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Phase of the atomic polarization in high-order harmonic generation
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A recently formulated theory of high-order harmonic generation by low-frequency laser fields [Anne

L'Huillier et al. , Phys. Rev. A 48, R3433 (1993)] allows us to study the phase of the induced atomic dipole

moment. We show that this phase exhibits a piecewise-linear dependence on the laser intensity. This depen-

dence can be interpreted in quasiclassical terms, and is related to the action acquired by the electron during its

motion in the laser field. The value of the phase, however, is also affected by the quantum effects of tunneling,

diffusion, and interference. The phase of the dipole moment considerably influences the conversion efficiency,

as well as the coherence properties, of the harmonics generated in macroscopic media.

PACS number(s): 32.80.Rm, 42.65.Ky

I. INTRODUCTION

High-order harmonic generation (HG) in rare gases is one

of the most rapidly developing topics in the physics of atoms

interacting with intense laser pulses [1—3]. The theoretical

description of HG requires the solution of the time-

dependent Schrodinger equation [4] describing an atom in

the laser field. A good physical understanding of HG, how-

ever, is provided by a much simpler two-step model [5,6].
According to this model, the electron first tunnels [7,8] from

the atomic ground state through the barrier formed by the

Coulomb potential and the laser field. Its subsequent motion

can be treated classically and primarily consists in oscilla-

tions of the free charge in the laser field. The electron may

return to the vicinity of the nucleus and recombine to the

ground state. If it returns with a kinetic energy Fk;„, a photon

of energy Fk;„+I~, where I~ is the ionization potential, may

be emitted.

We have formulated recently [9,10] a fully quantum

implementation of the two-step model. Our theory is a ver-

sion of the strong-field approximation [7], valid in the tun-

neling limit U„~Ip) M where Up F. /4~ is the pondero-

motive potential, i.e., the mean kinetic energy acquired by
the electron in the laser field of amplitude E and frequency

cv. This theory is closely related to the one developed by
Becker et al. [11].It recovers the quasiclassical picture of the

two-step model, including, at the same time, effects of quan-

tum tunneling, diffusion, and interference.

A detailed knowledge of the single-atom dynamics is, in

general, not sufficient to interpret the experimental data. To

get good agreement between theory and experiment, it is

necessary to account for the effects of propagation and phase

matching of the harmonics in the macroscopic medium [12].
This aspect of the theory is becoming more and more impor-

tant with the rapid progress of experiments addressing ques-

tions such as angular distributions [13—15], temporal [16]
and spectral [17] profiles, and the precise location of the

harmonic cutoff [9].
A harmonic wave generated by an atom in the presence of

the laser field is usually shifted in phase with respect to the

fundamental. This phase shift is equal to the phase of the

atomic dipole moment induced by a (real) electromagnetic

field. Obviously, if this phase depends strongly on the laser

intensity, it will be different for different atoms in the inter-

action volume, due to the spatial variations of the intensity.

In the same way, it will be time dependent, owing to the

variation of the intensity during the laser pulse. In a recent

Letter [18], we have shown that the phase of the dipole mo-

ment is a piecewise-linear rapidly decreasing function of
U with a slope equal to approximately —3.2 for low inten-

sities (when the harmonic is in the cutoff of the spectrum)

and equal to approximately —5.8 at high intensities (when

the harmonic is in the plateau region). The slopes are uni-

versal and depend weakly on the harmonic order. The inten-

sity dependence of the phase plays a dramatic role in the

propagation and, in particular, in the spectral and spatial co-

herence properties of the generated harmonic field.

This aspect of harmonic generation has been barely tack-

led in the literature so far. Rae et al. [19]have discussed the

phase of the harmonic emission as a function of the position

in the spectrum (plateau or cutoff). The piecewise-linear de-

pendence of the phase on the intensity has been noted by
Macklin et al. [1],using the model of Ref. [11].Finally, the

influence of intensity-dependent phases on the angular distri-

butions has been pointed out by Peatross and co-workers

[13,20] and by Muffet et al. [21].
The aim of the present paper is to investigate in detail the

behavior of the phase of the dipole moment. In Sec. II we

recall the expression for the induced atomic dipole moment,

as follows from our theory [9,10,22]. It can be represented as

a sum of contributions from (complex) trajectories of the

electron. Each contribution contains a phase factor equal to

the real part of the action acquired by the electron following

the respective trajectory. Only those trajectories for which

the action is stationary contribute to the dipole moment in a

significant manner.

