
J. Phys. D: Appl. Phys. 29 (1996) 133–146. Printed in the UK

Phase objects in synchrotron
radiation hard x-ray imaging

Peter Cloetens †§, Raymond Barrett †, Jos é Baruchel †,
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‡ Laboratoire Louis Néel du CNRS/UJF, BP 166, 38042 Grenoble Cedex 9, France

Received 14 August 1995

Abstract. Phase objects are readily imaged through Fresnel diffraction in the hard
x-ray beams of third-generation synchrotron radiation sources such as the ESRF,
due essentially to the very small angular size of the source. Phase objects can
lead to spurious contrast in x-ray diffraction images (topographs) of crystals. It is
shown that this contrast can be eliminated through random phase plates, which
provide an effective way of tailoring the angular size of the source. The possibilities
of this very simple technique for imaging phase objects in the hard x-ray range are
explored experimentally and discussed. They appear very promising, as shown in
particular by the example of a piece of human vertebra, and could be extended to
phase tomography.

1. Introduction

Imaging is performed with a variety of probes, including
light and electrons, but also NMR-frequency electromag-
netic waves, ultrasound, x-rays and neutrons. All these
techniques have developed because each probe has its mer-
its in terms either of resolution or of the scale of the samples
that it can handle and provides original information related
to the physical quantities to which it is sensitive. Soft x-ray
microscopy (wavelength range of the order of 100Å) has
recently developed into a technique with high resolution
[1]. It includes phase contrast possibilities and appears to
be very useful in the investigation of biological objects [2].

Hard x-rays (λ < 2 Å) are commonly used for
imagery in two ways. Radiography, in which the
basis for contrast is inhomogeneous absorption in simple
transmission, is extremely widespread both in industrial
testing and in medicine, and includes sophisticated variants
such as computer-aided tomography. In x-ray diffraction
imaging (usually called x-ray topography), inhomogeneities
in Bragg diffraction reflectivity make it possible to image
defects in single crystals [3]. Related techniques exist in
the case of neutrons [4, 5].

X-ray phase imaging in this wavelength range was
pioneered by Hosoyaet al [6] using a Bonse–Hart type
interferometer, consisting of several slices of perfect
crystal silicon, acting as a coherent splitter, deviators
and recombiner, carved out of a monolithic single-crystal
block. In this case differences in optical path for the beam
transmitted through an object are directly converted, after
interference with the reference beam, into inhomogeneous
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intensity, hence contrast. The same principle was applied
with neutrons by Schlenkeret al [7], who also showed
that, after suppression of the reference beam, the phase
jumps or gradients remain visible. Similar techniques, in
which a sample is placed between the two crystal slabs
of a Bonse–Hart small-angle scattering camera and phase
gradients are visualized essentially through refraction, were
used by F̈orsteret al [8] and several other groups [9] with
x-rays and by Poduretset al [10] in the neutron case.

Free-space propagation can also transform the phase
modulation of the incident beam into an amplitude
modulation. This imaging process was recently studied
extensively both experimentally and theoretically by
Snigirevet al [11] at the European Synchrotron Radiation
Facility (ESRF, Grenoble). It may be described as a
refraction phenomenon or more generally, in a wave-optical
approach, as Fresnel diffraction.

We first encountered this effect during x-ray topo-
graphic work at the ESRF in the form of spurious images,
obviously not related to the crystals under investigation.
Figure 1 shows a topograph taken at x-ray energy 26 keV
(wavelengthλ = 0.48 Å), of a rather perfect KTP crys-
tal, which exhibits some surface defects, dislocations and
growth bands. Apart from these crystal defects, a set of
horizontal lines is very clearly visible: they were traced to
slight rolling defects in a beryllium window placed across
the beamline 2.8 m upstream of the sample. At the pho-
ton energy used, the absorption of the beryllium window is
negligible and the image is due to the variations in optical
pathlength, hence of phase, associated with the variations
in thickness.

We then investigated the possibilities of deliberately
imaging phase objects with this technique of Fresnel
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Figure 1. An x-ray diffraction image (topograph) of a KTP crystal. Crystal defects are visible as well as horizontal lines due
to rolling defects in a beryllium window, 2.8 m upstream with respect to the film. It is a monochromatic beam topograph in
transmission; reflections 111 (monochromator) and 004 (crystal under study); E = 26 keV (λ = 0.48 Å).

imaging. Although it is based on the coherence properties
of x-ray beams from a highly sophisticated third-generation
synchrotron source with very low emittance, it is to be noted
that this method is extremely simple and involves almost
no instrumentation. We also sought a way of suppressing
the spurious images on x-ray topographs.

2. Phase imaging

2.1. Experimental results

Figure 2 shows the typical experimental set-up used for
imaging, either in the topographic mode or for the Fresnel
diffraction imaging of phase objects. We used the Optics
Beamline (D5) at ESRF, whose 0.8 T bending magnet gives
an effective source size of the order of 300µm in the
vertical direction and 600µm horizontally, at a distance
of 60 m from the crystal C. The very low divergence
synchrotron radiation white beam, restricted in width and
height by a set of slits, is diffracted by the single crystal
C, and the diffracted beams are recorded on photographic
film F. Situations in which harmonics occur, such as
wavelengthλ being diffracted by the Bragg reflectionhkl

and wavelengthλ/2 by the reflection 2h, 2k, 2l into the
same direction, were avoided in our experiments.

