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Abstract

In image processing or pattern recognition, Fourier Transform is widely used for 

frequency-domain analysis. In particular, the Phase Only Correlation (POC) method 

demonstrates high robustness and accuracy in the pattern matching and the image 

registration. However, there is a disadvantage in required memory machine because of 

the calculation of 2D-FFT. In this case, Hartley transform can be a very good substitute 

for more commonly used Fourier transform when the real input data are concerned. 

The Hartley transform is similar to the Fourier transform, but it is free from the need 

to process complex numbers. It also has some distinctive features that make it an 

interesting choice when a greater efficiency in memory requirements is needed. In 
this paper we show the correspondence between the Phase-Only Correlation (POC) 

function obtained by means of FFT and by FHT.

ABBREVIATIONS

FFT: Fast Fourier Transform; FHT: Fast Harley Transform; 

POC: Phase-Only Correlation; PIV: Particle Image Velocimetry

INTRODUCTION

The automatic determination of similarity between two 

structured data sets is fundamental to the disciplines of pattern 

recognition and image processing [1,2].The cross-correlation 

between two data sets is a good method to measure their 

similarity. The cross-correlation function is used extensively in 

pattern recognition and signal detection. We know that projecting 

one signal onto another is a means of measuring how much of the second signal is present in the first. Since a digital image can be 
considered as a dataset, cross-correlation can be used to detect 

the similarity and the lagging between the images. In general, the 

standard cross correlation [3,4] yields several broad peaks and a main peak whose maximum is not always; therefore, it is difficult 
to locate the maximum; see Figure 1 (c). One of the alternatives 

to the cross-correlation function is the Fourier Phase-Only 

Correlation (POC) function [5,6]. The POC function yields an even 

sharp maximum at the best match point, as shown in Figure 1(d); 

therefore, it is easy to locate the maximum.

The Phase-Only Correlation (POC) method demonstrates 

high robustness and accuracy in the pattern matching and the 

image registration. However, there is a disadvantage in required 

memory machine because of the calculation of 2D-FFT.

The Fast Hartley Transform (FHT) can be a valid alternative 

to Fast Fourier Transform (FFT) [7].The Hartley transform 

[8,9] resembles a Fourier transform but it is free from the need 

to process complex numbers. The Hartley transform also has 

some better properties and faster algorithms than the Fourier 

one, therefore it can represent a valid alternative, particularly interesting when a greater efficiency in memory requirements is 
needed.

In this work we present a Hartley transform algorithm for 

accurate and fast elaboration of POC. This paper is organized as follows: Section 2 give the definition 
of POC function and its basic properties, the properties of Harley transform and the definition of POC in Hartley space. Section 3 
presents a set of experiments for evaluating performance of the 

proposed methods. In section 4, we end with some conclusions.

MATERIALS AND METHODS

Phase-Only Correlation (POC)

The Phase-Only Correlation (POC) function (or simply “phase-

correlation”) has been successfully applied to high-accuracy 

image registration tasks for computer vision applications 

[10,11], for Fingerprint Matching [12], for Iris Recognition [13], 

Palmar Recognition [14],in PIV analysis [15,16] and in security 

application [17-19].

Phase correlation algorithm uses the cross-power spectrum 

to get the translation factor between two images. Assume 

that there are two images ( )1 ,I x y  and ( )2 ,I x y and the 

translation between them is as following:

( ) ( )2 1 0 0, ,I x y I x x y y= − − .     (1)

The Fourier transformation:

( ) ( ) ( )2 1 0 0, , expF u v F u v j u x v y= ⋅ − +    . (2)

In equation (2), ( )1 ,F u v  and ( )2 ,F u v  are the Fourier 

transform of ( )1 ,I x y and ( )2 ,I x y . The cross-power 
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spectrum will be:

( ) ( )

( ) ( )
( )1 2

0 0

1 2

* *

* *

, ,
exp

, ,

F u v F u v
j u x v y

F u v F u v

⋅
= − +  ⋅

          (3)

with ( )1

* ,F u v  the conjugate function of ( )1 ,F u v . We can get an impulse function ( )0 0,x x y yδ − −  about the value of 

translation invariant 
0x  and 

0y  by using Fourier inverse transforming to equation (3).In other words, the phase correlation surface is defined as:
( )

( ) ( )

( ) ( )
1 1 2

1 2

* *

* *

, ,
,  

, ,

F u v F u v
r x y F

F u v F u v

−
 ⋅

=  
⋅  

 .               (4)

The phase correlation method provides a distinct sharp peak. Furthermore, it is robust to those types of noise that are correlated 

to the image function, e.g., uniform variations of illumination, offsets in average intensity.

