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Phase Noise to Carrier Ratio in LC Oscillators
Qiuting Huang, Senior Member, IEEE

Abstract—An analysis is presented in this contribution to de-
scribe the steady-state amplitude of a CMOS LC Colpitts oscillator,
as well as its response to small interferences. The problem of signal
dependency of noise sources is also addressed. The general con-
clusions of the analysis are applicable to most LC oscillators. The
procedure to perform a general analysis for an arbitrary LC os-
cillator is outlined. Controlled experiments are used to verify each
important conclusion for the Colpitts analysis and implications on
design are discussed.

Index Terms—Class C operation of oscillator, Colpitts oscillator,
dependence of noise to arrier ratio on the resonator quality factor
in an oscillator, equivalent noise source in oscillators, LC oscillator,
Leeson’s model, noise sources in an oscillator, oscillation ampli-
tude, oscillator, phase noise, phase-noise to carrier ratio, start-up
of oscillation, voltage dependence of noise source in an oscillator.

I. INTRODUCTION

T HE IMPORTANCE of phase noise in oscillators in RF
and other communications circuits has made it one of the

most extensively studied subjects in electronics. Journal papers
or books on phase noise in LC oscillators alone [1]–[13] can
be found from each of the last six decades, the earliest one [1]
being as old as 1938 and the latest ones as recent as 1998 [12],
[13]. The fact that papers on LC oscillators (too numerous in
the last 60 years to cite exhaustively) keep appearing, serves to
underline the need still felt by many researchers to improve ex-
isting theories on phase noise further in terms of both rigor and
insight.

Experimentally, the qualitative behavior of phase noise has
been well known. An oscillator’s output power spectrum con-
sists of a peak at the carrier (main oscillation) angular frequency

, surrounded by a noise skirt symmetrical to the carrier fre-
quency. Although we restrict our discussion to LC oscillators in
this paper, the oscillator noise skirt displays the following char-
acteristics irrespective of the exact implementation.

1. The output noise spectral density is inversely proportional
to the (square of) frequency offset from the carrier, except
at very close to the carrier frequency, where the influence
of up-converted flicker noise dominates or the presence of
the strong carrier begins to limit measurement accuracy.

2. The same noise manifests itself in the time domain as
jitter around the oscillation’s zero-crossing points, which
can only be interpreted as noise in the phase of the os-
cillation, rather than that superimposed on its waveform.
Oscillator noise is therefore usually referred to as phase
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noise. The assumption of phase noise implies that the
sideband spectrum above and below the carrier frequency
must be equal in amplitude and opposite in sign.

3. It is widely believed [14] that doubling the quality factor
of the LC tank roughly improves the oscillator’s noise
spectral density to carrier ( ) ratio by 6 dB, although
systematic experimental verification of such a belief is
hard to find in open literature.

Because of Observation 3 above, the great majority of commer-
cial RF oscillators today are implemented with high-quality in-
ductors and capacitors outside the chip containing the active de-
vices. At the same time, we witness widespread efforts in the
integrated circuit research community to improve the quality of
fully integrated inductors on silicon, especially in the last few
years [14]–[28]. Despite the avalanche of research papers, the
quality factor of on-chip inductors in standard CMOS and
BJT technologies has hardly improved by a factor of two (from

to at 1 GHz, or from to at 2
GHz) in the last ten years. The reported noise to carrier ()
ratio, however, varies by as much as 20 dB, for example, at 100
kHz offset from 1 GHz. The discrepancy underlines the need for
us to understand better the factors other than theof the tank
that may also affect ratio strongly. Better models of phase
noise are still needed.

For designers of electronic oscillators for communications,
carrier amplitude (LO power), timing jitter or the ratio at
certain ranges of frequency offset, and power consumption are
usually most important. They are therefore often interested in
the following questions.

1. How does the carrier amplitude depend on the electrical
parameters of the oscillator?

2. Why does an interference (white noise for example) that
is often apparently added to the carrier in the circuit end
up affecting only the phase of the oscillation? Why is the
response to such an interference always inversely propor-
tional to its frequency offset from the carrier, even in the
apparent passband region of the passive resonator?

3. How does the ratio depend on the electrical param-
eters of the oscillator? Can such dependence be described
directly with the circuit parameters, rather than interme-
diate quantities such as the signal power consumed by the
tank, the mean-squared voltage amplitude, or the noise
factor of the oscillator?

For such designers, most existing models are incomplete be-
cause they either describe only noise and not the ratio that
is more important, or describe the ratio via intermediate
quantities such as the noise figure of the active device or power
(amplitude) of the carrier signal. These intermediate quantities
may in turn be functions of other electrical parameters of the
oscillator.

1057–7122/00$10.00 © 2000 IEEE
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Fig. 1. Simple model used in typical linear analysis.

From the theoretical point of view, the rigor with which many
popular phase noise models today are derived can still be im-
proved to provide an insightful answer to Question 2 above.
Since the analytical expressions of different models, incom-
plete as they are, do not always agree with one another, rigor
in both theoretical derivation and experimental verification also
remains the only way to sort the correct answer out. To appre-
ciate the strengths and weaknesses of existing models, we can
group the best-known papers (in electrical engineering journals
at least) describing oscillator phase noise into four categories,
according to whether the analysis is carried out in the frequency
or time domain and whether noise input is assumed to be added
to the carrier signal itself or the phase thereof [29].

Linear, frequency-domain analyses simply assume that noise
is superimposed on the carrier and the transfer function from the
noise source to the oscillator output is that of the resonator tank
modified by the equivalent linear transconductance of the active
device. Fig. 1 shows the equivalent circuit of the simplest case
[11]. TheV–I characteristic of a real active device, on the other
hand, can generally be depicted as in Fig. 2, with ashape
serving as a necessary feature to limit the oscillation amplitude
[30]. The negative slope representing the negative (trans)con-
ductance required for startup is usually found in the middle.
Since thisV–I curve is usually highly nonlinear, the approaches
used to obtain the equivalent linear transconductance (gm) have
been different.

