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INTRODUCTION

The nature of the neural code remains a 

central issue of contention in neuroscience. 

Firing rate based schemes have dominated 

thinking for most of the past century, but 

there is a growing acceptance that tem-

poral patterns of neuronal activity have 

an important role to play, at least in some 

systems and circumstances. Neuronal oscil-

lations provide a central pillar in the evi-

dence supporting temporal coding, perhaps 

because temporal codes can ultimately be 

understood only in the context of popu-

lation activity and oscillations are at once 

experimentally accessible and analytically 

tractable.

In the many roles proposed for oscilla-

tory activity, a uniting theme is the con-

trol of spike timing, which can broadly be 

considered on two timescales. On the one 

hand, fast oscillations may be important 

in promoting precise synchronization of 

activity across cells, by providing millisec-

ond windows of enhanced spike probabil-

ity. Slow oscillations, on the other hand, 

can provide a broader temporal scaffold, 

against which other inputs, both tonic and 

phasic, can determine spike timing on the 

order of milliseconds to tens of millisec-

onds. Again, this could be important for 

synchronization of activity, but equally, 

could be used to control spike order, for 

coding, or plasticity purposes, or could 

be used to desynchronize discrete assem-

blies, enabling parallel processing. Here, 

we describe the cellular mechanisms 

underlying this broader timescale process 

in the hippocampus, specifically focusing 

on the effect of tonic and phasic inputs 

on the control of spike timing in single 

 hippocampal neurons during theta oscilla-

tions and the implications for information 

coding and storage.

TONIC INPUT: RATE-TO-PHASE 

TRANSFORM

Probably the best studied example of oscil-

lation-based coding is the phenomenon of 

hippocampal place cell phase precession in 

rodents (O’Keefe and Recce, 1993). Place 

cells are so-called because their activity 

increases when an animal passes through 

a limited spatial location, the place field, 

analogous to the receptive field familiar 

from sensory systems (O’Keefe, 1976). The 

hippocampus is notable for having strong 

theta-frequency oscillatory activity, and 

when place cell activity is examined rela-

tive to the phase of this oscillation, a sys-

tematic relation between spatial location 

and phase of firing is apparent. On entry 

to the place field, spikes occur at a certain 

restricted phase of the oscillation. As the 

animal traverses the place field, the phase of 

firing advances monotonically, leading to a 

strong correlation between spatial location 

and phase of firing in a given cell (O’Keefe 

and Recce, 1993). How is this phase code 

established? Numerous models at both cel-

lular and network levels have been proposed 

to account for phase precession (Burgess 

and O’Keefe, 1996; Tsodyks et al., 1996; 

Kamondi et al., 1998; Harris et al., 2002; 

Mehta et al., 2002; Lengyel et al., 2003), 

and recordings of the intracellular dynam-

ics during phase precession of place cells in 

area CA1 of hippocampus are beginning to 

constrain these models (Harvey et al., 2009), 

but the underlying mechanisms remain 

unclear. It emerges that a very simple bio-

physical mechanism, described below, can 

capture core features of the phenomenon. 

While it is entirely likely that more elabo-

rate mechanisms are at play in establish-

ing the detailed behavior of place cells, this 

simple mechanism nonetheless provides 

an excellent starting point for developing 

insight into the fundamental computations 

 available in an oscillatory neural system.

A key insight is that phase of firing is cor-

related with firing rate (Harris et al., 2002), 

at least for the initial period of entry into the 

place field (Huxter et al., 2003). Increasing 

firing rate typically implies increased depo-

larizing drive to a cell and so an obvious 

question is, what is the predicted effect of 

increased drive on the phase of firing for a 

cell receiving oscillatory input?

An intuitive account serves well in this case. 

For a fixed amplitude of membrane poten-

tial oscillation in the cell (whether internally 

generated or imposed by external inputs), as 

depolarizing drive increases, eventually a level 

of input is reached at which the peak of the 

oscillation just reaches threshold, and so firing 

occurs at that phase (Figure 1A). As depolar-

izing drive increases further, the membrane 

potential reaches threshold slightly earlier 

on the oscillation, yielding a phase advance. 

