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Phase of phase conjugation and its effect in the double
phase-conjugate resonator
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Expressions for the phase of reflection from a photorefractive phase-conjugate mirror are obtained as a function of
the intensity and phase of the pump and the probe beams. The phase is independent of these parameters in
common photorefractive conditions in which the index grating is spatially shifted 900 with respect to the light-
interference pattern. Multiple solutions exist for the phase and intensity of the reflection at large coupling
strength. Oscillation conditions involving frequency detuning are obtained for the double phase-conjugate resona-
tor (resonator formed with two phase-conjugate mirrors).

In the past decade there was considerable theoretical and
experimental research in optical phase conjugation and its
applications, such as aberration correction,' information
processing,2 and optical bistability.3 Photorefractive crys-
tals were shown to provide exceptionally high phase-conju-
gate reflectivity in four-wave mixing (4WM) experiments.
Although there was significant progress in the coupled-wave
theory describing the nonlinear interactions in photorefrac-
tive crystals and the magnitude of the phase-conjugate re-
flectivity was solved,66 no attention was paid to the output
phase of the phase-conjugate beam. In this paper we inves-
tigate the output phase of the phase conjugation as a func-
tion of various parameters. These studies provide a better
understanding of 4WM in photorefractive media and are
important, for example, in the analysis of double phase-
conjugate resonators. 7 -9

In the following discussion we adopt the same notation as
in Ref. 4 and 5. The 4WM geometry is shown in Fig. 1. For
simplicity, we assume that the nonlinear medium is lossless
and that the four interacting beams are plane waves. Let
the electric-field amplitude associated with the jth beam be

dA1 =_ (AlA4 + A2 *A3)A4 ,
dz IO

d- - (AlA4* + A2*A3)A3*,
dz I o-

dA, -Y
d = I (AIA4* + A2*A3)A2 ,

dA 4* -

dz _ I (AlA 4 * + A2 *A3)A1 *,

(3a)

(3b)

(3c)

(3d)

where y is a complex coupling constant, y = 1yJ eiO, which is a
material parameter of the nonlinear medium.11 I0 is the
sum of the intensities of the four beams:

IO = Il + I2 + I3 + 14, (4)

where

Ij = JIA,2.

Ei = Aj(r)exp[i(kj- r - t)] + c. c.

and

Ai(r) = JAj(r)Iexp[iPj(r)], j = 1, ... 4,

(1) In the undepleted pump approximation in which IA 112,

1A212 >> IA312, 1A412 , Eqs. (3) reduce to

(2)
dA3 = Y 'A2)A
dz 10 [A212A3 + (A1A ) 4 *1, (5a)

where 4'j(r) is the phase factor associated with the complex
amplitude Aj(r). By using the coupled-wave theory for
thick holograms,'0 taking the slowly varying field approxi-
mation, and assuming that only one grating (the transmis-
sion grating in this case) dominates, the applicable coupled-
wave equations can be written as

dA 4 * =-'
dz -o [fA,1 2A4 * + (A,*A2*)A 3]. (5b)

With boundary conditions A3(1) = 0 and A4*(0), the solu-
tions to Eqs. (5) are
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Fig. 1. Schematic diagram of nonlinear four-wave mixing in a non-
linear medium. Al and A2 are the pumping beams, A3 is the phase-
conjugate output, and A4 is the probe beam.

A3(z) = A4 (°) rAle-A + 1 fexp[y(z - 1)] - 11, (6a)

A 4 *(z) = A 4 *(0) 1 + r-l exp[-y(z - 1)] + 1}, (6b)

where r is the pump-beam intensity ratio

A2 A2 * I2
r= - =- 

AlAl* I,

Since the phase of (AJ/A2 *) in Eq. (6a) is (4l + 42), which is
constant along z, the phase of A 3(0),4/3(0) is

43(0) = 4/l(0) + 4/2(l) - 44(0) + Im l r-le-y + 1]* (8)

In particular, 03(0) = t1(0) + /2(l) - 44(0) if -y is real, which
corresponds to a 7r/2 phase shift between the refractive-
index grating and the light-interference fringes. This hap-
pens in photorefractive crystals when the index grating is
formed by charge diffusion. In general, 4/3(0) is a function of
the complex coupling constant and the pump ratio.

Without the undepleted pump approximation, 4/3(0) can
be determined as follows:

O3(0) = Im l A (0) A 01() + 42(0) - 4/4(0). (9)

The given boundary conditions are Al(0), A2(l), A3 (1) = 0,

A4(0). Therefore 41(0), 42(l), and 44(0) are known.
[Al*(0)/A 2(0)] and [A3(0)/A4*(0)] are derived in Ref. (5),

E = A + (A2 + 41 li 2)1/211/2 e",.
[A - (A 2 + 41 cl 2)1/2J

Ic!l 2 is given by the equation

[ Icl2 - I1(0)12(1)] IAT + (A2 + 4 1Ic2)1/212

+ 41lc2 1 1 2I 4 (0)1 2(l) + 21el2I4 (0)(A 2 + 41cl2 )1/2(T + T*) = 0,

and T = tanh(pl).
4/2(0) in Eq. (9) can be calculated as follows:

Eq. (3b) into
If we rewrite

d(In A 2*) - y Al A3*

dz Io A2* A4 4I3)'

then integrate, we get

= 4/2(l) 0 A2*(z) A4(Z)4/2()0 \ () + {Re°A(R z)Im[ A3 (z) A 1*(z) 14(z)

+ (z) Re A (z) A*(z) D ( 
+ L~A2*(z) A4(Z) I4Zj 0

(12)

where Re and Im are the real and imaginary parts, respec-
tively. The integrand in Eq. (12) is known from Eqs. (10)
and (11); therefore 43(0) is completely known. Again, from
Eqs. (10) and (11), if y is real,

ImAl(z) A 3 *(z)- 1 0.