Earlier analyses [2] allow the equivalent gm to be quite
different from the critical transconductance ( ) required
to cancel the loss of the tank exactly. Such analyses result in
models that generally predict a bandpass characteristic centered
at the carrier frequency, flat at frequencies immediately adja-
cent to the carrier and rolling off at 6 dB per octave at higher
offset frequencies. The corner between the two offset frequency
ranges is typically of the order of the carrier frequency divided
by the of the passive tank, which can be 10 MHz for a
1-GHz oscillator and a of 50. Such corner frequencies are
not observed in practice. To fit to experimental results, later
analyses [9], [11] assume that the transconductance (or gain) of
the active device, seen by the noise signal, is exactly the same
as that for the carrier, which in turn must be the same as that
required to cancel the tank loss in steady state. The resulting
equivalent circuit is an ideal zero-loss linear resonator. The
inverse dependency on offset frequency is now present all the
way to the carrier.

The problem with the use of the carrier’s gm is that the latter
is only a crude large-signal concept indicating the ratio between
the fundamental component of a distorted output current of a
transistor and the (sinusoidal) voltage applied to its input. The
noise component, being a smaller signal at a different frequency
and phase, does not traverse the nonlinearV–I curve in Fig. 2 in

Fig. 2. Typical description ofV–I characteristic of an active device and its
average gm for a large signal. Practical transistors can be even more nonlinear.

the same way as the carrier, even though it is superimposed on
the latter. The distortion it experiences, or the average gm ap-
plicable, will therefore also be different from that of the carrier.
Apart from predicting a noise response that is 6 dB too high at
low-offset frequencies, linear analyses also suffer from the fun-
damental inability to predict the odd symmetry in output noise
spectrum that is essential to modulation in phase.

Another way linear analysis is used in the frequency domain
is to consider noise sources to be additive directly to the phase of
the carrier [6], [7]. The result is best known as Leeson’s model,
which has become the most popular model for phase noise in
the last 30 years. For white noise to be additive to the phase di-
rectly, however, it must be located at places where it can influ-
ence the frequency or phase-setting elements of the oscillator,
such as the junction diodes (intentional or parasitic) in series or
parallel with the main linear, passive tank. Since the phase (or
frequency) shift caused by white noise on the reverse bias of a
junction diode is solely determined by the C–V characteristic
of the capacitor and its relative importance to other linear ca-
pacitors in the tank, the introduction of (carrier power) into
the input phase noise seems quite arbitrary. Numerical verifica-
tions with practical oscillators also show that noise levels asso-
ciated with junction diodes are too low compared to the noise
observed at the oscillator output, not least because good oscilla-
tors are designed to minimize the influence of parasitic diodes
and the bias circuits of frequency-setting varactors usually have
low-pass characteristics with cutoff frequencies well below the
oscillation frequency.

In addition to Leeson’s paper, there are analyses in the time
domain that also assume noise to be directly added to phase [8],
[12], [13]. Some form of instantaneous AGC is required to jus-
tify discarding the amplitude response caused by the same noise,
as illustrated in Fig. 3. An additive interference on one side of
the carrier frequency [Fig. 3(a)] is mathematically equivalent to
the sum of two halves of the same interference plus the differ-
ence of two halves of a signal that is the image (equal ampli-
tude, equal offset frequency but on the opposite side of the car-
rier) of the original interference, as shown in Fig. 3(b). The four
halves of sidebands are then regrouped into a pair representing
amplitude modulation [Fig. 3(c)], as well as one representing
frequency modulation [Fig. 3(d)]. The automatic gain control
argument is now invoked to remove the pair representing AM
[Fig. 3(e)] and the resulting perturbation is that of the phase
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Fig. 3. AGC argument typically used to justify conversion of additive noise to
phase noise.

[Fig. 3(f)]. While the AGC argument is an expedient way of
modeling an additive interference as phase perturbation, it does
not answer the fundamental question if an additive noise always
results in only the phase of oscillation being modulated and,
when it does, what is the underlying mechanism that causes the
conversion of a single-sideband interference into double side-
bands with odd symmetry. When AGC is used in an oscillator, it
is usually implemented as a narrow-band mechanism to correct
slow variations in the steady state oscillation amplitude. Such
an AGC only responds to the average noise power, which is
constant. There is no reason why one should deliberately con-
struct an instantaneous (wide-band) AGC that is sensitive to
added signals often 100 dB below the carrier, especially that
we know its only effect would be to turn less harmful additive
noise into more harmful phase noise! Indeed, instantaneous or
fast-responding AGC’s are usually avoided in LC oscillators,
precisely to ensure (short-term) frequency stability. Even if one
still wanted to construct a wideband AGC, in a high-oscil-
lator this would be a very difficult proposition because the time
constant of the LC resonator is proportional to the product of

and the oscillation period and any AGC feedback ultimately
must overcome the inertia of the LC resonator to establish a new
equilibrium. In very low- oscillators (ring oscillators, for in-
stance) inadvertent AGC such as amplitude limiting can be quite
fast, but it is inadequate as a fundamental starting point in any
general formulation of phase noise theory.

The natural way of modeling the noise input as being addi-
tive with the carrier waveform in the time domain has also been
adopted in many papers [4], [5], [10]. Some [4], [5] model the
nonlinearity of the active device with a third-order term and de-
scribe the dynamics of the oscillator with a Van der Pol differen-
tial equation driven by the noise source. The resulting analytical
expressions, however, have so far predicted a bandpass charac-
teristic. Often a constant term (in [4]) is defined which is of
the order of magnitude of the relative difference between the
small-signal gm of the active device and . This term divided
by defines the corner of the relative (to the carrier) offset fre-
quency of the pass band of the final output noise, which has not
been observed in practical oscillator measurements. Other pa-
pers [10] take a general approach of describing arbitrary oscilla-

(a) (b) (c)

Fig. 4. (a) Minimum representation of a Colpitts oscillator. (b) Equivalent
circuit with transistor represented at linear transconductance. (c) Equivalent
negative resistance model of oscillator.

tors with nonlinear state-space equations. While such analyses
can be useful for computer aided numerical analysis, the ab-
sence of a closed form, explicit solution for any specific oscil-
lator limits their use to a designer to simulation. The dependence
of noise of most active devices on the state variables such as in-
stantaneous currents, together with the lack of time-domain de-
scription of such a dependence, make it difficult to solve such
state-space equations even numerically.

The primary purpose of this paper is to provide a formula-
tion of phase noise that is unbiased toward the conclusion, and
an analysis that leads to models completely described by direct
electrical parameters of an oscillator. In the following, we will
first use the CMOS Colpitts oscillator as an example to illustrate
an analytical approach to the derivation of both oscillation am-
plitude and noise response, in Sections II and III respectively.
Section IV identifies the noise sources, discusses the depen-
dence of noise source on the varying current in the transistor
and derives the noise-to-carrier ratio in the oscillator. Also dis-
cussed is the dependence of the ratio on circuit parame-
ters. A brief outline of how the approach to the Colpitts oscil-
lator can be extended to arbitrary LC oscillators will be given in
Section V, before the concluding remarks in Section VI.

