the simulated

pdfs using two different models for the signal power,

FIG. 14. (Color online) Joint pdf for the real and imaginary parts of the simulated signals at 100 Hz. Top row is downwind at ranges of (a) 250 m, (b) 500 m,

and (c) 1000 m. Bottom row is upwind at ranges of (d) 250 m, (e) 500 m, and (f) 1000 m. Coloration represents probability density on a scale range from 0

(dark blue) to 0.5 (bright yellow).
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namely the Rice [more precisely, the order 2, noncentral

Erlang, Eq. (4)] and gamma [Eq. (5)] distributions. The pdf

parameters (K and k, respectively) were determined from

the simulated values of S2
I . Figures 17(d)–17(f) show fits to

the simulated pdfs for the signal phase, namely the phase-

modulated Rice [Eq. (17)] and wrapped-normal [Eq. (7)]

distributions. For the former, j was determined from the

simulated values of the circular variance after first

determining K from S2
I . For the latter, r2

u follows from the

equation for the circular variance, 1� exp ð�r2
u=2Þ. Even

with these rather simple fitting procedures, the models pro-

vide excellent agreement with the simulations.

Figure 18(a) shows Rice factors K as determined from

the scintillation indices (normalized power variances) of the

simulation data. As derived in Sec. II A for the Rice model,

with or without phase modulation, S2
I ¼ ð2K þ 1Þ=ðK þ 1Þ2.

FIG. 15. (Color online) Same as Fig. 14, except for 200 Hz.

FIG. 16. (Color online) Same as Fig. 14, except for 400 Hz.
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Solving this equation for positive K yields the values plotted

in Fig. 18(a). Results are shown in the upwind and downwind

directions. In the upwind direction, K¼ 0, as is indicative of

full saturation, for all cases, except at the range 250 m at

100 Hz. In the downwind direction, K is between 5 and 7 at

250 m for all frequencies and decreases with range, particu-

larly at 400 Hz. At the downwind ranges of 500 m and 750 m,

K is actually larger at 200 than at 100 Hz. (The cause is uncer-

tain, but is plausibly connected to the impedance ground

boundary condition.) Overall, we observe that the phase mod-

ulation is most important in the downwind direction, particu-

larly for low frequencies.

Figure 18(b) is the ratio of the circular variance as pre-

dicted for the unmodulated Rice model divided by the total

circular variance in the simulation data. Recall from the dis-

cussion following Eq. (6) that this equation can be used to

calculate the value of hcos /i, and hence the circular vari-

ance, associated with the unmodulated Rice model. Taking

the ratio of this value to the actual circular variance from the

simulations yields the values plotted in Fig. 18(b). A small

value of this ratio indicates that the phase variance in the

signal is driven primarily by the phase modulation process.

A value near 1 indicates that the phase modulation is unim-

portant. Upwind, the phase modulation is most important

nearer to the source and at lower frequencies. The same

trend essentially holds downwind, although the phase modu-

lation is considerably more important in this direction.

The Kullback-Leibler (KL) divergence32 quantifies

agreement between two pdfs. We use it here to assess the

relative agreement between the simulation data and modeled

pdfs. A relatively smaller value of the KL divergence indi-

cates a better fit; the absolute values have no direct interpre-

tation in the present context. Figure 19(a) shows the KL

divergence between the simulated signal power and three

model distributions: the exponential, gamma, and order-2

noncentral Erlang (Rice model). Figure 19(b) shows the KL

divergence between the simulated signal power and the

FIG. 17. Illustrative pdfs for the signal power (top row) and phase (bottom row). The first column (a and d) is for 100 Hz, in the downwind direction at a

range of 250 m. The second column (b and e) is for 200 Hz, in the downwind direction at a range of 500 m. The third column (c and f) is for 400 Hz, in the

upwind direction at a range of 500 m. Simulation results are the solid lines. Also, shown in the top row are fitted distributions for the Rice (dashed lines) and

gamma (dotted lines) models. Shown in the bottom row are fitted distributions for the phase-modulated Rice (dashed lines) and wrapped normal (dotted

lines) models.

FIG. 18. (a) Rice factor K for amplitude distributions fitted to the simulation

data. (b) Ratio of the circular variance as predicted by the unmodulated

Rice model divided by the total circular variance in the simulation data. For

both (a) and (b), results are shown for upwind and downwind propagation

at ranges of 250 m, 500 m, 750 m, and 1000 m. Negative ranges are upwind;

positive ranges are downwind. Squares are for 100 Hz, circles for 200 Hz,

and x’s for 400 Hz.

