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Abstract

The image motion blurring process is generally mod-

elled as the convolution of a blur kernel with a latent im-

age. Therefore, the estimation of the blur kernel is essen-

tially important for blind image deblurring. Unlike existing

approaches which focus on approaching the problem by en-

forcing various priors on the blur kernel and the latent im-

age, we are aiming at obtaining a high quality blur kernel

directly by studying the problem in the frequency domain.

We show that the auto-correlation of the absolute phase-

only image1 can provide faithful information about the mo-

tion (e.g., the motion direction and magnitude, we call it

the motion pattern in this paper.) that caused the blur,

leading to a new and efficient blur kernel estimation ap-

proach. The blur kernel is then refined and the sharp image

is estimated by solving an optimization problem by enforc-

ing a regularization on the blur kernel and the latent im-

age. We further extend our approach to handle non-uniform

blur, which involves spatially varying blur kernels. Our ap-

proach is evaluated extensively on synthetic and real data

and shows good results compared to the state-of-the-art de-

blurring approaches.

1. Introduction

Blind image deblurring aims at estimating the blur ker-

nel and the latent image from an input blurry image. This

is an ill-posed problem as there are infinitely many pairs of

blur kernels and images that could generate the same blurry

image. Blind image deblurring has been extensively stud-

ied in computer vision and is still a very active research

area [10, 28, 6, 25, 19, 34], where blur kernel estimation is

essentially important in obtaining a high quality sharp im-

age.

Existing blind image deblurring methods tend to formu-

1Phase-only image means the image is reconstructed only from the

phase information of the blurry image.

late the problem within the Maximum A Posteriori (MAP)

framework, where the blur kernel and the latent sharp image

are optimized jointly. To resolve the ill-posed underlining

optimization problem, various assumptions, or regulariza-

tions, have been proposed for the blur kernel and the desired

latent image, such as the dark channel prior [23], extreme

channel prior [43], l0 regularized prior [22, 41], learned im-

age prior using a CNN [18], uniform blur [17, 42], non-

uniform blur from multiple homographies [8, 21], constant

depth [7, 39], in-plane rotation [32], and forward motion

[45]. The resultant optimization problem is non-convex in

general. The blur kernel and the latent image are usually

solved in an alternating fashion. Thus, a proper and effec-

tive initialization is demanded to achieve a good local opti-

mum solution and makes the algorithm converge quickly.

In this paper, we aim at estimating a high-quality blur

kernel directly from the input image with motion blur by

studying the problem in the frequency domain. We ex-

ploit the phase-only image of the input blurry image, which

is reconstructed from the Fourier transformed image using

the phase information only. The phase-only image con-

tains edge and texture information about the image struc-

ture [20, 27]. The motion (either camera or object mo-

tion) information is encoded as repeated image edges in

the phase-only image (see Fig. 1 for an example). We show

that the auto-correlation of the absolute phase-only image

reveals the motion information including the motion direc-

tion and motion magnitude, which is referred to as the mo-

tion pattern in this paper. It provides information about the

blur kernel, thereby leading to a new approach to estimating

the blur kernel.

We further improve the blur kernel and latent image es-

timation by enforcing a spatial sparsity prior on the kernel

as well as the latent image gradient in a simple optimiza-

tion framework. Furthermore, our blur kernel estimation

approach can be naturally extended to handle non-uniform

blur in order to deal with the spatially-variant blur kernels

that arise in complex image deblurring problems. Exten-

sive experiment on both synthetic and real images demon-
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(c) Auto-correlation

(a) Blurry Image (b) P (B) (d) Kernel (e) Nah [19]

(f) Tao [34] (g) Pan [23] (h) Yan [43] (i) Ours

Figure 1. Our deblurring result compared with the state-of-the-art methods. (a) Input blurry image. (b) The phase-only image. (c) The

auto-correlation for the phase-only image. (d) The estimated blur kernel. (e) Deblurring result of [19]. (f) Deblurring result of [34]. (g)

Deblurring result of [23]. (h) Deblurring result of [43]. (i) Our deblurring result. (Best viewed on screen).

strate the superiority of our approach over the state-of-the-

art methods.