II. STEADY STATE AMPLITUDE OF A CMOS COLPITTS

OSCILLATOR [31]

We begin with the necessary condition for oscillation for the
Colpitts oscillator in Fig. 4(a). For a small carrier signal the
MOS transistor can be modeled as a linear gm, as shown in
Fig. 4(b). All resistive losses of the tank have been lumped into
resistor . The transistor forms a positive feedback loop with
capacitors and . The equivalent impedance looking to
the right of the dashed line in Fig. 4(b) contains a negative real
part

(1)

The necessary condition for the oscillation to start is that the
total resistance in the equivalent LC tank in Fig. 4(c) be negative

(2)

where is defined as the critical transconductance for os-
cillation and LC is the tank’s angular resonance
frequency. A negative middle term in the circuit’s characteristic
equation means the latter’s complex conjugate zeros have a pos-
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itive real part. The zero-input response of the circuit is therefore
an exponentially increasing sinusoidal oscillation. Equation (2)
does not tell us, however, whether the oscillation will stabilize
to a particular amplitude.

During startup, the average current in transistor may not
be the same as the bias current. The difference between the
two flows into the capacitive network formed by and ,
causing the dc voltage between ’s gate and source to
shift. This, in turn, changes the average current in the direction
of the bias current. The steady state is reached when the two
currents are balanced.

Since the values of the passive components in the tank and
their resistive loss, which we will show have a direct impact
on oscillation amplitude, have typically 5–20% tolerances an
analysis with much greater accuracy is unnecessary for practical
purposes. Resonators (tanks) used in oscillators typically have a
high quality factor ( ) which suppresses the harmonic contents
of any oscillating voltage on the tank to negligible levels. Even
for a very low of 3–5, typically found in an inductor integrated
in a standard CMOS technology, the harmonic content is less
than 20%. To restrict the complexity of the analysis we assume
that is high, so that the harmonics of the tank voltages can be
neglected. For the same reason, an elaborate transistor model is
also not necessary. Therefore, a simple square-law characteristic
is used to describe

(3)

where
oscillation amplitude;
dc gate bias in steady state;
threshold voltage, below which the transistor cuts off
and current equals zero.

The gating function for
and for . To determine the two
unknown variables, steady-state bias ( ) and oscillation
amplitude , we can apply KCL to the node in Fig. 4(a) at
dc and at the resonant frequency to set up two equations.

If the steady-state bias ( ) is greater than , as de-
picted in Fig. 5(a), so that never causes the tran-
sistor to cut off, then the average current through is given
by

(4)

where is defined as and . The funda-
mental component of the AC current at, on the other hand,
is given by

(5)

(a)

(b)

Fig. 5. (a) Voltage and current waveforms whenM1 is in Class-A mode. (b)
Voltage and current waveforms whenM1 is in Class-C mode.

Multiplying with the transimpedance between the
branch and branch in Fig. 4(b), we obtain the steady-state

oscillation amplitude

(6)

Solving (4) and (6) jointly, we obtain

and (7)

Reorganizing (7), the same relations can be expressed as

or (8)

From (7), we see that if one wanted to keep from cutting off,
a combination of small transconductance coefficientand large
bias current would be the best way to maintain sufficiently large
amplitude. The maximum is reached when the second half
of (7) is satisfied with equality, in which case .
Condition (8) shows that the range for the nominal transconduc-
tance is very small, so that a 20% increase in due to
tolerance in capacitance or tank loss can easily kill the oscilla-
tion.

To ensure startup as well as adequate amplitude, practical os-
cillators are designed to have a several times larger than

. In this case, conditions in (7) and (8) are no longer satis-
fied and does get cut off during part of the oscillation, as
depicted by Fig. 5(b). Equations (4) and (5) must therefore be
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modified to account for the time in which is cut off. This is
done by reducing the limit of integration to the time is on

(9)

The average current through M1 is now given by

(10)

The oscillation amplitude, on the other hand, is given by

(11)

Rearranging (10) and (11), we obtain

(12)

(13)

Even without solving (13) explicitly for , it can be seen from
(12) that oscillation amplitude is only a weak function ofand,
thus, also of the duty cycle of . As varies within its limits

, the amplitude varies by no more than one third. One
can thus say that is roughly proportional to the bias cur-
rent and inversely proportional to . Fig. 6 compares the
exact function and its approximation in (12).
The maximum difference is less than 2%, occurring at ,
which is a negligible error in terms of amplitude prediction. The
approximate version of (12) has the advantage of much greater
simplicity.

Although a solution for in explicit form is more difficult to
obtain from (13), it is only a function of ’s nominal transcon-
ductance normalized to the of the passive tank. Thus,
needs to be solved only once numerically versus a useful range
of normalized and can be looked up once the ratio between

and is known. Fig. 7 shows the calculatedand the

Fig. 6. Comparison off(x) with its approximation

Fig. 7. Parameterx and duty cycle as a function of normalized nominal gm of
M1.

corresponding duty cycle versus
( ). Note that the horizontal axis is on logarithmic scale
to allow the low- region to be better displayed. It can
be seen that bothand the duty cycle are relatively steep func-
tions when the normalized of is low. For a
ratio of three, which can be easily expected for practical designs

and %. The improvements of and are much
slower beyond , resulting only in
and % so that setting ’s transconductance much
higher than the of the tank is inefficient as far as achieving
better amplitude is concerned. The limit in is achieved when

tends to infinity, in which case tends to unity and

(14)

It is interesting to note that this limit is independent of the
detailed parameters of . In fact, the limit is exactly the same
if in Fig. 4(a) is replaced by a bipolar transistor [30]. It is
also worth noting that the duty cycle of is 0% in the limit
and only 33% for . This indicates that the active
device, be it MOS or BJT, operates deeply in class-C mode in a
typical LC oscillator. In other words, the active device behaves
more like a switch than an amplifier. To demonstrate this, we re-
place the active transistor in the Colpitts oscillator by a switch,
in series with a current source , as shown in Fig. 8(a). The
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(a)

(b)

Fig. 8. Thought experiment. (a) Colpitts oscillator with ideal switch (b)
Current versus duty cycle

threshold of the switch is set relative to thenode of the cir-
cuit. If is larger than , the dc voltage across capacitor

will change relative to the threshold of the switch so as to
restrict the period the switch is turned on. The constraint is that
the average current through the switch equals the bias current,

. If we increase the available current
further and further, the duty cycle of the switch becomes smaller
and smaller, as depicted by Fig. 8(b) [29], [32], until the current
through the switch becomes a Dirac function of area. Thus,
irrespective of how the switch is constructed, as long as a large
current is available during its on period, the limit of the oscilla-
tion amplitude is

(15)

The examples of BJT and MOS implementations show that the
details of the switch construction determine how fast the limit
in (15) is reached. As long as the active device, be it BJT, MOS,
or any other switch-like transistor, has sufficient transconduc-
tance, the details are unimportant as the amplitude will be close
to the limit set by (15). In practical designs, insight into the ap-
proximate amplitude dependence on the circuit parameters can
be obtained from (15), whereas a more precise estimate can be
obtained from (12).