In the standard white beam topographic approach, each
of the diffracted beams, hence each spot of the Laue pattern
thus obtained, is an image which shows defects in C through
local variations in the diffracted intensity. Alternatively,
a film can be placed across just one of the diffracted
beams, in particular if a large specimen-to-film distance
is required. This set-up can also be considered just as
a way of extracting one or several narrow spectral bands
(typically 1λ/λ ' 10−5) out of the white beam. Images
were recorded on Kodak Industrex SR or SO-343 x-ray
film, with exposure times of the order of 1 s.

When C is perfect and has uniform thickness, no
contrast is normally obtained within the spots. However,
when a phase object is placed, deliberately or not, across

the beam, it is found that features of the phase object can be
strikingly imaged on the film. C can be set to diffract either
in Laue (transmission) or in Bragg (reflection) geometry.

Figure 3 shows the image obtained when two crossed
polymer strings with an outer diameter of 0.7 mm were
placed downstream of a perfect 4.5 mm thick silicon
crystal, mechano-chemically polished, set in symmetrical
Bragg geometry for the 111 reflection, with an object–
film distance (subsequently referred to asD) of 100 cm.
The picture was obtained using a diffracted beam in the
horizontal plane with energy 18.8 keV (λ = 0.66 Å). At
this energy the maximum absorption is less than 5% for
the string as a whole and less than 0.02% for the individual
20µm diameter fibres constituting the string. Thus contrast
is again due to the phase modulation, i.e. to the real part of
the refractive index. The topographic image shows residual
polishing damage on the crystal surface. The strings and
fibres are clearly visible. The visible features are mainly
the edges, namely the parts where refraction or equivalently
the phase gradient are greatest. When the film is placed
against the object, no contrast is obtained from the strings.
This unambiguously ascribes the image formation to free-
space propagation, or alternatively Fresnel diffraction, in
exact analogy to the defocusing method for imaging phase
objects in electron microscopy [12], but with the obvious
difference that in this x-ray case the only non-defocused
position is that of the object itself, because focusing optics
are not commonly available in hard x-ray work.

As previously noted, an alternative way to visualize
the phase gradients created by the object is to use a
second, analyser, crystal downstream of the object to
act as an angular filter; that is, to perform Schlieren
imaging as reported by Försteret al [8]. To compare the
contrast obtained with the simple free-space propagation
technique and this more conventional configuration, objects
were placed between two silicon crystals in(n, −n) Laue
configuration at an x-ray energy 31 keV (λ = 0.4 Å),
111 reflection. Rotation of the second crystal allows an
angular selection of the waves coming from the object
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Figure 2. The experimental set-up for white beam topography and phase-imaging. Polychromatic synchrotron radiation from
a bending magnet falls on a fairly perfect crystal C at 60 m from the source. Monochromatic (1λ/λ ≈ 10−5) beams with
different wavelengths are diffracted in several directions, each of which forms an image of the crystal. For phase-imaging, an
object is placed in the beam (downstream or upstream with respect to the crystal) and an image is recorded at object–film
distance, D .

Figure 3. Two crossed polymer strings, i.e. low absorbing objects, downstream of the monochromator. Edges of the object
appear with high contrast when the photographic plate is placed at a distance D = 100 cm behind the object. Symmetric
Bragg reflection: 111; E = 18.8 keV (λ = 0.66 Å).

corresponding to the angular acceptance of the analyser
crystal and its position relative to the monochromator.
Figures 4(a) and (b) show the string and a 100µm diameter
nylon fibre with an angular displacement between the
rocking curve maxima of the monochromator and analyser
crystal of respectively 0 and 8.7µrad (1.8′′). In figure 4(a)
the edges appear white (this means less intensity) because
the rays are deviated in this region away from the Bragg
condition. In figure 4(b) at the left-hand edge the deviation
by the object brings the rays closer to the exact Bragg
condition and does the opposite at the symmetrical edges.
The contrast formation in this method has been treated
previously by F̈orster et al [8] and Goetz et al [13].
The small angular source size and high brilliance at the
ESRF simplifies the experimental set-up with respect to
the earlier experiments done with classical x-ray sources;
the fundamental spatial resolution limit imposed by the
interaction of the x-ray wavefield with the analyser crystal

downstream of the object remains unchanged. As discussed
later, the free-space propagation technique need not be
limited in the same way.

Figures 5(a)–(c) show images of a slice of obeche
(Triplochiton scleroxylonK Schum) wood obtained using
the single crystal configuration (figure 2) at 18.8 keV at
respectivelyD = 5, 50 and 100 cm. The slice, cut
transversely (perpendicular to the fibres) from a commercial
curtain rod, was approximately 2 mm thick and completely
rough on one side. Clearly the image is strongly affected
by the object–film propagation distanceD, and the spatial
frequenciesf which are visible appear to decrease with
increasing distance. In this case, similar features are
visible with this technique and with optical microscopy,
the difference being that the x-ray image is obtained in
transmission.