In Sec. III we show that, in the quasiclassical limit, there

exists one dominant trajectory for which the action is station-

ary. For this trajectory, the return time of the electron to the

nucleus is approximately 4.08 (in units in which to= 1) in

the cutoff and close to the full period 2m in the plateau. The

phase of the induced atomic dipole can be associated with

the action of the electron along this dominant trajectory. One

should stress, however, that, in the plateau, there exist more
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trajectories such that the action is stationary. Particularly im-

portant is the trajectory that corresponds to a rather short

return time (much less than a period). To get an accurate

quasiclassical approximation of the induced dipole moment,

one has to account for the contribution of these two trajec-

tories and their quantum interference [23].
In Sec. IV we discuss some of our numerical results con-

cerning propagation effects. Here we compare conversion

efficiency and spatial profiles as a function of the relative

position of the atomic jet and the laser focus for various

expressions of the atomic polarization. We clearly demon-

strate that in order to get accurate results, one has to account

very precisely for the phase of the atomic dipole and incor-

porate quantum interference effects. Section V contains our

conclusions.

II. INDUCED ATOMIC DIPOLE MOMENT

We consider an atom in a single-electron approximation

under the influence of the laser field E(t) of arbitrary polar-

ization (we use atomic units, but express all energies in terms

of the photon energy). In the length gauge, the Schrodinger

equation takes the form

the probability amplitude for an electron to make the transi-

tion to the continuum at time t with the canonical momen-

tum p. The electronic wave function is then propagated until

the time t and acquires a phase factor equal to

exp[ —iS(p, t, t')], where S(p, t, t') is the quasiclassical action.

The effects of the atomic potential are assumed to be small

between t ' and t, so that S(p, t, t ') actually describes the

motion of an electron freely moving in the laser field with a

constant momentum p. Note, however, that S(p, t, t') does

incorporate some effects of the binding potential through its

dependence on J . The electron recombines at time t with an

amplitude equal to d*(p —A(t)), which gives the first factor

entering Eq. (3).
In principle, Eq. (3) can be used to evaluate x(t). The

calculation of the four-dimensional integral is, however, a

rather difficult task. As shown in Ref. [10], the momentum

integration can be performed using the saddle-point tech-

nique. This leads to the expression for x(t) (valid in the large

t limit)

x(t) =i di.(~l(i rl2+ e)) ' d*(p, —A(t))

i —~+(x, t))=[—
—,
'V' + V(x) —E(t) x]~W(x, t)). (1)

Bt
X exp[ —iS(p, , t, r)] E(t —i) d(p, —A(t —r))+ c.c.,

p=v+A(t), (2)

A(t) denoting the potential vector, and we neglect the deple-

tion of the atomic ground state. The expression for the dipole

moment is

V(x) is the atomic potential. Initially, the system is in the

ground state ~0). We denote by ~v) the eigenstates of the

field-free Hamiltonian corresponding to outgoing electrons

with velocity U.

We skip here the details of the derivation and the discus-

sion of the validity range of our strong-field approximation,

since they are thoroughly discussed in Refs. [10,22]. Within

our approach, the expression for the induced atomic dipole

moment x(t) =('P(t) x~'If(t)) can be written in the form of
a generalized Landau-Dyhne formula [24]. We introduce a

variable that is a canonical momentum

from which the Fourier components

f2~
xM=, dt x(t)exp(+iMt)

Jo
(6)

d(p) =i
27/2 5/4

can be easily calculated. In the above formulas e is a small

positive number, while 7. denotes the electron's return time

t t'. The expr—ession (5) can be easily generalized to in-

clude the effects of depletion of the ground state t10,22], but

we shall not discuss this generalization here. To proceed, we

have to specify the bare (field-free) atomic dipole matrix

elements. For the case of hydrogenlike atoms and for transi-

tions from s states, the field-free dipole matrix elements can

be approximated by [10,25]

t

x(t) =i, dt' d p d" (p
—A(t))

30

Xexp[ —iS(p, t, t')] E(t'). d(p A(t'))+c.c., —

where the quasiclassical action is

S(p, t, t') = dt" +I„

(3)

(4)

with o. =2I . The results of our approach depend, however,

rather weakly on the form of d(p). This observation (dis-

cussed in detail in Refs. [10,22]) allows us to formulate a

very powerful approximate expression for the Fourier com-

ponents xM, using the saddle-point method applied to all five

integration variables of Eq. (6), in which x(t) is replaced by

the right-hand term of Eq. (3):p, t, and r.

d(v ) = (v ~x ~0) denotes the field-free dipole transition matrix

element.