To verify (12), SPICE simulations as well as experiments
have been performed. The simulated amplitude agrees with (12)
to within 1% for . For a moderate of around 10, the
simulated amplitude is about 1–2 dB below that predicted by
(12). To perform controlled experiments, a 78-MHz Colpitts os-
cillator is constructed, as shown in Fig. 9, where the values of the
main oscillator, as well as those of biasing and coupling com-
ponents, can be found. The choice of the oscillation frequency
was made to be sufficiently low to allow values of the resonator
inductor and capacitors to be much higher than board-level par-
asitics and yet sufficiently high so that the conclusions from the
measurements remain valid for high frequency oscillators at the
low-gigahertz range.

The transistor has a transconductance coefficient of 90
A/V and was produced in a 1-m CMOS process. Before

Fig. 9. Colpitts oscillator constructed for measuring amplitude and duty cycle,
as well as the responses to injected sinusoidal current

mounting the transistor, the equivalent parallel resistanceof
the tank at resonance has been measured and the value of the
parallel resistance is selected accordingly, to make the re-
sulting exactly 500 (or mS) at resonance. The
gate bias voltage is adjusted by means of to ensure that the
measured dc current through is 0.5 mA during steady-state
oscillation. The corresponding mS. According to
Fig. 7, and the duty cycle , whereas the
oscillation amplitude is 0.44 V according to (12). Fig. 10 shows
the measured steady-state source and drain voltages of. The
oscillation amplitude at the source is 450 mV, whereas the duty
cycle, measured as the time between the two cursor positions of
the drain voltage waveform divided by the oscillation period, is
0.414. Further measurements of a similar oscillator for four dif-
ferent ’s versus bias current from 200A to 5 mA [31] show
that the amplitude prediction by (12) is always within 1 dB of
measured values. Since normal tolerances of both the resonance
and the loss of LC tanks, whether made of SMD components or
integrated on silicon, can be easily 5%–20%, the tolerance in

can be easily a couple of decibels. The accuracy of (12) is
therefore as good as need be for practical design purposes.

III. OSCILLATOR RESPONSE TO ANINTERFERINGCURRENT

To analyze the oscillator response to interference, let us in-
ject a small current [shown in gray in Fig. 4(a)],

, into the node. Although the phase of the injected
current is not important, we assume it isfor the sake of gener-
ality, while the main oscillation (carrier) serves as the reference,
so that its phase is assumed zero. Any response at by

’s gate-source voltage will be modulated by the gating func-
tion , which is nearly the same as .

(16)

Due to this modulation, a response voltage will also be created at
the image frequency , which itself will be modulated to
create a feedback component at . At this stage, we only
know that there will be a voltage response at both and

, but their amplitude and phase in steady-state
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Fig. 10. Measured oscillation waveforms. Channel 1:M1’s drain voltage representing its drain current. Channel 4:M1’s source voltage

and for the upper and lower sidebands, respectively, are
unknown to us.

(17)

The perturbed feedback current through is therefore ap-
proximately given by

(18)

Expanding (18), we collect only the terms at the interference
frequency and the image , because they
will be fed back to the gate of the tank to sustain the inter-
fering voltages. The terms around dc and higher harmonics of

can be neglected, because they will be heavily attenuated
by the (high- ) tank and will not produce much voltage on the
gate. Since the current and voltage perturbations are assumed
much smaller than the main carrier, their second- and higher
order combinations are negligible. Thus, the significant part of

, is given by

(19)

It is interesting to note that the coefficient of the first term on
the right-hand side of (19) is the same as , the amount of gm
required to cancel the loss of the resonator, according to (11).
Typically, , so that an apparent excess term exists in the
gm between the upper sideband (USB) voltage perturbation on
the gate and the current perturbation in , unless the USB
and LSB (lower sideband) responses are equal in amplitude and
opposite (180) in phase, such that the second term in (19) is
always cancelled.

The four unknown parameters of the voltage perturbation
around the fundamental frequency can be related to the injected
current by Kirchhoff’s current law on thenode in Fig. 4(a)

(20)
It can be shown that for

(21)
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Combining . (11), (19) and (21) into (20), we obtain

(22)

For (22) to be valid at all times, the coefficients for the sine
and cosine terms at both frequencies must be zero. This pro-
vides us with four simultaneous equations to solve for the four
unknowns in steady state and

(23)

(24)

(25)

(26)

If we redefine the four knowns as ,
, and , it is

quite clear that (23)–(26) are linear and readily solvable. Solving
(23)–(26) jointly and defining in (27), we find

(27)

(28)

(29)

(30)

(31)

Usually the offset frequency is relatively small,
, so that , and

. The upper and lower sideband responses are
therefore equal in amplitude and 180out of phase. This is just
the same as what would be created by a modulation in phase, so
that additive interference does create phase modulation, due to
the switching behavior of . For the same low-offset frequen-
cies

or

(32)

Note that (32) is half of what would be predicted by a linear
analysis. The USB response is indeed inversely proportional to
the offset frequency, as has been well known experimentally.
This inverse dependence does not continue uninterrupted, how-
ever, according to (31). At sufficiently high-offset frequencies

and the transistor no
longer has sufficient gm to provide any significant feedback to
counter the interfering current so that the relationship between
the latter and the voltage response is purely that of a linear tank.
The image sideband then disappears, according to (27) and (30).
The result is now identical to that predicted by a linear analysis

(33)

The transition point where the image sideband response
becomes 3 dB below the upper sideband responsecan also
be derived from (30)

(34)

For oscillators with 100% current duty cycle , the
corner frequency is zero and the noise remains additive because
there is no more gating function and the squaring nonlinearity
of the MOSFET only translates the upper sideband interfering
signal to frequencies around DC and the second harmonic of the
carrier, which will be suppressed by the carrier. Whentends to
1, as in the case of a lossless resonator, the corner frequency also
tends to zero and the output noise remains additive. For most
practical oscillators and noise becomes multiplicative,
affecting the phase of oscillation. The3-dB offset frequency
given in (34) is usually too high to be observed in normal phase
noise measurements because the sideband spectral density at
such a frequency is already well below the noise floor of the
measuring instruments.