Figures 6(a) and (b) show images of a 7 mmthick slice
from a human vertebra, placed downstream of a silicon
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Figure 4. Schlieren imaging performed by placing a polymer string and a 100 µm diameter nylon fibre (visible at the
right-hand side) between two silicon crystals in (n, −n) configuration: (a) on the peak of the rocking curve and (b) 8.7 µrad
(1.8′′) away from the peak. Symmetric Laue reflections: 111; E = 30 keV (λ = 0.41 Å).

monochromator in symmetric Bragg reflection, obtained
at 18.8 keV with D respectively 0 and 1 m. The
image in figure 6(a) is entirely due to absorption; the
image in figure 6(b) is due to both absorption and phase
imaging. Because the phase imaging process enhances
the visibility of discontinuities in the object, the image in
figure 6(b) gives the impression of being sharper, but also
reveals many details of the bone structure that are simply
indistinguishable in the absorption image.

Probably the simplest possible phase object consists
of a phase step, for which the edge of a 60µm thick
silicon crystal was used and set perpendicular to the
monochromatic beam delivered by a horizontally diffracting
perfect silicon crystal in Laue geometry. At the photon
energy used, 31 keV (λ = 0.4 Å), this represents a phase
jump close to−3π/2. The image was recorded at a distance
D = 117 cm. The absorption in the sample is 1.8%,
and cannot explain the contrast at the horizontal edge.
Figure 7(a) shows the intensity profile as measured for
a slightly tilted edge (tilt 4.5◦), schematically represented
in the insert. The profile was obtained by digitizing the
film and projecting parallel to the edge. The maximum
of the intensity is on the air side, as may be expected
from refraction at the thin part of the crystal set at a small
angle with respect to the beam. Figure 7(b) shows the
profile for a nearly perpendicular edge, represented in the

insert. The black/white/black contrast cannot be explained
geometrically, but is quite familiar as a Fresnel diffraction
phenomenon. The central minimum is due to destructive
interference of waves coming from points symmetrical with
respect to the edge and the oscillations are Fresnel fringes.
The very simplicity of this object gives the possibility of
quantitative evaluation. The measured distance between
the two maxima of 12.1(±0.6) µm is in good agreement
with the theoretical value of 1.7(λD)1/2 = 11.6 µm
[14], (λD)1/2 being the radius of the first Fresnel zone.
The visibility of the fringes depends on the angular size
of the source. From simulations we may estimate the
vertical effective source size to be 170µm, which is to
be compared to the earlier mentioned value of 300µm.
The dissymmetry between the two maxima (opposite to
the expected dissymmetry from the value of the phase
jump) could be explained by a slight deviation from
perpendicularity of the crystal with respect to the beam, or
by dust deposited on the edge. Here again it is clear that this
method does not give a uniform change in intensity for the
part of the beam passing through the crystal, as would be the
case for an absorption image if the sample absorbed more,
or for an interferometric phase image. The immediately
obvious edge enhancement is, under closer examination,
revealed to derive from the theoretically expected fringe
structure.
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Figure 5. A sample of obeche wood (Triplochiton scleroxylon K Schum), 2 mm thick transverse cut, downstream of the
monochromator. The aspect of the image is strongly dependent on the recording distance: (a) D = 0.05 m, (b) D = 0.5 m
and (c) D = 1 m. The spatial frequencies f which are visible appear to decrease with increasing distance. Symmetric Bragg
reflection: 111; E = 18.8 keV (λ = 0.66 Å).

2.2. Basic elements of the imaging process

The contrast described above could be explained in a ray-
optical approach by refraction of the rays in the object.
These very small deviations in the propagation direction
(of the order of 10µrad) are sufficient to create visible
intensity variations after propagation of the rays in air over
a distance of the order of 1 m. A more general and accurate
description of the contrast formation is given by a wave-
optical approach. The object can be characterized in a
scalar approximation by its complex transmission function

F [15] such that

u(x, y) = F(x, y)u0(x, y) (1)

whereu andu0 denote the monochromatic field respectively
just downstream and upstream of the object at the point
(x, y) of the object plane. This transmission functionF

involves the real and the imaginary part of the index of
refraction in the object and can be expressed as

F(x, y) = M(x, y)eiϕ(x,y) (2)

137



P Cloetens et al

Figure 6. A piece of human vertebra, 7 mm thick, downstream of the monochromator. Image (b), based on absorption and
phase modulation, reveals new details of the bone structure compared to (a), based on absorption: (a) D ≈ 0 cm, (b)
D = 100 cm; symmetric Bragg reflection: 111; E = 18.8 keV (λ = 0.66 Å).

where M describes the absorption andϕ the phase
modulation, with

M(x, y) = exp

(
−1

2

∫
µ(x, y, z) dz

)
(3)

ϕ(x, y) = 2π

λ

∫
(n(x, y, z) − 1) dz. (4)

µ is the linear absorption coefficient andn the real part
of the refractive index. The integrals in (3) and (4) are
understood to be along the propagation directionz over
the object. This projection of the object in a single plane
is justified as long as the propagation in the object is
negligible. In expression (4) we suppressed the mean phase
modulation in the object because it does not affect the
intensity. In the case of x-rays the real part of the refractive
indexn, for a pure element, depends on the electron density
according to [16]

n = 1 − (N0/A)ρmr0(Z + f ′)λ2 (5)

where N0 is Avogadro’s number,A the atomic mass,Z
the atomic number,ρm the mass per unit volume,r0 =

2.8 fm the classical electron radius,f ′ the real part of
the wavelength-dependent dispersion correction [17] and
λ the wavelength. The deviation of this refractive index
from unity is very small (less than 10−5). The field
in the plane of observation can be calculated in several
ways. One possibility is to consider a decomposition into
spherical waves of the field after the object, leading to
the Fresnel–Kirchhoff diffraction integral and its familiar
Fresnel and Fraunhofer approximations. An alternative way
is to decompose the field into plane waves and to describe
the effect of propagation from sample to film as a linear
filter, i.e. to apply Fourier optics.