1252 J. Acoust. Soc. Am. 153 (2), February 2023 Wilson et al.

https://doi.org/10.1121/10.0017251

 01 O
ctober 2023 09:00:47

https://doi.org/10.1121/10.0017251


wrapped-normal, unmodulated Rice, and phase-modulated

Rice distributions for signal phase. As would be expected,

the exponential pdf for power and the unmodulated Rice for

phase provide reasonable results only for full saturation.

There do not appear to be clear trends favoring the other

models, except perhaps for 100 Hz at the 250 m range. In

that case, the Rice model provides a somewhat better fit

than the gamma for signal power in both the upwind and

downwind directions, whereas the wrapped normal provides

a better fit than the modulated Rice distribution for the

phase. However, the discrepancies between these models

are quite small, as evident from Figs. 14(a) and 14(d).

IV. CONCLUSIONS

In this article, the Rice model was extended by modu-

lating the phase according to a von Mises distribution. This

modulation was introduced to reproduce the relatively large

phase variance characteristic of sound propagation in

the atmosphere and other media, and is attributable to the

impact of large-scale turbulence in the atmosphere. The

phase modulation leads to excellent agreement with com-

plex signal statistics for simulated sound propagation in the

near-ground atmosphere. The simulations include many

realistic complicating factors such as scattering by a broad

turbulence spectrum, refraction by wind and temperature

gradients, and reflections from an impedance ground sur-

face. The phase modulation was shown to be particularly

important for downwind propagation at relatively low fre-

quencies and short distances.

The statistical process underlying the phase-modulated

Rice model is straightforward, consisting of normally dis-

tributed fluctuations of the real and imaginary parts

(attributable to small-scale turbulence) about the “mean,”

which has a constant amplitude but phase varying according

to the von Mises pdf. Based on this underlying process, the

joint pdfs for the amplitude and phase, and for the real and

imaginary parts, were formulated [Eqs. (14) and (15),

respectively]. The marginal (single variate) pdf for the

amplitude is unchanged by the phase modulation. The mar-

ginal pdfs for the phase, and for the real and imaginary

parts, are however impacted by the phase modulation. We

were unable to derive these marginal pdfs in an analytical

form. However, relatively simple one-dimensional integrals

were derived, namely, Eq. (17) for the phase distribution,

and Eqs. (29) and (30) for the real and imaginary parts.

Approaches to approximating the marginal phase distribu-

tion with von Mises and wrapped normal distributions were

also developed.

While this article focused on phase modulation of the

Rice model, an extension to include amplitude modulation

could also be useful. Amplitude modulation is produced by

turbulent intermittency, i.e., local variations in the intensity

of the turbulence. Previously, amplitude modulation of the

exponential and Rice pdfs has been used to model intermit-

tency effects.21,33–36 Furthermore, a recent study showed

that amplitude modulation could be incorporated into a

gamma distribution (resulting in a compound gamma distri-

bution) to describe propagation uncertainties.31 In principle,

the phase-modulated Rice model could be extended

similarly.
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APPENDIX: NAKAGAMI AND WRAPPED NORMAL
DISTRIBUTIONS

In this Appendix, we examine the suitability of approxi-

mating the phase-modulated Rice model with one in which

the amplitude fluctuations are modeled with the Nakagami

distribution and the phase fluctuations with the wrapped nor-

mal distribution.26 This combination was recently shown to

agree well with experimental data for sound propagation in

the atmosphere.26 It can also lead to simpler equations,

which enable some analytical results to be obtained in the

limit of large phase variance.

The Nakagami pdf is obtained by transforming the

gamma pdf for power, Eq. (5), to amplitude a ¼ s1=2,

fA ajk; bð Þ ¼ 2a2k�1

CðkÞbk
exp � a2

b

� �
: (A1)

FIG. 19. (Color online) KL divergence between the simulation data and

various model pdfs. (a) Divergence between the simulation data and the

order 2, noncentral Erlang (black solid lines), gamma (red dashed lines),

and exponential (blue dotted lines) distributions for signal power. (b)

Divergence between the simulation data and the phase-modulated Rice

(black solid lines), wrapped-normal (red dashed lines), and unmodulated

Rice (blue dotted lines) distributions for signal phase. Negative ranges are

upwind; positive ranges are downwind. Squares are for 100 Hz, circles for

200 Hz, and x’s for 400 Hz.
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Typically, the Nakagami pdf is parameterized with m and X
in lieu of k and b, such that k¼m and b ¼ X=m.23 Thus

fA ajm;Xð Þ ¼ 2mma2m�1

CðmÞXm exp �ma2

X

� �
: (A2)

Normalizing the power by its mean, X ¼ mb ¼ kb ¼ 1. The

pdf for the amplitude then reduces to a single parameter,

fA ajmð Þ ¼ 2mma2m�1

CðmÞ exp ð�ma2Þ: (A3)

In the following, we will employ the wrapped normal

distribution, Eq. (7), but in the form of a Fourier series.