It is important to note from (32)–(34) that the detailed
transistor parameters are only important in determining the
boundary between the interferences that will merely be super-
imposed on the main oscillation and those that will cause jitter
in the phase of the oscillation. In the former case, the
characteristic is merely due to the impedance of the linear
tank decreasing. In the latter case, the creation of the image
response and the effective negative feedback loop (through
modulation) between the signals at the two frequencies are
responsible for canceling any excess gm of that is not
needed for compensating the loss of the passive tank. Although
in both cases the response is inversely proportional to offset
frequency, the two cases differ by 6 dB and cause very different
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disturbances to the oscillator. In the phase jitter case both
the image response and its interaction with the response at
the frequency of interference are due to the active device’s
nonlinearity, especially the switching action in most oscillators.
Analyses attempting to bypass the explicit description of the
transistor’s nonlinearity therefore bypass the most fundamental
mechanism in amplitude to phase noise conversion. The
mixing action (by switching) alone creates the image sideband,
which does not necessarily entail the odd symmetry of phase
modulation. The fact that the image signal is mixed back to the
original sideband in an oscillator, however, means a feedback
loop between the signals at the two frequencies is created by
mixing. In a stable oscillator, this feedback must be negative
unless the loop gain is (much) less than unity as in the case
of a high-offset frequency. A strong negative feedback is only
feasible if the image response is delayed in the transient, such
that its steady-state phase is 180offset from the response at
the original frequency. This creation of negative feedback in
the transient by relative phase shift is somewhat analogous to
the locking process in a phase locked loop [33]. Balance of
currents at the image frequency [(25), (26)], where there is
no input, then forces the two steady-state sideband responses
to have equal amplitude and the effective gain of the negative
feedback loop to be unity. The close-loop (low-offset) response
at the original frequency is therefore half of the open-loop
(high-offset) response, as described by (32) and (33).

The exact amount of ’s gm, and indeed the detailed shape
of its large-signalV–I characteristic, are otherwise unimportant
except in setting the boundary between conversion and no con-
version to phase noise.

The significance of the theoretical prediction of the crossover
point and indeed its experimental verification lies therefore not
so much in the 6-dB difference in noise prediction at higher fre-
quencies as in being a litmus test of the rigorousness of the for-
mulation of a noise analysis. The crossover point is usually so
far away in relative offset frequency from the carrier that the
noise there and beyond is too low to affect any practical de-
sign. The fact that its existence has never been noted before is
ample proof. This existence enables us to make two observations
that are both fundamental and common sensical: 1) interfering
noise close to the carrier causes phase modulation that results in
a double-sideband odd-symmetric response and 2) interference
far away from the oscillation frequency causes no more than ad-
ditive noise. In the latter case, the response must be very similar
to that of a passive tank alone. In recent literature on phase noise
[12], [34], it has been forcefully argued that some time variant
nature of the oscillator’s impulse response, rather than the non-
linearity of the active device, plays the fundamental role in the
creation of phase noise or DSB response to an SSB interfer-
ence. So much so that only a lossless LC tank with an additive
current source has been used as the basis for the formulation
of subsequent analyses and no distinction is made between low
and high-offset frequencies in the formulation of the theory and
its conclusions. It is perhaps worth pointing out that a lossless
LC tank, being a linear network, is incapable of generating a
second sideband, let alone the odd symmetry between the two
sidebands. For a lossy oscillator and finite transconductance of
any transistor, the voltage response at high-offset frequencies

Fig. 11. The Norton equivalent representation of the subcircuit devised to
inject controlled current into the oscillator

eventually becomes too low to allow the transistor to feed back
significant current to counter the injected interference. The re-
sponse must therefore be that of a linear network and no image
sideband should be observed. In our analysis, the results reduce
to that of a lossless tank naturally if we let the loss resistance

and bias current tend to zero simultaneously under the
constraint of a constant oscillation amplitude. The current duty
cycle in the transistor then tends to zero ( ), which means
the latter is permanently cut off and does not affect the oscilla-
tion. The crossover frequency in (34) also tends to zero, which
means that the response is given by (33), that of a linear net-
work, without any image.

To verify the results in this section, the oscillator in Fig. 9
is used to test its voltage response to an injected deterministic
current. Since the equivalent input impedance at thenode can
be very high at close to the resonance frequency of the tank, in-
jecting a well-known current is difficult. Instead of applying a
current directly, we apply a sinusoidal voltage, as shown, and
measure the voltages and . The Norton equivalent of the
circuit within the dashed box in Fig. 9 is shown in Fig. 11. Since
the effective injected current is given by , the impedance

looking into the node of the oscillator from the equiva-
lent current source is the measured node voltagedivided by

. Since for a low-loss tank the cur-
rent flowing through and at close to resonance is much
higher than other current components flowing into the-node,
the latter can be neglected and . The
transimpedance can therefore be reliably mea-
sured, at least in the vicinity of the carrier, via the voltage ratio
( ). Close to the carrier, the applied signal levels are kept
very small to avoid pulling the main oscillation. As is grad-
ually increased, the voltage response becomes so small that it
sinks below the noise floor of the spectrum analyzer. The inter-
fering signal level is increased when necessary just to keep the
spectral peaks representing the voltage response above the noise
floor by a few decibels. Also measured are the ratio between the
voltage response at the image frequency and the injected cur-
rent, which we refer to as the image transimpedance.

The measured transimpedances are shown in Fig. 12, against
those calculated using (30) and (31). Also shown is the straight
line to which the upper sideband transimpedance is asymptotic
at higher offset frequencies, which would result from a linear
analysis. The measurements and calculations agree to within 1
dB at low-offset frequencies and 2 dB at high-offset frequen-
cies, which is remarkable over nearly six decades of offset fre-
quency and seven decades of impedance levels. Also remarkable
is the accurate prediction of the crossover point at 1.3 MHz. This
shows that as long as the parasitics are small and the oscillator
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Fig. 12. Calculated and measured voltage responses at both the upper sides and
and lower sideband to injected current at upper sideband (the circuit parameters
are slightly different from those in Fig. 10:V = 0:37 V andx = 0:2).

can be truly represented by Fig. 4(a), then the formulas derived
above are very accurate.