In general there is no simple relation between the
transmission function of the object and the measured
intensity I (x) at a pointx in the image plane. However
for a non-absorbing sample, the Fourier transform of the
intensity (see the appendix) can be simply obtained from
[18] (limiting ourselves to one dimension for clarity)

Ĩ (f ) = δ(f ) + 2 sin(πλDf 2)ϕ̃(f ) (6)

if
|ϕ(x) − ϕ(x − λDf )| � 1 ∀x. (7)
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Figure 7. The profile obtained at the edge of a 60 µm thick
silicon plate: (a) slightly tilted edge (tilt 4.5◦) (see inset)
and (b) perpendicular edge (see inset), corresponding to a
phase jump close to −3π/2. The dimensionless coordinate
w(=

√
2x/(λD)1/2) is normally used in Fresnel diffraction

phenomena.

Expression (6) is valid for all spatial frequenciesf
in the case of a weak phase object. Ĩ (f ) and
ϕ̃(f ) denote respectively the Fourier transform of the
intensity I (x) and the phase modulationϕ(x), for the
spatial frequencyf . δ(f ) is the Dirac distribution and
corresponds to a homogeneous background in the image.
Expression (6) means that the intensity pattern obtained
is selectively sensitive to some spatial frequencies in the
phase modulation, according to the value of the factor
2 sin(πλDf 2) in expression (6). Optimal contrast for the
frequencyf is obtained when the following condition is
met:

2λDf 2 ≈ 1. (8)

A very important parameter turns out to be the radius
of the first Fresnel zone,(λD)1/2 (in the case in which
the source–object distance is much larger than the object–
photographic plate distance). The first Fresnel zone around
a point of the object gives the part of the object mainly
contributing to the intensity in the corresponding point of
the image. For the images described above, the size of

the first Fresnel zone varies from 0 to typically 8µm,
therefore it is most often smaller than or comparable with
the characteristic size of the object. This explains why the
image looks more like a direct image of the contours of
the object, in which each border is imaged independently,
rather than like a hologram, although the experimental set-
up is the same as for in-line Gabor holography [19].

2.3. Experimental requirements

For the observation of phase images the incident wave
must fulfil monochromaticity and source size conditions,
the latter being more severe. An extended source leads to
a loss of contrast which can be understood, through a simple
geometrical picture, as the convolution of the image for a
point source with the projection of the effective source on
the film through the sample. The width of this projection
is DαS , where the incident divergenceαS equalss/R, with
R the distance source object ands the effective size of
the source [20]. This implies the following condition for
the image corresponding to a spatial frequencyf not to be
blurred

DαS < 1/f. (9)

Eliminating the frequencyf by means of expressions (8)
and (9), which are respectively the condition to obtain
contrast and not to blur it, yields

λ

αS

>
(λD)1/2

√
2

. (10)

Hence, the beam incident on the object must be coherent
over the first Fresnel zone and not necessarily over the
whole object. This blurring implies that this kind of phase
imaging is impossible with classical x-ray sources. At the
ESRF, working at a distance of 60 m from the source, the
incident divergenceαS is smaller than 5µrad vertically
and 10µrad horizontally, corresponding to broadenings of
5 and 10µm at 1 m from the sample. This broadening
affects the fine details in the image but does not destroy it
completely, as can be seen for the fringes in figures 7(a)
and (b). The better visibility for the horizontal string in
figure 3 is related to the smaller vertical source size.

Since the synchrotron radiation beam is initially white,
monochromatization must be performed somewhere along
the optical system. Setting the object upstream of
the monochromating crystal has the practical advantage
of providing several images corresponding to different
wavelengths in a single exposure. However, the crystal
affects the image resolution through the width of the
Borrmann fan. For a symmetric Laue reflection this width,
projected in the diffracted direction, is 2t sinθB , where t

is the thickness of the monochromator andθB the Bragg
angle. When working with a thin crystal and at smallθB

this blurring is often acceptable.
As pointed out by Braueret al [21] the monochromator,

even when it is a perfect crystal, can also affect
the angular collimation of the beam. Assuming the
incident polychromatic beam to be perfectly collimated,
the direction of the diffracted beam is slightly wavelength-
dependent. The increase in divergence in the plane
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Figure 8. A section topograph of an α-LiIO3 crystal, with an incident beam restricted vertically to about 12 µm by slits. (a) A
phase object introduced at the slit opening giving rise to streaks parallel to the diffraction vector. (b) ‘Clean’ slits eliminating
this contrast. The slit–film distance is 221 cm; white beam section topograph; 82̄1 reflection in transmission; E = 30 keV
(λ = 0.42 Å).

of diffraction, which can be considered as a chromatic
aberration, is given by

α1λ = ωi |1 + b| (11)

whereωi is the width of the intrinsic rocking curve andb
is the asymmetry factor defined as sin(δ + θB)/ sin(δ − θB),
with δ the angle between the crystal surface and the
diffracting lattice planes. This effect vanishes only in
symmetric Bragg geometry and was the motivation for our
choice of this experimental configuration. For comparison,
the divergence introduced by using a symmetric Laue
configuration is 18µrad for a silicon 111 monochromator at
30 keV, hence greater than the divergenceαS of the beam.