Figure 2 shows two examples of phase correlation surface.

The coordinate ( )0 0,x y of the maximum of the real-value array ( ),r x y can be used as an estimate of the horizontal and vertical 

components of translation between ( )1 ,I x y  and ( )2 ,I x y  as follows:

( ) ( ){ }0, arg max Re ,ox y r x y=  . (5)Using the FHT (Fast Hartley Transform) the equation (4), and consequently also the equation (5), can be compute efficiently and 
without information lost.

The Hartley transformThe Hartley transform, first published in 1942 [20], keeps all the useful properties of the Fourier transform and can be used to 
obtain the power spectrum and perform convolution directly through the output real-valued data without calculating the real and imaginary parts first. The use of the Hartley transform also reduces the processing time, and needs less memory. Therefore, it is 
particularly well suited for application on mobile device.

Figure 1 Example of ordinary correlation and POC function. (a) Image “1”; (b) Image “2”; (c) ordinary correlation function between Image “1” and 

Image “2”; (d) POC function between Image “1” and Image “2”.
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Figure 2 Examples of POC function.

Figure 3 Examples of POC function obtained from two speckle images.

The Hartley transform can be obtained from the Fourier integral by replacing the exponential function 

( ) ( ) ( )exp cos sini t t i tω ω ω− = + by ( ) ( ) ( )cas cos sint t tω ω ω= + .

The Hartley transform ( )HS f of a real signal ( )s t  and its inverse transform are defined as:
( ) ( )( )cas 2HS f s t f t dtπ

+∞

−∞

= ∫ , (6)

( ) ( )( )cas 2Hs t S f f t dfπ
+∞

−∞

= ∫ , (7)
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with ( ) ( ) ( )cas 2 cos 2 sin 2f t f t f tπ π π= + .

The Fourier and Hartley transforms are very similar and share many properties. Consequently, many applications using the Fourier 

transform can be performed by the Hartley transform. Table I shows the main theorems for both transforms.

To derive the relationship between the Fourier and Hartley transforms, their symmetry must be considered. Let us split the Hartley 

transform ( )HS f  into its even and odd parts ( )HE f and ( )HO f , so that:

( ) ( ) ( )H H HS f E f O f= + . (8)

The even part of the function if what we get reversing the function (changing f to –f), adding the reversed function to the original 

and dividing by two, that is

( )
( ) ( )

2

H H

H

S f S f
E f

+ −
=  . (9)

The odd part is formed by subtracting the reversed function and dividing by two:

( )
( ) ( )

2

H H

H

S f S f
O f

− −
=  .(10)

Any function may be split uniquely into even and odd parts and from the even and odd parts, if given, the original function may be 

reconstituted uniquely.

Obviously, also the Fourier transform can be divided into even and odd parts, ( )FE f and ( )FO f . Furthermore, it can be shown 

that

( ) ( )ReF FE f S f=    ,           (11)

( ) ( )ImF FO f S f=    . (12)By considering the definitions of Hartley and Fourier transforms, we have ( ) ( )H FE f E f= and ( ) ( )H FO f O f= − . 