Since the distribution is an even function of /, only the

cosine terms in / must be retained, i.e.,

fUð/Þ ¼
a0

2
þ
X1
n¼1

an cos ðn/Þ: (A4)

Here, the coefficients an are given by

an ¼
1

p

ðp

�p
fUð/Þ cos ðn/Þ d/: (A5)

The coefficients and circular moments are simply related

as an ¼ mn=p. Thus, for the wrapped normal pdf, an

¼ exp ð�n2r2=2Þ=p and we have for the phase distribution

fUð/Þ ¼
1

2p
þ 1

p

X1
n¼1

e�n2r2=2 cos ðn/Þ: (A6)

The Fourier series representation is particularly advanta-

geous for large phase variance (r2 � 1), in which case only

a few terms typically need to be retained. (Note that we are

using r2 here to indicate the unwrapped phase variance in a

normal distribution, whereas in the body of the text we used

r2 to indicate the variances of the real and imaginary parts

in the Rice model.) The first term in Eq. (A6) corresponds to

a uniformly distributed phase. Additional terms progres-

sively refine that solution. The following inequality can be

used to estimate the error from truncating the Fourier series

at the first m terms,���� 1

p

X1
n¼m

e�n2r2=2 cos ðn/Þ
���� < 1ffiffiffiffiffiffi

2p
p

r
erfc

rðm� 1Þffiffiffi
2
p

� �
: (A7)

On the other hand, the wrapped series Eq. (7) is more advan-

tageous when r2 � 1, i.e., scattering is weak.

Assuming the amplitude and phase fluctuations are

independent, fAUða;/Þ ¼ fAðaÞfUð/Þ. Using Eq. (A3) for

amplitude and the wrapped normal pdf Eq. (A6) for phase,

we obtain the joint distribution,

fAUða;/Þ¼
2mma2m�1

pCðmÞ e�ma2 1

2
þ
X1
n¼1

e�n2r2=2 cos n/ð Þ
" #

: (A8)

The joint pdf of the real x and imaginary y components is

then obtained as

fXYðx; yÞ ¼
2mm

pCðmÞ
1

2
þ
X1
n¼1

e�n2r2=2 Tn
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p� �" #

� x2 þ y2
� �m�1

e�m x2þy2ð Þ; (A9)

where we have used the relationships cos / ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and Tnðcos /Þ ¼ cos ðn/Þ, with Tn being the Chebyshev

polynomial of the first kind. General analytical solutions for

the marginal pdfs fXðxÞ and fYðyÞ do not appear to be obtain-

able from Eq. (A9). However, Eq. (A9) provides a very con-

venient solution from a numerical perspective: one must

only evaluate fXYðx; yÞ on a grid of points in x and y and then

apply a numerical integration over one of these variables.

The Chebyshev series typically converges quickly.

The marginal pdfs implied Eq. (A9) are not indepen-

dent. The condition fXYðx; yÞ ¼ fXðxÞfYðyÞ is met only when

m¼ 1 and r2 !1, which corresponds to full saturation. In

this case, the sum over n is zero, and the integrals in Eqs.

(27) and (28) evaluate to fXðxÞ ¼ 1=
ffiffiffi
p
p� �

e�x2

and fYðyÞ
¼ 1=

ffiffiffi
p
p� �

e�y2

. These are normal pdfs with a variance of 1/2.

This outcome is to be expected, because in full saturation the

mean power is the sum of the variances of the real and imagi-

nary parts, and the mean power has been normalized to one.

Nonetheless, some progress towards analytical solutions

can be made for large phase variance (i.e., r2 � 1). To start,

substitute Eq. (A9) into Eq. (27) and take into account that

the integrand is an even function of y,

fXðxÞ¼
2mme�mx2

pCðmÞ

ð1
0

1þ2
X1
n¼1

e�n2r2=2 Tn
xffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2
p� �" #

� x2þy2
� �m�1

e�my2

dy: (A10)

Next, make the substitution g ¼ y=jxj, followed by n ¼ g2.

The result is

fXðxÞ ¼
mmjxj2m�1e�mx2

pCðmÞ

ð1
0

1þ 2
X1
n¼1

e�n2r2=2 Tn
sgnðxÞffiffiffiffiffiffiffiffiffiffiffi

1þ n
p
� �" #

� n�1=2 1þ nð Þm�1
e�mx2n dn; (A11)

where sgnðxÞ ¼ �1 when x< 0 andþ 1 otherwise. For arbi-

trary m and large r2, the sum in Eq. (A11) may be termi-

nated after a small number of terms. Keeping the first four

terms, and taking into account that T0ðzÞ ¼ 1; T1ðzÞ
¼ z; T2ðzÞ ¼ 2z2 � 1; T3ðzÞ ¼ 4z3 � 3z, and T4ðzÞ ¼ 8z4