Equation (3) has a physical interpretation [24] as a sum of
probability amplitudes corresponding to the following pro-

cesses. The last term in the integral E(t') d(p —A(t')) is

III. QUASICLASSICAL APPROXIMATION

Since the results do not depend much on the bare atomic

dipole elements, we can set d(p) =const and, for large M
values,
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Jo Jo
dr d p exp[ —iS(p, t, r)+iMt]

(8)

In order to apply the saddle-point method to the above ex-

pression, we must find the stationary points of the Legendre

transformed action S(p, t, r) Mt—The. se stationary points

are solutions of the saddle-point equations, obtained by

equating the derivatives of S(p, t, r)
—Mt with respect to

p, t, ~ to zero:

rp — dt'A(t') =0,
J~ —~

(9)

(10)

[p A(t r—)]-
+I =0.

xM~Q [1/(ir, /2+ e)] ' [1/det(t, , r,)]"

X exp[ —i S(p, , t, , r, ) +i Mt, ], (12)

where det(t, r) denotes the determinant of the 2X2 matrix

formed by the second derivatives of the action with respect

to t and r, at p, = (p, (t, r),0,0), with p, (t, r) calculated from

Eq. (9). The sum in Eq. (12) extends over the relevant saddle

points, i.e., the saddle points that are physically acceptable
and that give the most significant contributions. The remain-

ing questions are which saddle points are relevant and how

are they found.

In order to answer the above question, we consider, first,

the case of I ~0. For M ~3.17U„, i.e., when the harmonic

is beyond the plateau region (i.e., in the cutoff region), there

are no real solutions of the saddle-point equations. There

exists, however, a complex solution (t, , r, ,fi,), which we

denote by (t2, r2,p2) for reasons that will become clear later.

The complex return time 7.
2 for this solution has a real part

that is approximately equal to 4.08. This solution describes
the most significant contribution to the sum (12) and is there-

fore the only relevant saddle point for this regime of param-

Equation (9) expresses the fact that the relevant electron tra-

jectories correspond to the electron returning back to the

starting point after the time 7, Eq. (10) expresses energy

conservation, and finally, Eq. (11) (which cannot be fulfilled

in the real numbers domain) describes tunneling occurring at

time t r. As dis—cussed in Ref. [26], the above equations

have typically many complex solutions.

We now restrict ourselves to the case of a linear-polarized

field E(t) = v4 U„[cos(t),0,0]. Equation (9) implies then that

the components of the momentum perpendicular to the po-
larization direction vanish. It reduces to a scalar equation for

the remaining component of the momentum that is parallel to
the polarization direction. The dipole moment x(t) and its

Fourier components xM are also parallel to the polarization

direction. xM can be written as

eters. This complex saddle-point solution becomes strictly

real (i.e., the imaginary parts of t2, rz, and pz vanish) as the

harmonic reaches the cutoff (i.e., as 3.17U~ becomes equal

to M) and bifurcates then into two real saddle-point solu-

tions in the plateau region. The first of them, which we de-

note (t, , r, ,pi), corresponds to a short return time ri ——0,
whereas the other one corresponds to a return time
7.2=2~. It is the second solution for I~NO that can be ob-

tained by continuous deformation of (tg, rp, p2) when the

intensity passes through the cutoff region (see below) and

that is why we keep the same notation for it. In principle, one

could think that the second solution would be less relevant

since for large ~ diffusion effects become more significant.

In practice, both of these solutions are equally relevant, as

we shall show below. As U increases and reaches further

thresholds (2.4U„=M, 2U„=M; see Fig. 1 of [10]), more

and more real solutions of the saddle-point equations appear.