A2*(z) A4 (z)

Therefore

4/3(0) = 41(0) + 42(1) - 4/4(0), (13)

and the phase of the conjugate reflection is independent of
the intensities of the interacting beams. The integral in Eq.
(12) can be evaluated numerically. Figure 2 shows some
numerical curves of 43(0) against the ln probe ratio, ln q =
In1I4 (0)/[I,(O) + I2(l)], for various pump-beam ratios r and
phases of the complex coupling constant 0. lylj is chosen to
be 6 for all curves. Some of the curves show multiple values
in 43(0) that are associated with the multiple values in the
phase-conjugate intensity reflectivity R.12 Multivalued be-

AI(z) - [A - (A2 + 4! cl 2 )1/2]D e-9Z - [A + (A2 + 4 c 2 )1/2I1D' e"Z , (10)

A 2*(Z) 2c*(D elZ - D-1 eIz) J

A 3 (z) = [A - (A2 + 41 el 2 )1/2 ]E e-AZ - [A + (A2 + 41 li 2 )12]E- ejzl

A4*(z) 2c*(E e-lZ - E'1 e8z) J (11)

where

A = I2 + I3 - Il - 14

= (A2 + 41el2)1/2

r A + (A2 + 41el2 ) 12 + 21 Ci21/2(l) 1/2

LA - (A2 + 41el2 )1"2 + 2ici 2 /I 2 (l1)

havior in 43(0) and R will occur only when lyll is large. We
also observed that the vertical series of curves is similar to
the horizontal series of curves. In other words, the effect of
changing the pump ratio on the system is similar to that of
changing the phase shift between the light-interference pat-
tern and the refractive-index pattern. This is reasonable
because the phase shift between the light-interference pat-
tern and the index grating causes energy coupling from one
beam to the other beam. As a result, the pump ratio of the
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Fig. 2. Numerical curves of 4'3 versus ln q for various In r and 0.
1-y1l was chosen to be 6. For each of the curves, the range of 4/3 is
from 0 to 27r and from -5 to 5 for In q.

beam and the pumping beams will cause the refractive-index
grating responsible for beam coupling td move in space in
synchronism with the light-interference pattern. The finite
response time of the medium induces a phase lag between
the interference pattern and the index grating. As a result,
the coupling constant becomes complex, and it is given by

I 1 + i6r
(14)

according to current theories of the photorefractive effect.'3

The constant 'yo and i- are characteristics of the crystal and
its orientation with respect to the various beams. r, a char-
acteristic time for formation of gratings in the crystal, is
approximately inversely proportional to the total pumping
intensity,' 4 whereas in BaTiO3 and Sr,-BaxNb 2O6, T is of
the order of few seconds for milliwatt-per-square-millimeter
beams.'4 "15 The coupling constant lY is almost independent
of the total pumping intensity. With the nondegenerate
oscillation, the net round-trip phase change becomes

A4 = ('Pg2 - 4gd) + (2, + 422) - (4/,, + 412) + 2 '

system changes accordingly. This kind of similarity rela-
tionship is difficult to observe from the set of coupled-wave
equations, Eqs. (3), but is clearly shown in Fig. 2.

To demonstrate an application of the above analysis, let us
consider oscillation between a pair of photorefractive phase-
conjugate mirrors, which are pumped at the same frequency
X (see Fig. 3). In the absence of a photovoltaic effect and no
externally applied electric field, the index grating is formed
by charge diffusion, and if the oscillation is degenerate, then
-y is real. From Eq. (13) the net accumulated round-trip
phase change is A/\ = (421 + 422) - (411 + 412), where pij is the
input phase of the jth pumping beam in the ith phase-
conjugate mirror. In general A4i is not equal to 2 m-r, where
m is an integer. This should force the oscillation to be
nondegenerate.

Experimentally, we have observed this nondegenerate os-
cillation. 8 We can now analyze the situation in the light of
the earlier sections of this paper. Without loss of generality,
we take the frequency of the field propagating from left to
right as X - 6 and co + 6 for the field traveling in the opposite
direction, Fig. 3. This frequency offset between the probe

where l is the distance between the two phase-conjugate
mirrors. 4/

g is the phase shift in the phase-conjugate mirror
output when the grating is moving. It also depends on 6, r,
and the intensities of the oscillation beam and the pumping
beams. 4/g(6, T', Ij; i = 1... 4) = 43(0) + 44(0) - ,1(0) - 42(l)
can be calculated from Eqs. (8) and (12). The oscillation
condition becomes

A4 =.2m7r, (15)

where m is the integer. Since 6 is limited to the reciprocal
response time of the crystal, which is of the order of seconds,
the term 261/c is negligible.

In summary, we have obtained solutions to the phase of a
phase-conjugate beam in nonlinear 4WM. There exist mul-
tiple solutions at the large nonlinear coupling constant, e.g.,
1yll = 6. The similarity between the change in the pump
ratio r and the change in the phase angle k of the complex
coupling constant is demonstrated by numerically plotting
43(0) against the In probe ratio. An oscillation condition for
the double phase-conjugate resonator is also obtained.
When the index pattern is shifted 900 with respect to the
light-interference pattern, the phase of the reflectivity is
independent of the intensities of the interacting beams.
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Fig. 3. Schematic diagram of a double phase-conjugate resonator.
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