A further point to note from Fig. 12 is that the char-
acteristic continues all the way down to 100-Hz offset, where
further measurement was prevented by the drift of the free-run-
ning oscillator. An early measurement of a Clapp oscillator at
a similar carrier frequency, locked to a crystal oscillator by a
very narrow-band PLL to reduce drift, showed that such a
characteristic continues to nearly 10 Hz. The experiments there-
fore demonstrate that analyses predicting a much higher corner
frequency are incorrect. Below such offsets, pulling must be
dominant so that the exact shape of phase noise should be imma-
terial. At the high-offset end, our measurements show that the

characteristic continues until 64 MHz, further than two
thirds of the carrier frequency itself! No flattening is observed,
so that part of Leeson’s description of the phase noise spec-
trum is incorrect. The experimental results are to be expected
although, because it would be very hard to imagine what noise
mechanism would create a response of constant amplitude on a
passive tank while the latter’s impedance gradually declines to
zero! The flat noise spectrum we sometimes do see in practical
oscillators must have come from buffers rather than the LC os-
cillator proper.

The analysis of the oscillator response to a single sinusoidal
interfering current at a single offset frequency can easily be ex-
tended to multiple signals at different offset frequencies. If the
sum of all the interfering signals is small compared to the carrier,
then one can assume that the interfering current at each offset
frequency will generate a pair of response voltages. As long as
we can neglect the second- and higher order combinations of
interfering voltage components in the Taylor expansion of the
feedback currents, the subsequent mathematical manipulations
can be considered linear because multiplication byonly re-
sults in frequency translation of each component. Thus, each
pair of voltage responses can be solved at the corresponding
offset frequency and its image. In this sense, the oscillator re-
sponse to the composite current of different frequencies is the
superposition of the responses to the current components at each

Fig. 13. Colpitts oscillator with all noise sources represented as current into
theS node.

frequency. This enables our noise analysis to follow all the rea-
soning of noise analyses of common linear networks.

IV. NOISE TO CARRIER RATIO IN A CMOS COLPITTS

OSCILLATOR

If the offset frequency is much higher than [ (34)],
the noise spectral density of the oscillator gate-source voltage at
each frequency is simply given by (33) times the spectral density
of equivalent noise current at that frequency. In the much more
important case that the offset frequency is below , the
response is given by (32) times the spectral density of equivalent
noise current at the same frequency plus the contribution due to
the image of noise current component at the other side of the
carrier

(35)

In (35) represents the cross-correlation factor between the
two noise components. For white noise it is reasonable to as-
sume that noise components at different frequencies are uncor-
related to each other, , so that the noise voltage spectral
density is given by

(36)

Experiments will be compared to (36) later to verify the assump-
tion .

Now that we have established the relationship between phase
noise spectrum and the input white noise current, what remains
to be done is to identify all major noise sources in the Colpitts
oscillator. In the order of increasing importance, they are the
noise current associated with the bias transistor MB, noise cur-
rent due to the loss resistance of the tank, and the noise cur-
rent due to the main switching transistor . If we can convert
all three sources into equivalent current sources, as shown in
Fig. 13, then the total output noise can be easily obtained by ap-
plying (36).

Since the drain of MB is directly connected to thenode and
its current is constant, the noise current due to MB is the most
straightforward, , where for long
channel devices. The noise contribution ofcan be worked out
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via the Norton equivalent current at thenode. Representing the
noise of as a voltage source and short-circuiting thenode,
we can obtain the mean-squared current noise power spectral
density (psd) of the Norton equivalent circuit near the resonant
frequency, .

The time-varying nature of its drain-source current makes
a more complex noise source. Referring to Fig. 8(b), the

average current through during the time it is on is given by
(37). The average white noise

(37)

(38)

psd during ’s on time is therefore given by (38). If a time-
domain signal has the same psd as that given by (38), then
the noise current for is equivalent to gated by .
Since has a bandwidth much wider than the frequency
of the gating function, the psd of around the oscillation
frequency is that of scaled by the duty cycle of [35],

.

(39)

A more accurate estimate of is possible by splitting ’s
on time into infinitely small intervals, each one wide, to
allow the exact current to be used for each interval instead of
the average in (38). Since the noise contribution of each
interval can be calculated with a gating duty cycle of ,
the overall noise psd is the sum of the individual contributions,
which amounts to an integration that leads to

(40)

Since most practical oscillators already have fairly low duty
cycles, the difference between (39) and (40) is fairly small. [For
the circuit in Fig. 9 the overall noise estimate using (40) is about
0.5 dB below that using (40)]. Equation (39) is therefore more
preferable because it gives one more insight into the relationship
between noise and the nominal transconductance, as well as the
current duty cycle. The latter two are design parameters.

Replacing the noise current term in (36) with the sum of con-
tributions from the bias transistor, the resistive loss of the tank
and that of the switching transistor , we obtain

(41)

The ratio between the noise psd and the signal power can now
be derived by combining (12) and (41)

(42)

For small duty cycles is close to 1, (42) is then approximately
given by

(43)