This intuition can be confirmed fairly easily 

using an analytical description of this system 

for a leaky integrate-and-fire (IF) model, at 

least to a first approximation, treating only a 

single spike on each cycle of the oscillation 

(Gerstner and Kistler, 2002; McLelland and 

Paulsen, 2009; for a more complete analytical 

account of oscillatory cycle locking behav-

iors, see Coombes and Bressloff, 1999). That 

real neurons demonstrate this behavior has 

been confirmed experimentally, both in vitro 

(Figure 1B; McLelland and Paulsen, 2009) 

and in vivo (Kamondi et al., 1998; Margrie 

and Schaefer, 2003). The analytical descrip-

tion is useful in providing a starting point to 

understand the effects of parameter changes 

(oscillatory input or intrinsic cell proper-

ties) on system behavior (Figure 1C). Several 

points are worth emphasizing (for a more 

detailed explanation, see McLelland and 

Paulsen, 2009):
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in the preceding cycle, so that (a) for 

coding purposes it may be difficult to 

distinguish first and last spikes and (b) 

the post-spike conductances from a late 

phase spike may interfere with phase-

locking of the subsequent early phase 

spike, such that the cell drops out of the 

phase-locked regime and chaotic firing 

patterns ensue.

(3) The system works best when the period 

of the oscillation is substantially lon-

ger than the membrane time constant 

of the cell (and, ideally, the dynamics 

of post-spike conductances). In this 

sufficiently synchronous that a spike 

is driven directly, irrespective of the 

phase of the ongoing oscillation).

(2) This mechanism can only yield up to 

180° of phase advance. As intuition 

suggests, and models and experiments 

support, increased drive not only 

advances the phase of the first spike 

on every cycle, it also allows spikes to 

occur at later phases. As such, for levels 

of input sufficient to advance the first 

spike by nearly 180°, there may be 

minimal separation between the first 

spike in a given cycle and the last spike 

(1) This transform from rate (of inputs) 

to phase is not reliant on any special 

properties of the cells, but is automati-

cally implemented in even very simple 

neuron models (single-compartment 

leaky IF). Any such neuron with an 

externally imposed membrane poten-

tial oscillation must behave like this 

(stronger inputs yield earlier phases 

of firing, or vice versa: early phases 

imply strong inputs) unless specific 

mechanisms are in place to override 

this (e.g., synaptic inputs are of suf-

ficient amplitude or multiple inputs 

A

B

C

FIGURE 1 | The rate-to-phase transform: Increasing tonic excitation 

produces progressive spike phase advancement. (A) The transform can be 

understood at an intuitive level. For a constant amplitude of membrane potential 

oscillation, as the level of tonic excitatory drive to the cell increases, a level is 

reached at which the peak of the oscillation is just suprathreshold (green trace). 

Further increases in excitatory drive lead to earlier crossing of threshold, that is, 

spike phase advance (blue trace). (B) Real cells implement this transform. Spike 

phase histogram from hippocampal pyramidal cells in vitro, receiving current 

injection to simulate a theta-frequency (5 Hz) oscillation of physiologically 

relevant amplitude (5 mV), and a range of levels of tonic drive. The first spike per 

cycle (black) advances systematically with increasing drive, and this process is 

not interrupted as secondary (dark gray) and even tertiary (light gray) spikes are 

recruited in each cycle. (C) The rate-to-phase transform can be described 

analytically, to a first approximation, facilitating an understanding of the way in 

which oscillation and cell parameters will affect the phase–current (φ–I) curve. 

(i) Changes in oscillation amplitude yield a horizontal scaling of the curve. 