Therefore 

( ) ( ) ( )Re ImH F FS f S f S f= −       ,      (13)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
1

.
2

F F F H H

H H H H

S f E f iO f E f iO f

S f S f i S f S f

= + = −

= + − − − −      
(14)

The bidimensional definitions for the Hartley transform and its inverse are [9]
( ) ( ), ( , ) cas 2HG u v g x y ux vy dxdyπ

+∞ +∞

−∞ −∞

= +  ∫ ∫ ,                         (15)

( ) ( ), ( , ) cas 2Hg x y G u v ux vy dudvπ
+∞ +∞

−∞ −∞

= +  ∫ ∫ ,      (16)

The generalization of splitting one-variable functions into even and odd parts is the decomposition into symmetrical and antisym 

metrical parts

( ) ( ), ( , ) ,symm antisymmg x y g x y g x y= +  ,        (17)

with

( ) ( )
1

( , ) , ,
2

symmg x y g x y g x y= + − −   ,               (18)

( ) ( )
1

( , ) , ,
2

antisymmg x y g x y g x y= − − −   .                    (19)

Analogously to the one-dimensional case, the real part of a 2D Fourier transform is symmetrical and the imaginary part is 
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antisymmetrical. Therefore

( )
( ) ( ), ,

,
2

H H

H

G u v G u v
E u v

+ − −
= ,(20)

( )
( ) ( ), ,

,
2

H H

H

G u v G u v
O u v

− − −
=  ,(21)

and ( ) ( ) ( ), , ,F H HG u v E u v iO u v= − , which is the 2D extension of Equation (14)

The cross-correlation ( ),r x y  of two functions ( ),p x y and ( ),q x y  is:

( ) ( ) ( ), ', ' ', ' ' 'r x y p x y q x x y y dx dy

+∞ +∞

−∞ −∞

= + +∫ ∫ . (22)

Evaluating the cross-correlation through the integral in Equation (22) is complicated. This task can be significantly simplified in the 
Fourier space, where ( ) ( )*( , ) , ,

F F F
R u v P u v Q u v= ⋅ ; with ( , )FR u v , ( ),

F
P u v  and ( ),

F
Q u v  being the Fourier transforms 

of ( ),r x y , ( ),p x y  and ( ),q x y , respectively. Therefore

( ) ( ) ( ){ } { }-1 * * -1, FFT , , FFTF F Fr x y P u v Q u v R= ⋅ = .(23)In general, the presence of noise makes it difficult the “exact” localization of the cross-correlation peak.In other hand, using POC
( )

( )

( )
-1 ,

, FFT
,

F

F

R u v
r x y

R u v

  
=  

  
 . (24)

we have a good compromise between peak sharpness and noise tolerance.

Using the Hartley transform, R
F
 can be written as [21]

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,
,

2 2

, , , ,

2 2

, , , ,

2 2

, , , ,

2

, , , ,

2

H H H H

F

H H H H

H H H H

H H H H

H H H H

R u v R u v R u v R u v
R u v i

P u v P u v P u v P u v
i

Q u v Q u v Q u v Q u v
i

P u v Q u v P u v Q u v

P u v Q u v P u v Q u v
i

+ − − − − −
= −

+ − − − − − 
= + 
 

+ − − − − − 
⋅ − 
 

⋅ + − − ⋅ − −
=

⋅ − − − − − ⋅
+

(25)

where ( ),HR u v is the Hartley transform of ( ),r x y . From Equation (25), we obtain

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,

, , , , , ,

H H H H H H

H H H H H H

R u v R u v P u v Q u v P u v Q u v

R u v R u v P u v Q u v P u v Q u v

+ − − = ⋅ − ⋅ − −

− − − = − − ⋅ − ⋅ − −
 ,        (26)

and finally
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,
,

2

, , , ,

2

H H H H

H

H H H H

P u v Q u v P u v Q u v
R u v

P u v Q u v P u v Q u v

⋅ − ⋅ − −
=

− − ⋅ + − − ⋅ − −
+

 .            (27)
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Therefore, the cross-correlation can be computed through the Hartley transform. Indicating with FHT the Fast Hartley Transform 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

{ }

-1

-1

, , , ,
, FHT

2

, , , ,

2

FHT

H H H H

H H H H

H

P u v Q u v P u v Q u v
r x y

P u v Q u v P u v Q u v

R

⋅ − ⋅ − −
= 


− − ⋅ + − − ⋅ − − 

+ 


=

.           (28)

Introducing a POF to reduce the noise effect gives 

( )
( )

( )
-1 ,

, FHT
,

H

H

R u v
r x y

R u v

  
=  

  
.              (29)

RESULTS AND DISCUSSION 

To test the proposed technique, a Fast Hartley Transform (FHT) was implemented by using algorithms reported in ref [7,22-24].