Because the mean phase in the object is of no
importance, the thickness of the samples that can be
investigated isnot limited to the longitudinal coherence
length, which depends on the wavelength spread1λ/λ

through lcoh = λ2/1λ, and is typically only 10µm at
1 Å for 1λ/λ = 10−5. The transmission functionF and
the phase modulationϕ in expression (2) are not affected
considerably as long as

1t(1 − n)1λ/λ2 � 1

where 1t(1 − n) is the maximum fluctuation in optical
pathlength in the sample.(1 − n) being very small, the
object may be much thicker or the spectral spread larger
than in a method directly sensitive to the phase and not
to the phase gradients. The Fresnel diffraction effects are
not very sensitive to a wavelength variation1λ as long as
1λDf 2 � 1, as indicated by expression (6). We conclude
that the finite spectral spread1λ/λ of typically 10−5 does
not affect the images described above.

3. Topography

3.1. Destroying spurious phase images on x-ray
topographs

It is now clear that the visibility of phase objects in the
simple set-up used in hard x-ray topographic work at the
ESRF is due to the high coherence of the synchrotron
radiation beam associated with the low emittance in the
machine and the huge source–sample distance.

Spurious phase images disturb not only projection
topographs as mentioned in the introduction but also section
topographs. Figure 8(a) is a section topograph of a 0.4 mm
thick α-LiIO 3 crystal, obtained at an energy of 30 keV
(wavelength 0.42Å), with the beam restricted to a blade
shape by a horizontal slit of vertical height 12µm. We
used the 8̄21 reflection and placed the photographic plate
and the slits at respectively 21 and−200 cm with respect
to the crystal, distances being counted as positive along the
beam direction. High-contrast streaks appear when a phase
object is introduced at the slit opening. They are parallel
to the projection of the diffraction vector, as expected
from the broadening of a point on the entrance surface
of the crystal to the width of the Borrmann fan at the exit
surface. Figure 8(b) shows a section topograph of the same
crystal, made with clean slits. These stripes on the section
topographs appear to be related to dust deposition at the
slit edges, probably due to electrostatic effects connected
to photoemission.

Phase inhomogeneities such as those due to defects of
beryllium windows along the beamline will probably be
very difficult to avoid. It is therefore desirable to devise a
way of eliminating these images of phase objects. It appears
that the possibility that we explored, namely the use of a
random phase screen (subsequently referred to as a RPS),
also gives the possibility of tailoring the apparent source
size, a feature which appears very useful for the future of
topography at third-generation synchrotron sources.

Good results were obtained by passing the beam
through rotating discs of ash wood a few millimetres thick,
cut perpendicularly to the fibre direction and mounted
on the shaft of an electric motor. The disc performed
several rotations over the exposure time to ensure correct
averaging. Figure 9(a) shows a transmission (projection)
topograph, made at x-ray energy 33.5 keV (wavelength
0.37 Å) in monochromatic mode(n, −m) of a Simox
sample without any screen in the beam. For the
monochromator and the sample we used respectively a
111 and a 022 reflection. The Simox sample consists
of a 540 µm thick silicon substrate with a 0.4µm
thick amorphous SiO2 layer and a 10µm thick epitaxic
silicon capping layer, obtained through ion implantation and
thermal annealing [22]. The images of dislocations, located
in the thin silicon layer, appear as dots but, as in figure 1,
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Figure 9. A monochromatic beam topograph of a Simox (see text) sample, 550 µm thick: (a) no random phase screen and
(b) 2 mm thick random phase screen. Dislocations in the top layer are visible in (a) as well as corrugations on a beryllium
window. The use of the rotating screen in (b) blurs completely the phase-image of the beryllium and affects only slightly the
image of the dislocations. Some dislocations can only be recognized in (b). Distances with respect to the Simox sample: film
17 cm, RPS −220 cm, window −280 cm; reflections in transmission: 111 (monochromator) and 022 (crystal under study);
E = 33.5 keV (λ = 0.37 Å).

are perturbed by horizontal lines due to corrugations on
the beryllium window. The film, the monochromator and
the window were respectively at 17,−125 and−280 cm
with respect to the crystal under study. Figure 9(b)
corresponds to the use of a rotating screen, 2 mm thick,
placed−220 cm (upstream) of the crystal. The phase image
of the beryllium window is completely smeared out. The
dislocation images are only slightly affected, due to the
relatively small crystal–film distance of 17 cm.

We tried to verify and to quantify the effect of the
thickness of the screen on the coherence properties of the
beam. This was achieved by setting two silicon crystals
downstream of the screen in(n, n) configuration and by
rotating the second one. We worked in transmission
geometry with the 111 reflection. Figure 10 shows the
rocking curves at x-ray energy 17.7 keV (λ = 0.7 Å)
respectively without any screen, with a 2 mm and a 6.8 mm
thick screen. Figure 11 shows the widths of the rocking
curves (FWHM) as a function of the screen thicknessL for
two different energies, 17.7 and 29.5 keV (λ respectively
0.7 and 0.425Å). Some thicknesses were achieved by

assembling two separate screens on a single motor shaft,
but no difference was observed compared with the case of
a single disc of the same total thickness.