These, however, correspond to really long return times and

electron trajectories with multiple returns to the nucleus and

their contribution is indeed negligible due to quantum diffu-

sion effects.
The situation is more complex when I 4 0, since there are

no real solutions of the saddle-point equation even in the

plateau region. However, even for quite high values of
I = 10—20, we can identify the two solutions corresponding

to Re(ri)=0 and Re(rz)=2~. Both of them give compa-

rable contributions in the plateau region, with the prevailing

role of the solution ~2 corresponding to the longer return

times. This is somewhat surprising, but one should keep in

mind that the value of xM is determined, in the first place, by
the imaginary part of Legendre transformed action

S(p, , t, , )rM t, , which (f—or the physically acceptable
saddle points) has to be negative and causes exponential

damping of the otherwise unimodular probability amplitudes.

For the trajectories with the longer return time Re(r) the

tunneling occurs when the laser field is close to its maxi-

mum, i.e., the potential barrier is relatively narrow. For this

reason the imaginary part of the action (induced by the

imaginary tunneling time) is relatively small. On the other

hand, for the trajectories with shorter Re(r), the tunneling

occurs when the laser field is much smaller, implying a larger

barrier, a larger tunneling time, and a larger imaginary part of
the action. The larger diffusion effects for the saddle point

with larger Re(r) are thus compensated by the smaller

imaginary part of the corresponding complex action. As U

decreases, the solution (t2, r2, p2) is smoothly deformed.

When it reaches the plateau-cutoff transition, it merges into

the solution identified, in the case of I~ = 0, with

Re(rz) =4.08. The solution (t, , r, ,p, ) does not merge to-

gether with (tp, '72, p2); on the contrary, it becomes unphysi-

cal since the imaginary part of the action becomes positive.
Equation (12) shows that the phase of the induced atomic

dipoles is determined by the value of the action acquired

along the most relevant saddle-point trajectory. Since the ac-

tion is primarly determined by the ponderomotive energy

[i.e., S(p, , t, , )=rU„r, +. ; see Refs. [10,22]], we con-

clude that the phase should be approximately equal to
4 08Up if the harmonic is in the cutoff and approximately

equal to —6.28U if the harmonic is in the plateau region.
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FIG. 1. Intensity and phase of the 45th harmonic emitted by a

single neon atom as a function of the laser intensity. The dashed line

represents the exact result and the solid line is the result of the

saddle-point approximation accounting for (a) a single, most re1-

evant, saddle point and (b) two saddle points.

Moreover, the slopes of these piecewise-linear dependences
should not vary with the harmonic number or atomic species.
These conclusions and rough estimates are quite accurate, as
shown below, but are influenced by the complex character of
the relevant electron trajectories.

In Fig. 1 we illustrate the above analysis with numerical

calculations. We present the intensity dependence of the

strength and phase of the 45th harmonic of 825-nm radiation,

generated by a neon atom. (I„=14.4 in units of the photon

energy 1.5 eV.) Dashed curves correspond to the "exact"
results obtained from the solution of Eqs. (5) and (6), using

hydrogenic dipole moments [Eq. (7)]. They were obtained

using the technique of Bessel function expansion developed
in Ref. [10].Solid curves were obtained with the help of the

saddle-point approach [Eq. (12)].The saddle points were cal-
culated using a two-dimensional complex Newton method.

Obviously, the absolute value of the harmonic strength and

phase cannot be calculated from Eq. (12) since it does not
include the field-free atomic dipole matrix elements. The re-

sults obtained using the saddle-point approach were therefore
normalized to the exact ones at low intensity (in the cutoff
region).

In Fig. 1(a) we present the exact result (dashed curve) and

the contribution of the "most relevant" saddle point, corre-
sponding to the return time r2 (solid curve). The results are
in excellent agreement, both for the phase and for the har-

monic intensity, in the cutoff region. Note that the slope for
the phase dependence (= —3.2) is smaller than the 4.08 pre-
dicted by the rough estimate presented above. This is be-
cause the total action contains significant corrections to the

ponderomotive energy contribution.
In the plateau region, the exact result is dominated by

quantum interference effects. The single saddle-point ap-
proximation reproduces reasonably well the behavior of the
exact curve averaged over quantum interferences, being

slightly above it. In particular, the slope of the phase depen-

dence calculated with the single saddle-point approximation,

equal to —5.8 [27], coincides with the averaged slope for the

exact result. We remind the reader that both the exact and the

saddle-point results have been obtained neglecting depletion
of the atomic ground state due to ionization. Such neglect,
however, is appropriate since in the remainder of this paper
we are going to consider laser pulses with the peak intensity

of 6X 10' W/cm and the effects of depletion start to play a

role at intensities higher than 6X 10' W/cm .