To verify (42), the parameters in Fig. 9 were used to calcu-
late the oscillator output spectral density due to thermal noise
sources. The noise contributions in the square brackets in (42)
are 0.17 mS for the 6-k bias resistor, 2 mS for the rest of the
resistive loss of the passive tank that had been measured be-
fore was mounted, and 2.86 mS due to . The quality
factor of the tank is slightly under 25. This yields a calcu-
lated phase noise of 115 dBc/Hz at 10-kHz offset. The calcu-
lated phase noise is compared with measured results in Fig. 14,
covering four octaves of offset frequency range. Because the os-
cillator was designed to be relatively high, the overall phase
noise is very low. The noise floor of the instrument and the
onset of up-converted flicker noise therefore limit the measur-
able thermal noise region to the last two octaves. This gives
us three measurement points that are clearly on the 6 dB/oct
line. To remove the influence of the noise from the instrument
(HP 8563E Spectrum Analyzer), the latter is calibrated by mea-
suring an 80-MHz crystal oscillator at the corresponding offset
frequencies. Since the phase noise of an 80-MHz crystal oscil-
lator is better than 110 dB at 300-Hz offset [36], the measured
noise at offsets above 1 kHz is effectively that of the instrument.
This uncorrelated noise contribution of the instrument is then
subtracted from the measured noise power at the 10-kHz and
20-kHz offset points. As is typical of most noise measurements,
the repeatability of the measured noise power spectral density
(with averaging) is approximtely within 0.5–1 dB. The measure-
ment accuracy of the points shown in Fig. 14 can therefore be
considered to be 1 dB. This is the same accuracy with which
the calculated thermal noise line in Fig. 14 predicts the mea-
surement. The measurement at 1.25 kHz is 16 dB higher than
that at 5 kHz, showing this region to be strongly influenced by
flicker noise. From the slope of the measured noise psd we can
infer that the crossover point between thermal noise and flicker
noise is around 1.5 kHz. Adding the inferred flicker noise to the
calculated white noise contribution, we have a calculated phase
noise that also agrees with measurement within 1 dB for the first
two octaves of measured offset frequency. This can be seen as
conclusive evidence that (42) accurately predicts the sideband
noise-to-carrier ratio, not least because there are no parameters
used in the calculation of (42) that have not been independently
verified by measurement to the desired accuracy first. Since the
relationship between an injected current and measured voltage
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Fig. 14. Calculated and measured phase noise for the oscillator in Fig. 9.

response has also been accurately verified in the previous sec-
tion, the significance of the measurement in Fig. 14 lies in veri-
fying (35) and (36), as well as the power spectral densities of all
the white noise sources in the oscillator, especially that of.
Fig. 15 shows a measured spectrum of the oscillator.

In addition to having been derived on a rigorous basis, (42) is
completely based on circuit parameters known to the designers.
This makes it possible to derive a complete design procedure for
the optimization of a Colpitts oscillator for RF applications. Due
to limitation in space this discussion is not included here. It is,
however, interesting to compare (42) or (43) to the well-known
Leeson’s formula, which designers have been using for the last
30 years, to examine the dependence on the resonator’s quality
factor in particular. In Leeson’s original paper, the signal level

at the input of the active device is not very clearly defined,
so that it can either be interpreted as the square of the oscillation
voltage, or the power dissipated by the resonator. In the former
case we can see that for a constant oscillation voltage, the noise
to carrier ratio will only scale with the noise power given in (41),
which clearly does not scale with . In the latter case,

. Equation (43) can thus be rewritten as

(44)

which is apparently Leeson’s formula with an inverse depen-
dence on ! Closer examination of (44), however, shows that
both the signal power and the noise figure so defined,
far from being independent parameters, are usually also strong
functions of . No conclusions could therefore really be drawn
about the dependence of the oscillator noise performance on
the basis of Leeson’s formulation.

Fig. 15. Measured output power spectrum for the oscillator in Fig. 9.

In practical situations, one does sometimes find that doubling
the of the tank improves the by exactly 6 dB, while
the transistor and its bias current are unchanged. This can arise
when the change of is purely due to improvement in the loss
resistance and that the middle term in the square brackets of
(43) is much smaller than the other two terms. This may have
been the case especially for designers using discrete MOSFET’s
or BJT transistors, where the transconductance for a given cur-
rent is not within the designer’s control. For an integrated circuit
designer this need not be so, because the size of the transistor
should be scaled down with to maintain just the necessary

range of 3–5 as explained earlier. In this case the noise
factor in Leeson’s formulation is unchanged, while the signal
power has doubled. The improvement of will be 9 dB
each time is doubled by halving [29], [37].

On the other hand, can be significantly changed by dif-
ferent combinations of tank parameters with the same quality
factor . Assuming a typical case, for example, that the loss
resistance of the inductor dominates the loss of the tank
and scales linearly with the inductance. Doubling the induc-
tance and halving the capacitances therefore leaves both the
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Fig. 16. Model of an arbitrary oscillator.

of the tank and its resonance frequency unchanged. The com-
bined change in resistance and capacitance, however, causes

in (43) to be halved, as well as the required , so that
3 dB can be gained either in achievable or in the required
current consumption without improving the quality of the in-
ductor! Indeed, we note that most recently published oscilla-
tors with integrated inductors have very small capacitors, which
gave them respectable phase noise performance at a reasonable
current consumption, even though the integrated inductors con-
tinue to have a poor quality factor of between three–six at 1 GHz.
One’s ability to improve phase noise by reducing capacitance,
however, is limited by the parasitic capacitors associated with
the circuit, which have higher losses and which tend to increase
the required tuning range for the desired frequency. A higher
tuning range in capacitance may also result in higher variability
of oscillation amplitude, which in turn affects noise to carrier
ratio.

An additional advantage of the phase noise model by (42) is
that the role of current consumption (as opposed to power con-
sumption , or the signal power ) is explicitly stated. In-
deed, there is an almost one-to-one relationship between
and bias current . This point is important in RF oscillator de-
signs for mobile communications, where power consumption is
extremely important [38], [39].

V. GENERAL FORMULATION FOR LC OSCILLATOR ANALYSIS

From the discussion in Sections II and III, it should already
be clear that the analysis on the Colpitts oscillator is applicable
to most well-known LC oscillators. Since the vast majority of
such oscillators effectively employ a single LC resonator, the
topological differences lie in the different resonator (tapping)
nodes from which the active devices are driven and to which the
latter’s currents are fed back, and indeed the number of active

devices driving the circuit. Such oscillators share a basic char-
acteristic that is the Class-C operation of the active devices. The
voltage as well as current variables in steady state will still be pe-
riodic so that Fourier series expansion can be applied to extract
the harmonics and dc bias and oscillation amplitude can still be
determined by balancing the currents at feedback nodes. With
high resonators the voltages on different resonator nodes will
be sinusoidal, but the currents fed back from the active devices
will be in pulses. The notion that the gating of active devices cre-
ates image components and such components interact with the
response at the original interferences through an effective feed-
back is still valid, so that the exact characteristics of the active
devices are unimportant in the noise part of the analysis. Since
any excess gm will be canceled by the negative feedback, the
inverse dependence of the interference response on the offset
frequency will still hold, as does the odd symmetry between the
pair of sidebands at low-offset frequencies. In a low-oscil-
lator the harmonics of a resonator voltage cannot be neglected,
so that more unknown variables are associated with the har-
monics where more equations can be set up to solve them. Once
the steady-state solutions are known, however, the equations for
small interference responses will still be linear and readily solv-
able.