(ii) Changes to cell input resistance yield only a sideways shift. (iii) Oscillation 

frequency and (iv) cell membrane time constant have equal but opposite effects 

(doubling oscillation frequency has the same effect as halving membrane time 

constant). Note also that, for some parameter ranges, relatively large changes in 

time constant (e.g., 5–20 ms here) can have fairly small effect on the slope of 

the φ–I curve. As a result, a constant change in the level of input across a group 

of cells could yield a similar phase-shift in each cell, independent of their 

individual conductance states. Modified from McLelland and Paulsen (2009).
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amplitude of synaptic input and, in CA1 

pyramidal neurons, the synaptic pathway 

from which the input emanates. In addi-

tion to excitatory synaptic inputs, inhibitory 

synaptic inputs such as the GABA
A 

receptor-

mediated inhibitory input impinging on the 

soma of CA1 pyramidal neurons, are also 

able to bi-directionally control the spike 

phases, with its effect reversed compared 

to that with excitatory input (Kwag and 

Paulsen, 2009b).

As with tonic input, the ability of excita-

tory phasic input to advance spike phases 

with excitatory input is intuitive – excitatory 

input on the ascending phase of the oscilla-

tion causes the membrane potential to reach 

threshold earlier, yielding phase advance. 

However, how can an excitatory input on 

the descending phase of oscillation delay the 

spike phase? So far, experimental and ana-

lytical models have demonstrated that there 

are two different mechanisms – intrinsic and 

synaptic. Intrinsic membrane conductances 

such as the hyperpolarization-activated 

non-specific cation channel underlying I
h
 

expressed in dendrites of pyramidal neu-

rons can mediate excitation-induced spike 

phase delay as shown experimentally and 

theoretically in layer V pyramidal neurons 

(Goldberg et al., 2007). As we show here 

using a single-compartment exponential IF 

neuron, addition of h-conductance alone 

was sufficient to cause spike phase delay 

with excitatory input (Figure 2). Recently, 

Prescott and Sejnowski (2008) argued that 

subthreshold conductances such as the 

 voltage-activated M-type K+ current (I
M

) 

could also improve spike-time coding. Thus, 

voltage-dependent intrinsic neuronal con-

ductances can contribute to the fine-tuning 

of the phase of spike firing.

However, spike phase delay can also depend 

on synaptic conductances. For example, 

(Kwag and Paulsen, 2009b) compared PRCs 

for different input-pathways to hippocam-

pal CA1 pyramidal cells: intra-hippocampal 

CA3 inputs and extra-hippocampal entorhi-

nal input (Kwag and Paulsen, 2009b). While 

phase advancement effects were similar, they 

found synaptic input-dependence of spike 

phase delay. Intra-hippocampal CA3 input 

(the Schaffer collateral input) synapsing onto 

the proximal dendrites of CA1 pyramidal cells 

induced only a small degree of spike phase 

delay whereas temporoammonic pathway 

(TA) input from layer III of the entorhinal 

of their phase relative to the cycle of the 

oscillation, that is, as phasic inputs. The the-

oretical treatment of phasic inputs is intrin-

sically more complex in nature, and can 

take into account differing synaptic origin, 

type, location, and amplitude, all of which 

could influence synaptic integration and 

the overall spike output, and consequently 

the spike phase. Here we will discuss how 

phasic inputs could influence temporal cod-

ing during theta-frequency oscillations and 

how such a code could directly influence the 

plasticity and computational learning rules 

of the hippocampal network.

Phase response curves (PRCs) have been 

adopted in experimental and theoretical 

studies as a systematic approach to formalize 

the impact of transient perturbations on the 

spiking behavior of an oscillatory neuron 

(Reyes and Fetz, 1993a,b; Ermentrout, 1996; 

Tateno et al., 2004; Netoff et al., 2005; Tsubo 

et al., 2007; Kwag and Paulsen, 2009a,b). 