�8z2 þ 1, we have

fXðxÞ ¼
mmjxj2m�1e�mx2

pCðmÞ

ð1
0

"
1� 2e�2r2 þ 2e�8r2

þ 2 sgnðxÞðe�r2=2 � 3e�9r2=2Þ
ð1þ nÞ1=2

þ 4ðe�2r2 � 4e�8r2Þ
1þ n

þ 8 sgnðxÞe�9r2=2

ð1þ nÞ3=2
þ 16e�8r2

1þ nð Þ2

#

� n�1=2 1þ nð Þm�1
e�mx2n dn: (A12)
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On the right-hand side of this formula, the integrals can be

expressed in terms of the confluent hypergeometric function

of the second kind, Uða; b; zÞ, which in integral form is

Uða; b; zÞ ¼ 1

CðaÞ

ð1
0

ta�1ð1þ tÞb�a�1e�zt dt: (A13)

Hence, we have the result

fXðxÞ¼
mmjxj2m�1e�mx2ffiffiffi

p
p

CðmÞ

	
1�2e�2r2þ2e�8r2
� �

�U
1

2
;mþ1

2
;mx2

� �
þ2sgnðxÞðe�r2=2�3e�9r2=2Þ

�U
1

2
;m;mx2

� �
þ4ðe�2r2�4e�8r2Þ

�U
1

2
;m�1

2
;mx2

� �
þ8sgnðxÞe�9r2=2

�U
1

2
;m�1;mx2

� �
þ16e�8r2

U
1

2
;m�3

2
;mx2

� �

:

(A14)

In Figs. 10 and 11, the pdfs for the real component of

the complex signal predicted by the Nakagami/wrapped nor-

mal model are compared to predictions from the phase-

modulated Rice model. The first figure is for a Rice factor

K¼ 1 and the second for K¼ 4. The unwrapped phase var-

iances in the wrapped normal pdf (r2) are chosen to match

the circular variances for the corresponding Rice factors as

described in the body of the text. The dashed lines in the fig-

ures correspond to Eq. (A9) after numerically integrating

over y. The circles are the analytical approximation to the

Nakagami/wrapped normal model given by Eq. (A14). We

see that, except for the largest values of K and j plotted (4

and 16, respectively), Eq. (A14) is essentially indistinguish-

able from the more exact result obtained by integrating Eq.

(A9). On the other hand, some discrepancies between the

Nakagami/wrapped normal model and the phase-modulated

Rice model are evident.

The distribution for the imaginary component is

obtained by substituting Eq. (A9) into Eq. (28) with the

result

fYðyÞ¼
2mme�my2

pCðmÞ

ð1
�1

"
1

2
þ
X1
n¼1

e�n2r2=2 Tn
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2
p� �#

� x2þ y2
� �m�1

e�mx2

dx: (A15)

Here, the integrand is an even function of x when n is even

and an odd function when n is odd. Therefore, in Eq. (A15)

all integrals corresponding to odd n are zero and this equa-

tion can be written as

fYðyÞ ¼
2mme�my2

pCðmÞ

ð1
0

"
1þ 2

X1
n¼1

e�ð2nÞ2r2=2 T2n
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ y2
p� �#

� x2þ y2
� �m�1

e�mx2

dx: (A16)

Next, we make the substitution g ¼ x=jyj, followed by

n ¼ g2, with result

fYðyÞ ¼
mmjyj2m�1e�my2

pCðmÞ

�
ð1

0

1þ 2
X1
n¼1

e�ð2nÞ2r2=2 T2n

ffiffiffiffiffiffiffiffiffiffiffi
n

1þ n

s0@
1
A

2
4

3
5

� n�1=2 1þ nð Þm�1
e�my2n dn: (A17)

Analyzing the imaginary part in the same manner as the real

part, we arrive at

fYðyÞ¼
mmy2m�1e�my2ffiffiffi

p
p

CðmÞ

"
1�2e�2r2
� �

U
1

2
;mþ1

2
;my2

� �

þ2e�2r2

U
3

2
;mþ1

2
;my2

� �

þ12e�8r2

U
5

2
;m�3

2
;my2

� �
�8e�8r2

U
3

2
;m�1

2
;my2

� �

þ2e�8r2

U
1

2
;mþ1

2
;my2

� �#
: (A18)

Figures 12 and 13 show the pdfs for the imaginary com-

ponent predicted by the Nakagami/wrapped normal model

and compare them to predictions from the phase-modulated

Rice model. As with the real component (Figs. 10 and 11),

Eq. (A18) provides an excellent approximation for the

Nakagami/wrapped normal model, although this model dif-

fers noticeably from the phase-modulated Rice model.
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