Since propagation effects tend to wash out quantum inter-

ference effects, one could conclude from Fig. 1(a) that the

single saddle-point approximation is sufficient to describe
harmonic generation. In fact, a similar approximation has
been used in Ref. [23] to describe the efficiency of the har-

monic production as a function of laser ellipticity. However,
as we show in Sec. IV, in general, such an approach is over-

simplified. In particular, in order to describe the spatiotem-

poral coherence properties of the harmonics, it is necessary
to have a better single-atom description, which can be
achieved by accounting for two saddle points in the plateau
region.

In Fig. 1(b) we present the same results as in Fig. 1(a),
except that, for intensities at which the harmonic enters the

plateau, we now account for the contribution of two saddle

points, corresponding to the return times 7.
&

and ~2. As al-

ready mentioned, the saddle point (tl, rt, pt) becomes un-

physical at low intensities. We cut off its contribution in a
smooth way, in order to avoid any rapid, unphysical variation
of the dipole moment [28].The agreement between the exact
and the approximated result is now striking. The two saddle

points account for most of the quantum interference effects
in the intensity dependence of both harmonic strength and

phase. One should not forget, however, that the exact result
contains contributions from other electron trajectories (i.e.,

other relevant saddle points) and displays thus a more com-

plex interference pattern.

The results presented here are quite general, i.e., indepen-

dent of the atomic species and harmonic number. In particu-

lar, the slopes of the phase dependence on U~ are practically
universal. For instance, in the cutoff, they vary from —3.15
to —3.25 between the 23rd and the 63rd harmonic in neon.
In the plateau, the corresponding variation is —6.1 to
—5.7. Similarly, these slopes are —3.1 and —6.1, respec-
tively, for the 23rd harmonic in argon (I„=10.5). We con-
clude that the piecewise-linear behavior of the phase of the
induced dipole moment is a universal property and that it can
be nicely explained with the simple quasiclassical theory.

IV. ROLE OF THE PHASE IN PROPAGATION

As pointed out in Ref. [18], the phase of the induced
atomic dipole moment plays a crucial role in the propaga-
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FIG. 2. Phase of the total polarization along the propagation axis

(the laser is focused at z = 0) at several laser intensities, from 2 to 6
X 10' W/cm . The laser propagates from the left to the right.

tion. In Fig. 2 we show the variation of the phase of the

polarization at the 45th harmonic frequency on the propaga-

tion axis z, for several peak intensities, from 2 to 6 X 10'

W/cm . Two terms contribute: (i) a propagation term in-

duced by the phase shift of the Gaussian fundamental field,

equal to —M arctan(2z/b) (M =45 and b is the confocal pa-

rameter, here equal to 5 mm), and (ii) the phase of the in-

duced dipole moment, which depends on the z coordi-

nate through the variation of the intensity I(z) = Io /

(1+4z /b ). The phase variation over the 8 mm shown in

Fig. 2 is huge (- 180 rad, i.e., 28 X 2') and increases with

the peak intensity. The piecewise-linear intensity dependence

of the atomic phase leads to a piecewise-nonlinear z depen-

dence of the total polarization phase. The plateau-cutoff tran-

sition (which takes place at =2.4X 10' W/cm; see Fig. 1),
is observed at different ~z~ depending on the peak intensity

(e.g. , at ~z~
=3 mm for I=6X10' W/cm ). Note that the

structures induced by the quantum interferences in the pla-

teau lead to phase variations of approximately 2'/3 over a

very short length. As the intensity increases, the induced

phase becomes more and more important in determining the

total phase variation.