In PRCs, the spike phase-shift caused by 

a small depolarizing or hyperpolarizing 

perturbation is calculated as a function of 

the phase of perturbation during the spike 

cycle (often maintained by a tonic depolar-

izing current). Although PRCs are mostly 

studied to predict the ability of neurons to 

synchronize their spiking activity in a net-

work, in fact, what the PRCs are measur-

ing is how phasic inputs influence the spike 

output-phase during oscillation. Such re-

interpretation and application of PRCs has 

been made in hippocampal CA1 and CA3 

pyramidal neurons (Lengyel et al., 2005; 

Kwag and Paulsen, 2009a,b). Depending on 

the timing of phasic excitatory inputs, PRCs 

in hippocampus showed not only spike 

phase advancement but also delay during 

oscillations (Lengyel et al., 2005; Kwag and 

Paulsen, 2009b). When the excitatory input 

was simulated on the ascending phase of 

theta, late in the cycle, the effect was similar 

to that of an increase in tonic drive, advanc-

ing spike phase. Strikingly, however, when 

the same excitatory input was simulated 

on the descending phase of the oscillation, 

early in the cycle, then the spike phase was 

delayed. Indeed, phasic inputs could delay 

spike phase beyond the peak of the mem-

brane potential oscillation, thus beyond the 

range that can be achieved with purely tonic 

input. The amount of spike phase advance-

ment and delay with phasic inputs in CA3 

pyramidal neurons is dependent on the 

regime, the trough of the oscillation 

is of sufficient duration for all mem-

brane potential perturbations from the 

preceding cycle to decay, so that only 

the tonic level of drive and the oscil-

lation itself determine the timing of 

the first spike in the subsequent cycle. 

Thus the system can support a range of 

firing rates without this perturbing the 

monotonic phase advance of the first 

spike per cycle. Further, in this regime, 

the system is remarkable in not needing 

to iterate toward a cycle-locked phase: 

the “correct” phase will be achieved 

in the first cycle following a change in 

tonic input, or at the latest, the second 

cycle.

(4) This transform can operate for faster 

oscillations (Tiesinga et al., 2002), but 

in that case the regime is slightly dif-

ferent. The threshold input current is 

likely to yield a firing rate below the 

frequency of the oscillation, and spikes 

in that state will not be phase-locked. 

Only when drive is sufficient to yield 

a cycle-locked firing rate will phase-

locking and phase precession with 

increased drive be implemented, and 

in that regime, the phase of firing on a 

given cycle is strongly dependent on the 

phase of firing in the preceding cycle 

(thus the system has to iterate toward 

the “correct” phase, and is also more 

susceptible to noisy perturbations of 

timing).

PHASIC INPUT: PHASE-TO-PHASE 

TRANSFORM

We have outlined how tonic input can con-

trol spike phase relative to slow (e.g., theta-

frequency) oscillatory input. However, real 

synaptic input can never truly be considered 

tonic, even in the unlikely event that the 

rate of synaptic events is constant. Thus, the 

system described above can present only an 

approximate starting point for the under-

standing of spike phase control against 

slow oscillations, albeit, we hope, a useful 

one. A neuron in an intact network at any 

given time point is likely to receive myriad 

additional synaptic inputs simultaneously 

with those arising as part of the ongoing 

network oscillation (Buzsaki, 2002). Since 

these inputs arrive during the oscillation, 

naturally, they can be considered in terms 
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cal and computational function in vivo is as 

yet unclear but recent experimental evidence 

suggests that delayed spike phases may code 

environmental novelty in CA1 pyramidal 

neurons (Lever et al., 2010).