Increasing the incident divergence too much can also
deteriorate the topographic image, as shown in figure 12.
Figure 12(a) corresponds to a ‘weak beam’ image of a
dislocation in a germanium sample obtained at x-ray energy
29 keV with a 111 reflection of a silicon monochromator.
The image obtained with a crystal–film distance of 34 cm
remains very narrow due to the extremely small apparent
source size. Figure 12(b) shows the dislocation in the same
situation, but with a 4 mmthick screen upstream of the
monochromator, leading to an unacceptable broadening of
the dislocation image.

This effect can be understood in several closely related
ways. Imposing a spatially inhomogeneous time-dependent
random phase and averaging the intensity over the exposure
time is equivalent to lowering the spatial coherence of the
beam, increasing the apparent source size or increasing
the incident divergence. For an object downstream of the
screen, the screen increases the incident divergenceα and
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Figure 10. Rocking curves for different thicknesses of the
RPS, obtained by setting two silicon crystals in (n, n)
configuration downstream with respect to the screen and
rocking the second one. 111 reflections in transmission;
E = 17.7 keV (λ = 0.7 Å).

Figure 11. The width of the rocking curves (FWHM) as a
function of the thickness of the screen for two energies:
E = 17.7 keV (λ = 0.7 Å) and E = 29.5 keV (λ = 0.425 Å).

causes a point blurring ofDα, where D is the distance
between the object and the image plane. If the object
is upstream with respect to the RPS (as is the case for
the beryllium window discussed previously), theoretical
analysis (see the appendix) shows that the principal factor
affecting the blurring is the distance between the screen
and the image plane. This increase in divergence smears
out totally the phase image of the beryllium defects in
figure 9(b), but affects to a much lesser degree the
topographic image of the Simox dislocations because the
crystal–film distance is much smaller than the screen–film
distance, 17 cm compared with 237 cm.

From figure 11 it is clear that the apparent source
size depends in a controllable way on the thickness of
the screen, because the refractive index in the screen
fluctuates with well-determined statistics. The situation is
very similar to that of the propagation of light in a randomly
inhomogeneous medium, a problem which has been much
investigated in the case of the atmosphere and is discussed
in detail in the series by Rytovet al [23]. The divergence
of the beam passing the screen increases due to statistical
refraction and diffraction in the screen. We limit ourselves
to the simplifying assumption that only refraction occurs

and model the remaining degree of coherence between two
points separated by a distancer, denoted byγRPS(r) (see
the appendix), of the beam which went through the RPS.
The important local characteristic of the medium is the
covariance of the refractive index, describing the average
way the refractive index fluctuates at two points separated
by a lateral distancer, and defined as

ψn(r) = 〈δn(s)δn(s + r)〉 (12)

where δn represents the fluctuation from the mean value
of the refractive index. This function is expected to
decease from its maximum valueσ 2

n (the dispersion of
the refractive index) atr = 0 to zero at infinite distance,
at a rate characterized by the correlation radiusln. This
correlation radius depends only on the geometry of the
distribution of inhomogeneities. A fractionp of the beam
may remain completely coherent. This fraction (defined
as p = limr→∞ γRPS(r)) decreases exponentially with the
thicknessL of the screen.

p = e−mL (13)

with
m = 8π2σ 2

n ln/λ
2 ∝ λ2 (14)

σn being proportional toλ2 because of the wavelength-
dependence of the refractive indexn as indicated by
expression (5).

A common model for the covarianceψn(r) is a
Gaussian distribution

ψn(r) = σ 2
n exp

(
− r2

πl2
n

)
. (15)

Under the assumption (15) the degree of coherence takes
the form

γRPS(r) = exp

{
−mL

[
1 − exp

(
− r2

πl2
n

)]}
(16)

which can be written

γRPS(r) = exp

{
−a

[
1 − exp

(
−b

a
r2

)]}
(17)

with two parametersa = mL andb = mL/(πl2
n).

If the coherent fraction tends to zero, namely for
a strong random phase screen, the degree of coherence
and the angular distribution will also be Gaussian with a
transverse coherence lengthl⊥ of the form [23]

l⊥ ∝
√

ln√
Lσn

λ ∝
√

ln

λ
√

L
(18)

and a divergenceαRPS of the form

αRPS = 2(ln 2)1/2

π
λ
√

b ∝ σn

(
L

ln

)1/2

∝ λ2

(
L

ln

)1/2

. (19)

According to this model, the divergence introduced by the
screen increases as the square root of the thickness and it is
strongly wavelength-dependent because it increases as the
square of the wavelength. This behaviour of the divergence
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Figure 12. A monochromatic beam topograph of a 325 µm thick germanium sample. Weak beam image of several
dislocations (one of which is indicated with an arrow) and some surface defects: (a) no screen and (b) 4 mm thick RPS. The
use of a screen which is too strong and a too large crystal–film distance gives strong blurring of the dislocation images. The
crystal–film distance is 34 cm; 111 reflections in transmission; E = 29 keV (λ = 0.43 Å).

can also be understood by considering the path of the optical
rays in the screen as a Brownian random walk. The number
of stepsN , namely the number of times that the ray is
refracted, is proportional to the thickness of the screenL.
The average angle of refraction is zero, but its standard
deviation is proportional toσn and thus toλ2. As a result
we expectαRPS ∝ σn

√
N ∝ λ2√L, as in expression (19).