The phase variation is more important for negative z,
where the variation of both terms, due to the induced dipole

and to the propagation, add, than for positive z, where they

compensate. Phase matching is optimized when the phase

variation of the driving polarization is minimized over the

medium length (= 1 mm). Consequently, it strongly depends

on the position of the medium relative to the laser focus.
When the laser is focused before the generating medium

(e.g., the medium is centered at z=3 mm for I=6X10'
W/cm2), phase matching on the optical axis is efficient and

the spatial and spectral harmonics are regular and Gaussian-

like [18].When the laser is focused in the nonlinear medium

(centered at z = 0), the conversion efficiency is reduced due

to poor phase-matching conditions, in spite of a high laser

intensity in the medium. The phase fluctuations due to the

quantum interference between the two most relevant electron

trajectories (corresponding to 7, and r2) seem to be respon-

sible for this effect. Finally, when the laser is focused after

FIG. 3. Total number of photons for the 45th harmonic as a

function of the position of the center of the medium z (the laser is

focused at z=0). The dashed line represents the exact result, the

long-dashed line the result of the one-saddle-point approximation,

the solid line the result of the two-saddle-point approximation, and

the dot-dashed line the result obtained by completely neglecting the

atomic phase. The intensity of the laser pulse at the focus is

6 X 10' W/cm

the atomic jet (e.g. , centered at z= —1 mm for I= 6 X 10'

W/cm ), efficient phase matching is prevented on axis, but

becomes possible off axis This .leads to a high conversion

efficiency, but to distorted spatial and temporal profiles (see
Ref. [18]).

These points are illustrated in Figs. 3 and 4. The propa-

gated results were obtained using the numerical methods de-

scribed in Ref. [12].The laser is supposed to be Gaussian in

space and square in time. The atomic density profile is a

(truncated) Lorentzian function with a 0.8 mm full width at

half maximum. For the purpose of this paper, we compare

the exact results with the ones obtained with the help of the

quasiclassical approximation and we examine the role of the

two saddle points corresponding to the return times 7.
&

and

v2. In Fig. 3 we present the conversion efficiency for the

45th harmonic as a function of the position of the center of
the nonlinear medium relative to the laser focus located at

z=0. The exact (dashed) curve exhibits clearly the two

maxima corresponding to the two situations described above

(phase matching on and off axis). The long-dashed line

shows the result obtained with the single saddle-point ap-

proximation [see Fig. 1(a)]. It reproduces qualitatively the

character of the dependence, with the two maxima. The po-

sitions of the maxima, however, are not accurate and the

harmonic strength for positive values of z is evidently too

small. The reason is that the maximum for positive z (=3
mm) occurs when the medium experiences the intensities

just below (or at) the plateau-cutoff transition. In this region

of intensities there are large discrepancies between the exact
and single saddle-point dipoles [see Fig. 1(a)]. The exact

intensity dependence of the harmonic strength has a maxi-

mum close to the plateau-cutoff transition due to the con-

structive interference of the two relevant electron trajecto-

ries. The single saddle-point approximation, on the other

hand, does not account at all for this effect. Additionally, the

latter approximation leads to a more rapid phase variation in
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harmonic-generation process in question.

The single-atom results obtained with our theoretical ap-

proach [10] can be reproduced with a simplified quasi-

classical method. In this theory, the Fourier components of
the induced atomic dipole are given as sums of contributions

of the relevant electron trajectories. The trajectories are com-

plex since they account for tunneling effects. For intensities

corresponding to the cutoff region, there is only one relevant

trajectory (corresponding to the electron returning after the

time =4, with the maximum kinetic energy). For intensities

within the plateau region, an accurate description requires to

account for the contribution of two relevant trajectories, cor-

responding to short (=0) and longer return times (=6).The

quasiclassical approximation is very accurate provided it ac-

counts for these two trajectories. This is especially important

for the detailed description of harmonic generation from

macroscopic media.

Having gained confidence in the quasiclassical (saddle-

point) method, we intend to generalize the results of this

paper to other physically interesting cases. Several groups

have begun to study experimentally harmonic generation by
two colors [29]. Theoretical calculations of the atomic re-

sponse to two-color laser fields are very tedious. Numerical

solutions of the time-dependent Schrodinger equations re-

quire very long computational times [30]. Applications of
our exact approach or of the model of Long et al. [31] re-

quire the use of multiple expansions of Bessel functions and

are also numerically quite demanding. For these reasons, we

think that the quasiclassical method provides a possible al-

ternative tool that is fast enough to provide a sufficient

amount of data of sufficient accuracy to run the propagation
codes. This aspect is especially important for the two-color

problem, since propagation effects are expected to play a

crucial role.
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