GABA
B
 receptor-mediated inhibition when 

stimulating TA input, since it was reduced by 

blockade of GABA
B
 receptor-mediated inhi-

bition (Kwag and Paulsen, 2009b). Whether 

spike phase delay has any specific physiologi-

cortex (EC) synapsing onto the distal den-

drites of CA1 cells produced much larger 

spike phase delay. The increased spike phase 

delay with extra-hippocampal input from 

the EC is due to the preferential activation of 

FIGURE 2 | The phase-to-phase transform: Phasic input bi-directionally 

controls the postsynaptic spike timing during theta-frequency 

oscillation. (A) Plot of spike-time advancement and delay as a function of the 

time of phasic input in a simple model (a single-compartment exponential 

integrate-and-fire model, as described by Fourcaud-Trocme et al. (2003), g
L
 

10 nS, E
L
 −70 mV, C 200 pF, V

T
 −55 mV, ∆

T
 3 mV, V

reset
 −60 mV). An oscillation 

was driven by sinusoidal inhibitory conductance of 0–10 nS at 5 Hz, and a 

tonic depolarizing current of 120 pA was applied, bringing the neuron past 

threshold. Excitatory phasic current input with a duration of 10 ms and 

amplitude of 80 pA was given once per theta cycle and the corresponding 

spike phase-shift was plotted against the timing of the phasic input. (B) As 

(A), but with 4 nS of h-channel conductance included (parameters as 

described by Golding et al., 2005). Excitatory phasic current now yields a 

delay in spike phase if applied 200–120 ms before the peak of the oscillation. 

(C) Diagram of experimental set-up: CA1 hippocampal pyramidal neuron with 

recording electrode at the soma and extracellular electrode stimulating SC 

input (SC) and TA input (TA). (D) Example voltage traces recorded from CA1 

pyramidal neuron during theta oscillation induced by conductance clamp 

(black trace; minimum inhibitory conductance upward). Without any synaptic 

perturbation, the neuron spikes near the peak of the oscillation (gray, dashed 

line). When TA input is stimulated on the ascending phase of the oscillation 

(black bar), the postsynaptic spike is advanced (black trace). When TA input is 

stimulated on the descending phase of the oscillation (black bar), the 

postsynaptic spike is delayed (black trace). (E) Plot of spike-time 

advancement and delay as a function of the time of TA stimulation (black) or 

SC stimulation (light gray). Time zero is the average spike-time without TA 

stimulation. Data are means ± SD of 10 postsynaptic spike-times for each TA 

stimulation time. Adapted from Kwag and Paulsen (2009b).
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rons can be precisely controlled, whether 

the goal be synchronization for increased 

downstream synaptic effect, or control of 

spike timing for coding or plasticity pur-

poses. This kind of precision in relative 

spike timing is precisely what is measured 

by the mutual information estimate, and 

so that framework can provide a useful 

means of building a general understand-

ing of the system. Without entering into 

the detail of the calculation (Borst and 

Theunissen, 1999; McLelland and Paulsen, 

2009), really just two factors determine the 

mutual information:

(1) Variance of output-phases for a given 

input level. Temporal coding schemes in 

general have the theoretical advantage 

over rate codes that the encoding varia-

ble is continuous. Thus, if the system 

were noise free and if spike timing 

Here, we consider the simple example 

of the rate-to-phase transform for tonic 

inputs.

One approach to this question is to 

estimate the mutual information between 

the input signal (level of tonic excitation) 

and the output (phase of firing). Such an 

estimation serves two purposes. Firstly, 

when considering phase control as a coding 

mechanism directly (e.g., a certain phase 

implies a certain sensory stimulus or situ-

ation; Jensen and Lisman, 2000), it allows 

comparison with other candidate coding 

schemes, such as the rate code. Secondly, 

without explicitly considering phase as 

a direct coding mechanism, oscillatory 

control of spike timing could support 

various computational mechanisms (e.g., 

Hopfield, 1995), the implementation of 

which depends on the extent to which rela-

tive timing across a pair or group of neu-

One intriguing aspect of phasic input is 

that it can cause bidirectional spike phase-

shifts without changing the firing rate. This 

supports the idea that rate and temporal codes 

may co-exist, at least partially independently. 

The variables that could enrich the diversity 

of such temporal codes include amplitude, 

synaptic input-pathway, and types of inputs, 

to name a few. All in all, while we can consider 

the mean level of synaptic input to behave 

approximately according to the principles 

described for tonic input above, that is, 

increased input will advance spike phase, the 

potential remains for phasic inputs to both 

advance and delay postsynaptic spike phase 

dependent on the timing of the input.