Furthermore, the application of Hartley Phase-Only Correlation (POC) function, in comparison with Fourier phase-only correlation, 

was tested.

Figure 3 shows the POC obtained by two speckle pattern captured during a PIV test.In this example, the two images have size 512x512 pixels and on the second image was added artificial. The cross-correlation was 
computed in the Fourier space by Equation (24), and in the Hartley space by Equation (29).The FFT POC and the FHT POC are very 

similar; virtually identical.Figure 4 shows the POC used in the banknote identification [25,26]. In this example, the two images have size 512x1024 pixels.

Figure 4 Examples of POC function obtained from two different bank note.
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Theorem ( )S t ( )S fF ( )HS f

Similarity ( )/s t T ( )T S T fF ( )T S T fH

Addition ( ) ( )1 2+s t s t ( ) ( )
1 2

+S f S fF F ( ) ( )
1 2

+S f S fH H

Reversal ( )−s t ( )−S fF ( )−S fH

Shift ( )−s t T ( )2π−
e S fF

i T f
( ) ( )

( ) ( )

sin 2

cos 2

π

π

−

+

T f S fH

T f S fH

Modulation ( ) ( )cos 2 0π⋅s t f t ( ) ( )
1

0 0
2
 − + + S f f S f fF F ( ) ( )

1
0 0

2
 − + + S f f S f fH H

Convolution ( ) ( )1 2∗s t s t ( ) ( )
1 2

⋅S f S fF F

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1 22

1 2

1 2

1 2

 ⋅
− − ⋅ −

+ ⋅ −

+ − ⋅ 

S f S fH H

S f S fH H

S f S fH H

S f S fH H

Autocorrelation ( ) ( )∗s t s t ( )
2

S fF ( ) ( )
1 2 2

2

 + −  
S f S f

H H

Product ( ) ( )1 2⋅s t s t ( ) ( )
1 2

∗S f S fF F

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1 22

1 2

1 2

1 2

 ∗
− − ∗ −

+ ∗ −

+ − ∗ 

S f S fH H

S f S fH H

S f S fH H

S f S fH H

Derivative ( )′s t ( )2πi f S fF ( )2π− −f S fH

2nd derivative ( )′′s t ( )2 24π− f S fF ( )2 24π− f S fH

Table 1: Main theorems for the Fourier and Hartley transform [9].

The FFT and FHT give identical results, confirming the validity of the proposed theory.
By means of the tests presented in this work, and many others performed in the laboratory, we have found that the FHT requires a 

comparable number of steps to execute and is of comparable complexity to the FFT. The FHT does have the advantage that the forward 

and inverse transforms are the same, but this is only of advantage on a limited memory machine.The FFT and FHT give identical results, confirming the validity of the proposed theory.
By means of the tests presented in this work, and many others performed in the laboratory, we have found that the FHT requires a 

comparable number of steps to execute and is of comparable complexity to the FFT. The FHT does have the advantage that the forward 

and inverse transforms are the same, but this is only of advantage on a limited memory machine.

CONCLUSION

In this paper we have shown the correspondence between the Phase-Only Correlation (POC) function obtained by means of FFT 

and by FHT. 

The Hartley transform is similar to the Fourier transform but it is free from the need to process complex numbers. Furthermore, 

the fast Hartley transform performs the transformation itself, the convolution and the cross-correlation with fewer additions and 
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multiplications than the fast Fourier transform. Using a FHT to compute cross-correlation, there is no information lost and the results 

are identical to those obtained by FFT. Unfortunately, the numbers of all other operations are the same; the differences in timings are 

negligible.

On the other hand, the Hartley transform does not use complex numbers and therefore needs less memory to store numbers than 

the Fourier transform.The Hartley transform a valid alternative, particularly interesting when a greater efficiency in memory requirements is needed.
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