The intensity as a function of the rocking angle in
figure 10 is the convolution of the rocking curve without the
screen and the angular distribution introduced by the screen.
Using the model above, we deconvolved the rocking curves
to obtain separately the contribution of the screen. For each
rocking curve, we determined using a least-squares method
the two parametersa andb in the general form of the degree
of coherence of expression (17); they are defined such that
the first characterizes the completely coherent fractionp

and the second the divergence of the beamαRPS (FWHM)
in the case of a strong screen(p ≈ 0). Figure 13(a) shows
the coherent fractionp as a function of the thicknessL
of the screen. p decreases as expected but not strictly
according to expression (13). Figure 13(b) shows the linear
relationship between the divergenceαRPS and the square
root of the thicknessL, as expected from expression (19).
The ratio of the slopes at wavelengths respectively 0.7 and
0.425Å equals 2.75(±0.06), in very good agreement with
the value 2.71 expected from the proportionality with the

square of the wavelength as indicated by expression (19).
The divergence can also be estimated from the images

of the dislocations in the germanium sample in figure 12.
Without any screen the width is 5µm for the dislocation
marked with an arrow in figure 12(a), whereas with the
screen the width is 20µm. This leads to an apparent
increase in divergence of 60µrad after deconvolution,
which is less than the value of 120µrad obtained from
the rocking curve. However, other dislocations are wider
and are hardly visible in figure 12(b). This discrepancy
may be related to the focusing–defocusing effect discussed
in [24].

3.2. Tailoring beam collimation for topography

The ‘diffraction imaging’ or ‘topography’ station of the
ESRF, which is under construction, will be located 145 m
from a wiggler source. This large distance was chosen in
order to have a large enough beam in the vertical direction
at the sample position. The beam divergence is expected
to be as small as 1.5µrad and the spectral spread after
monochromatization by a perfect single crystal will be
smaller than 10−5. This offers many advantages such
as easy production of a quasi-plane wave for topography
with high angular resolution or the possibility of working
with large crystal–film distances (up to 1 m) which
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Figure 13. Deconvolution of the rocking curves of figure 10
to obtain the effect of the RPS separately. (a) The
completely coherent part p decreasing with the thickness of
the screen L and (b) ‘divergence’ (see text) introduced by
the screen versus

√
L. The ratio of the slopes of the linear

fits is 2.75(±0.06), whereas the ratio of λ2 is 2.71.
E = 17.7 keV (λ = 0.7 Å) and E = 29.5 keV (λ = 0.425 Å).

may be required by the sample environment (vacuum or
low-temperature devices) without appreciable broadening
of the image [25]. On the other hand, these angular
and spectral spreads are sometimes too small for the
investigation of moderately imperfect crystals, due to the
varying Bragg condition in the sample. When working
in a monochromatic, dispersive configuration only a small
part of the specimen may be imaged because the energy
in the monochromatic beam section is position-dependent.
The above results show that rotating random phase screens,
in addition to eliminating parasitic contrast due to phase
objects, can also provide a flexible way of moderately
increasing the incident divergence, a feature which can be
very useful for some experiments.

4. Conclusions

We have explored some of the features of free-space
propagation, or Fresnel diffraction, or defocusing, imaging
of phase objects with synchrotron radiation hard x-rays.
The small emittance of the ESRF source, resulting in a

Figure 14. The use of the random phase screen placed
upstream (a) or downstream (b) with respect to the object.
The object is characterized by its transmission function
F (x); the RPS by the degree of coherence γRPS (x1 − x2).
D is the object–image plane distance and D ′ is the
screen–image plane distance.

narrow angular source size and fairly high spatial coherence
of the incident beam, is the essential ingredient making
observations of this kind possible with extremely simple
instrumentation. This method is complementary to other
forms of phase imaging that can be performed with hard x-
rays, which correspond in the case of light to interferometric
contrast [6] and Schlieren imaging [8].

The visibility of fine structure in complex materials
is considerably improved in comparison with absorption-
based imaging (radiography). Enticing possibilities appear
for phase imaging computer-assisted tomography.

Random phase screens have been shown to be an
effective way of destroying the phase images when they are
artefacts, namely in diffraction imaging (x-ray topography)
of defects in single-crystal specimens, through the decrease
in coherence, or increase in divergence, of the beam.
They should also be useful tools for tailoring the beam
in synchrotron radiation topography
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Appendix

This theoretical appendix concerns some wave-optical
aspects of importance for our study, mainly in the field
of Fresnel diffraction of quasi-monochromatic beams with
non-ideal spatial coherence properties.

A1. Representing the partial coherence of a
quasi-monochromatic beam

A complete description of the beam emitted by a partially
coherent source, such as an extended incoherent source,
is given by the mutual intensity. The mutual intensity,
resulting from incoherent superposition of individual waves
of wave-amplitudes9(i)

z (x), where x is the transverse
coordinate andz the coordinate along the mean direction
of propagation, is defined as

Jz(x1, x2) =
∑

i

9(i)
z (x1)9

(i)∗
z (x2). (A1)

For x1 = x2, we obtain the usual intensity

Iz(x) = Jz(x, x). (A2)

In the case of an extended incoherent source, the9(i)
z (x)

are the wavefunctions of the coherent beams emitted by the
different points(i) of the source. Consider, for instance, a
source at infinite distance with an angular distributionS(β),
as seen from the object. The mutual intensity is the same
in any observation plane (z = constant), namely

J (x1, x2) =
∫

dβS(β) exp

(
i
2π

λ
β(x1 − x2)

)
= S̃

(
x1 − x2

λ

)
(A3)

whereS and S̃ denote a pair of Fourier transforms.
The degree of coherenceγ is the normalized version

of J (x1, x2)

γ (x1, x2) = J (x1, x2)

[I (x1)I (x2)]1/2
. (A4)

This degree of coherence determines for example the
visibility of the interference fringes formed behind an
opaque screen with two identical pinholes.