PHASE CODE EFFICIENCY

Thus far we have described mechanisms by 

which the phase of firing can be controlled. 

Just how efficient are these mechanisms? 

A

B

C

D

FIGURE 3 | The precision of the rate-to-phase transform can be quantified 

by the mutual information between the tonic input level and the phase of 

firing. (A) For the rate-to-phase transform, mutual information increases with 

two main factors: (i) decreasing the variance in response phase for a given level 

of tonic input, and (ii) increasing the shift in phase for a given change in the level 

of tonic input, that is, the slope of the φ–I curve. These factors are both strongly 

influenced by oscillation amplitude, as follows. (B) The gradient of the 

membrane potential on approach to threshold influences the susceptibility to 

noise. For a fixed amplitude of membrane potential noise (dotted lines around 

the membrane potential trace), increasing oscillation amplitude will decrease 

response phase variance, increasing mutual information. (C) For precisely the 

same underlying reasons, increasing the oscillation amplitude will decrease the 

phase-shift for a given change in tonic input, decreasing the mutual information. 

(D) The efficiency of the rate-to-phase transform was estimated in hippocampal 

pyramidal cells in vitro, for a physiologically relevant amplitude (5 mV) of 

theta-frequency (5 Hz) oscillation. Mutual information was significantly higher for 

the phase of firing than for the rate of firing, and similar to that for the interspike 

interval where no oscillation was present (McLelland and Paulsen, 2009).



Kwag et al. Firing phase in neuronal computations

Frontiers in Human Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 3 | 6

to the theta oscillation, and consequently 

control the sign of plasticity locally in the 

hippocampus. The switch in plasticity was 

purely due to the change in spike timing 

thus the change in the pairing order of pre- 

and postsynaptic spike times (Figure 4). 

Simple computational modeling suggests 

that TA input, with its ability to bi-direc-

tionally control spike phases, is special 

in potentially being able to enforce both 

tLTP and tLTD in the hippocampal net-

work (Figure 4), whereas SC input, with 

less ability to phase delay the spike, would 

promote tLTD in the network (Kwag and 

Paulsen, 2009b). As entorhinal TA input is 

suggested to channel most external sensory 

information into the local hippocampal 

circuit, the control of STDP by TA input 

might have implications for how external 

sensory information could be encoded as 

spike phases relative to local hippocampal 

theta and eventually be stored in the local 

hippocampal network as synaptic weight 

changes. Thus, under the phasic input-con-

trolled phase coding regime, the change in 

spike timing may contribute to the control 

of neuronal computation during oscilla-

tion without changing the rate code (Kwag 

and Paulsen, 2009b). Interestingly, there is 

a temporal offset between preferred firing 

phases of entorhinal input and hippocam-

pal CA1 neurons in vivo and such innate 

temporal delay could render subdivisions 

of the entorhinal–hippocampal system 

computationally relatively independent 

(Mizuseki et al., 2009).

CONCLUSION

Mounting experimental evidence suggests 

that phase codes are important in hippoc-

ampal processing but the establishment of 

such phase codes and their roles in infor-

mation and memory processing are still 

unclear. Here we have discussed two modes 

by which phase can be controlled in CA1 

hippocampal neurons during oscillations – 

a rate-to-phase transform for tonic inputs 

and, building on the same framework, 

a phase-to-phase transform for phasic 

inputs. Phase codes are notable for their 

efficiency in information encoding, and 

also intrinsically provide a means by which 

phase-coded information can be stored as 

changes in synaptic weights. Although the 

exact nature of the neural code is yet to be 

uncovered, it is likely that both rate and 

phase codes co-exist and the mechanisms 

constrained by the demands of the compu-

tational task itself.