In the extreme case of an arbitrary passive network driven
by an arbitrary number of active devices, the solution can also
be formulated, assuming that the active devices are arbitrary
voltage controlled current sources, as shown in Fig. 16. There
are voltage variables, represented by vectorcontrolling

effective active devices denoted by vector. The network
is biased by current sources .

(45)

(46)

(47)

To account for discontinuities in , such as the piecewise
characteristic of an FET, up to pieces of gating functions can
be defined for each component in, as shown in (48) at the
bottom of the next page, where is a matrix of gating func-
tions and are differentiable functions representing seg-
ments of .

In steady state, the nodal voltagesare periodic. Therefore
is also periodic in time. Both can be represented with a Fourier
series with the coefficient of theth harmonic given by

(49)

(50)

where . Although in theory can be arbi-
trarily high, in practical oscillators the selectivity of the passive
RLC network rapidly reduces the higher harmonics into neg-
ligible levels relative to the fundamental component at .
Assuming is a finite (and most likely small) integer above
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which is negligible, then Kirschhoff’s current law
(KCL) can be applied to each of the network’s nodes at dc
as well as at all the harmonics of and . At dc

(51)

whereas at theth harmonic

(52)

In (52) the by matrix is the admittance matrix of
the passive network at theth harmonic of the oscillation. From
(51) and (52) the unknown vectors can be solved,
either analytically or numerically.

To study the effect of a small interfering signal on the steady-
state oscillation, we apply a small sinusoidal current to each
node, as shown by the lightly shaded parts in Fig. 16, at an
offset frequency of each harmonic
and . Flicker noise can therefore also be analyzed,
as shown in (53) at the bottom of the page. Expanding both the
voltage and the current vector into a Taylor series(by first
expanding , which is differentiable, before multiplying by
the gating function) and neglecting the second- and high-order
terms for small interferences, we can focus on the two sidebands
around each harmonic as a result of modulation by the gating
functions. Trigonometry can be used to collect systematically
all individual terms of voltage perturbation in the current
perturbation at the upper and lower sidebands of each har-
monic. Having neglected higher order terms, the relations be-
tween and is linear, so that linear transfer functions
and equations can be defined. Denoting

(54)

(55)

(56)

(57)

(58)

we can now relate the unknown response voltages
in (54) and (55) to the interfering current sources in (58) and

establish nodal current equations at the upper and
lower sidebands, respectively

(59)

(60)

Note that (30) and (31) are linear in terms of the real and imag-
inary parts of the unknowns in (54) and (55). Once the unper-
turbed oscillation has been solved by solving equations (51) and
(52) either analytically or numerically, equations (59) and (60)
are solvable analytically, using standard linear algebra.

In order to apply the results we derived in the previous
sections to signal-dependent noise sources, we seek to find
an equivalent (signal-independent) noise source that has the
same psd as the real noise source it represents for a given
pattern of oscillating voltage or current in time. The first step
in finding the equivalent is to define noise sources
for each current-dependent noise source . If the average
current during the th time interval, during which

and is
and the psd of is the same as that of for a constant

bias of , then can be approximately
represented by during the same time interval. Putting
all intervals together we have

(61)

where . Assuming the ’s are un-
correlated with one another, then [40]

(62)

(48)

(53)
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In the case of white noise, the approximation of [35] can be
applied, as in the derivation of (39), to obtain simple expressions
of equivalent noise source psd.

VI. CONCLUSION

This paper has sought to overcome one of the major short-
comings of many existing papers on phase noise, which is
to embed the conclusion of phase noise in the fundamental
(starting-point) assumption of an analysis. A CMOS Colpitts
oscillator is used as an example to illustrate the fundamental
mechanism of additive noise to phase noise conversion. The
active device in a well-designed oscillator operates in Class-C
mode. The switching action of the active device modulates
the interfering signal, so that DSB signals result for an SSB
input. The interaction between the upper and lower sideband
responses forms a feedback loop, and stability of the oscillation
dictates that the feedback be negative, which is achieved when
the image sideband becomes opposite in sign to the signal at the
original sideband. The balance of current at the two frequencies
also dictates that the two responses are equal in amplitude.
The resulting odd symmetry in the power spectrum is the same
as that of a phase modulated signal. The negative feedback
loop will be effectively broken when the offset frequency is
too far away from the carrier, so that the transimpedance of the
resonator is too low to maintain the link between modulated
current and gate voltage. In this case, the response is that of
the resonator alone and no conversion to phase noise takes
place. The details of the transistor and the passband width of
the resonator are otherwise unimportant, except in determining
the crossover frequency between conversion to phase and no
conversion.

Noise sources associated with a switching transistor are af-
fected by the duty cycle in which the latter conducts current.
This has been taken into account in this paper in the identifica-
tion of all white noise sources in the Colpitts oscillator.

Exact expression for the steady-state amplitude of a CMOS
Colpitts oscillator has also been derived here. Prediction of am-
plitude is therefore made independent of simulation and much
easier. An analytical expression of amplitude, together with the
analytical expression of phase noise, allows an analytical ex-
pression of noise to carrier ratio to be established, that is com-
pletely described by circuit parameters and contains no interme-
diate variables. The influence of the LC resonator quality factor,
bias current, value of capacitances, as well as the transistor’s
transconductance coefficient on the ratio, respectively, is
explicit.

Controlled experiments have been carefully devised to verify
the theory derived in the paper. The predicted oscillation ampli-
tude is consistently within 1 dB of measurements. The predicted
duty cycle also matches measured values by the same accuracy.
The oscillator response (as well as its image) to an injected in-
terfering current agrees with what the theory predicts within the
accuracy with which parameters of the passive tank can be mea-
sured. At an 80–MHz range, this accuracy is better than 1 dB.
The crossover frequency between phase and additive noise and
indeed its very existence have been confirmed by experiments.

Measurements on phase noise to carrier ratio also show that
the agreement with the formula derived in this paper is within 1
dB, the repeatability of any phase noise measurement and the ac-
curacy with which circuit parameters have been independently
measured. The phase noise model in this paper can therefore be
used in practical designs with confidence.

A general formulation for the analysis of arbitrary oscillators
has been outlined in this paper, in the spirit of the Colpitts oscil-
lator analysis. The conclusions of the latter analysis, however,
should apply to most existing LC oscillators, as the important
mechanisms in the conversion to phase noise are largely inde-
pendent of the exact construction of an LC oscillator.
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