A2. The Fourier transform Ĩ (f ) of the intensity
distribution I (x ) of a Fresnel diffraction image

In terms of mutual intensity the Fresnel transformation is

JD(x1, x2) = 1

λD

∫ ∞

−∞

∫ ∞

−∞
dη1 dη2

× exp
(

i
π

λD
[(x1 − η1)

2 − (x2 − η2)
2]

)
J0(η1, η2) (A5)

linking the mutual intensity in thez = D plane to the
mutual intensity in thez = 0 plane. Here we consider the
Fourier transformĨ (f ) of the intensityI (x) = JD(x, x),
defined as

Ĩ (f ) =
∫ ∞

−∞
dx ei2πxf I (x). (A6)

Introducing the integral representation of expression (A5)
into definition (A6), the triple integral simplifies to a single
integral

Ĩ (f ) =
∫ ∞

−∞
dη ei2πηf J0

(
η + λDf

2
, η − λDf

2

)
. (A7)

It is interesting to apply this formula to the case of a phase
object with a transmission functionF(η) = eiϕ(η) in the
z = 0 plane, illuminated by a partially coherent incident
beam described by the mutual intensity (A3). We find from
(A7)

Ĩ (f ) = S̃(Df )

∫ ∞

−∞
dη ei2πηf exp i

[
ϕ

(
η + λDf

2

)
−ϕ

(
η − λDf

2

) ]
. (A8)

From (A8) we obtain directly the ‘weak-phase’ approxima-
tion

Ĩ (f ) = S̃(Df )[δ(f ) + 2 sin(πλDf 2)ϕ̃(f )] (A9)

with the condition∣∣∣∣ϕ (
η + λDf

2

)
− ϕ

(
η − λDf

2

)∣∣∣∣ � 1 ∀η (A10)

which is a less restrictive and more precise condition than
the usually stated condition|ϕ(η)| � 1 for any η. The
effect of the source is the multiplicative factorS̃(Df ) in
expression (A8) and corresponds in direct space to the
convolution of the image for coherent illumination with the
projection of the angular distributionS(β) of the source on
the image plane from the object.

A3. The influence of a random phase screen on
Fresnel images

A random phase screen is a phase object with a
homogeneous random phaseϕ(x) characterized by the
correlation function

γRPS(x1 − x2) = 〈eiϕ(x1)e−iϕ(x2)〉. (A11)

This is the degree of coherence after transmission through
the screen of an incident plane wave. The degree of
coherence between two points is only dependent upon the
distance between the points due to the homogeneity of a
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screen in rotation. By means of expression (A3) we can
calculate the angular distributioñγRPS(β/λ) of the effective
incoherent source resulting from the presence of the RPS.
We now consider the effect of the presence of a RPS on
the Fresnel diffraction image of an object. Two cases are
to be considered.

A3.1. RPS upstream with respect to the object

This situation is schematically represented in figure 14(a).
The mutual intensity of the beam exiting from the object
with a transmission functionF(x) is given by

J (x1, x2) = γRPS(x1 − x2)F (x1)F
∗(x2) (A12)

whereγRPS(x1 − x2) does not depend on the RPS–object
distance. Using expression (A7) we get the Fourier
transform of the intensity on the image plane

Ĩ (f ) = γRPS(λDf )Ĩcoh(f ) (A13)

where Ĩcoh(f ) corresponds to the case without RPS. In
direct space, the effect of the RPS is to blur the image by
convolution of the ‘ideal’ imageIcoh(x) with the projection
of the angular distributioñγRPS(β/λ) on the image plane
from the object. The width of the projection isDαRPS ,
whereαRPS is the width of the angular distribution andD
is the object–image plane distance.

A3.2. RPS downstream with respect to the object

This situation is schematically represented in figure 14(b).
Now we have to apply first a Fresnel transformation of
F(x) from the object to the screen, giving the amplitude
distribution 9(x) just before the screen. The mutual
intensity just after the RPS is

J (x1, x2) = γRPS(x1 − x2)9(x1)9
∗(x2) (A14)

We apply a second Fresnel transformation over the
RPS–image plane distanceD′. Applying expression (A7),
the contribution of the RPS can be factored out to give

Ĩ (f ) = γRPS(λD′f )Ĩcoh(f ). (A15)

The effect of the RPS is entirely in the first term.Ĩcoh(f )

corresponds again to the case without RPS because two
successive Fresnel transformations, from object to screen
and from screen to image, are equivalent to a single Fresnel
transformation over the object–image plane distanceD.
The important difference with respect to the first case is
that now the blurring effect due to the RPS is related to the
projection of the angular distribution from the screen to the
image plane over the distanceD′.
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