It is notable that, for a physiologically 

relevant amplitude of theta-frequency oscil-

lation, spike phase was found to encode sig-

nificantly more information about the level 

of tonic input than was encoded by spike 

rate (Figure 3D; McLelland and Paulsen, 

2009). This echoes the finding of increased 

accuracy in position reconstruction from 

hippocampal place cell activity when spike 

phase is taken into account, as compared 

to the spike rate alone (Jensen and Lisman, 

2000). Similarly, in the auditory system, it 

has recently been reported that the phase 

of spike patterns relative to low-frequency 

rhythms encoded additional information 

and was notably robust to noise (Kayser 

et al., 2009).

PHASE CODE FOR STORING 

INFORMATION

In addition to being a more efficient way of 

encoding information, precisely controlled 

spike times may contribute to information 

storage in a network as changes in synap-

tic weights via spike timing-dependent 

plasticity (STDP; Song et al., 2000). In 

STDP, timing-dependent long-term poten-

tiation (tLTP) of synaptic weight occurs 

when a presynaptic neuron spikes before 

the postsynaptic neuron, whereas timing-

dependent long-term depression (tLTD) 

occurs if this order is reversed, both within 

a time scale of a few tens of milliseconds 

(Markram et al., 1997; Bi and Poo, 1998). 

Thus, phasic control of spike phases dur-

ing oscillation might serve an important 

function in naturally organizing spikes 

into time windows conducive to STDP 

(Paulsen and Sejnowski, 2000; Song et al., 

2000). Under such a scenario, a mechanism 

that could control the spike phase could 

also control hippocampal information 

processing as well as plasticity. This has 

been demonstrated in the hippocampus 

where the spike phase control mechanism 

has been directly utilized to control the 

sign of STDP during oscillation (Kwag and 

Paulsen, 2009b). Pre-before-post pairing 

of CA3 and CA1 neurons would normally 

induce tLTP whereas post-before-pre pair-

ing of these neurons could induce tLTD 

(Bi and Poo, 1998; Debanne et al., 1998; 

Kwag and Paulsen, 2009b). However, the 

timing of direct activation of TA input 

could control the CA1 firing phase relative 

could be detected with arbitrary accu-

racy, then the code could be infinitely 

accurate. Obviously, for real neurons, 

this is not the case – even in vitro, in 

the absence of synaptic noise, intrinsic 

conductance noise results in a range of 

output-phases for a given level of exci-

tatory drive to a cell. As the variance of 

this distribution increases, the mutual 

information decreases (intuitively, 

comparing the responses to two levels 

of input, as the overlap in the distri-

butions of these responses increases, 

the inputs become less discriminable, 

Figure 3A). For real neurons, the nature 

of the spike generating  mechanism is 

such that spike timing precision incre-

ases with the steepness of approach 

to threshold.

(2) Slope of the φ/I curve. As well as the 

variance of phase distributions, the 

second factor determining mutual 

information in this system is the phase-

shift for a given change in input level. 

If this shift were large, then even with 

large response variance, different levels 

of input would remain discriminable 

(Figure 3A).

Consider the effect of oscillation param-

eters on this system. Larger amplitude 

oscillations will yield lower variance for a 

given level of input (Figure 3B) but less 

phase advance for any change in input 

level (Figures 3C and 1C). In terms of the 

mutual information, these are competing 

effects, and ultimately the net effect will 

depend on the specific system, and the 

level and temporal structure of any noise 

therein. Increasing the frequency of oscil-

lations would tend to have the same effect 

as increasing oscillation amplitude, in that 

membrane potential gradient tends to 

increase. However, because the membrane 

is a low pass filter, oscillation amplitude 

tends to decrease as frequency increases, 

offsetting this effect.

The full calculation also has to take into 

account the distribution of inputs encoun-

tered, but the above description should 

capture the essence of mutual information 

during oscillations. Thus one can imagine 

that competing demands determine opti-

mal oscillation amplitude and frequency, 

to which must be added the effects of the 

intrinsic properties of the cells involved. 

At the same time, oscillation frequency is 
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we have described here suggest how phase 

coding may yield efficiency in hippocampal 

network computations.
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