Our main contributions are summarized as follows

1) We propose a new phase-only image-based approach to

directly estimating the blur kernel from the input blurry

image. The approach for motion pattern estimation is

easy and efficient, consisting of a few lines of code.

2) Our single-image blind deblurring model can be natu-

rally extended to handle non-uniform blur in an effective

manner. Furthermore, the estimated blur kernel can be

easily refined by only enforcing spatial sparsity.

3) Evaluated on both synthetic and real images, our pro-

posed approach shows impressive results compared to

other state-of-the-art blind deblurring approaches.

2. Related Work

Single-image blind deblurring. Single-image deblurring

jointly estimates the blur kernel and the latent sharp im-

age from the blurry one, which is highly under-constrained

since the blurry image could be explained by many pairs

of blur kernel and sharp image [11, 24]. In general, im-

age deblurring is formulated in a MAP framework with pri-

ors on blur kernels or latent images. The Sparsity prior has

proved effective in blur kernel estimation. For instance, Kr-

ishnan et al. [15] applied normalized sparsity in their MAP

framework to estimate the blur kernel. Xu et al. [42] pro-

posed an approximation of the l0-norm as a sparsity prior

in order to jointly estimate sharp image and blur kernels.

Edge-based methods for blur kernel estimation have been

exploited recently [38, 12, 3, 33]. Xu et al. [38] proposed

a two-phase method for single-image deblurring. The blur

kernel is first estimated based on the selected image edges

and refined by ISD optimization. The latent sharp image is

then restored by total-variation (TV)-l1 deconvolution. In

addition, a Gaussian prior is imposed to help the estimation

of the blur kernel [12, 3], which leads to an efficient solver.

Moreover, the blur kernel has been modelled based on var-

ious motion assumptions, such as in-plane camera rotation

[32] or camera forward motion [45]. A few works have ex-

ploited the layer-wise scene structure to model the blur ker-

nel [7, 8, 21]. Gupta et al. [7] represent the camera motion
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trajectory using a motion density function, which requires

a constant depth or fronto-parallel scene assumption. Hu et

al. [8] proposed jointly estimating the depth layering and

remove the blur caused by in-plane motion from a single

blurry image. Pan et al. [21] proposed jointly estimating

object segmentation and camera motion by incorporating

soft segmentation. Note that both approaches require user

input for initial depth layer segmentation.

Video image blind deblurring. In order to better model

non-uniform blur, monocular video and stereo based deblur-

ring approaches are proposed to handle blurring in realistic

scenes [26, 39]. Cho et al. [5] proposed a method relying

on the assumption that salient sharp frames frequently ex-

ist in videos, which only allows for slowly moving objects

in dynamic scenes. Wulff and Black [37] proposed a lay-

ered model to estimate both foreground motion and back-

ground motion. However, these motions are restricted to

affine models, and it is difficult to extended them to multi-

layer scenes due to the difficulty in depth ordering. Kim

and Lee [9] incorporated optical flow estimation to guide

the blur kernel estimation, which is able to deal with certain

object motion blur. In [10], a new method is proposed to si-

multaneously estimate optical flow and tackle general blur

by minimizing a single non-convex energy function. Stereo

images and videos can provide depth information which al-

lows to better model pixel-wise blur kernel. Sellent et al.

[28] proposed a stereo video deblurring technique, where

3D scene flow is estimated from the blurry images using a

piecewise rigid scene representation. Pan et al. [25] pro-

posed a single framework to jointly estimate the scene flow

and deblur the images.

Deep learning based image deblurring. Recently, image

deblurring has greatly benefited from the great advances in

deep learning [16, 32, 44, 34]. Sun et al. [32] proposed

a convolutional neural network (CNN) to estimate locally

linear blur kernels. Gong et al. [6] learned optical flow

field from a single blurry image directly through a fully-

convolutional deep neural network. The blur kernel is then

obtained from the estimated optical flow which is applied

in an MAP framework to restore the sharp image. Su et

al. [31] trained an end-to-end CNN to accumulate informa-

tion across frames for video deblurring. Nah et al. [19]

proposed a multi-scale CNN that restores latent images in

an end-to-end learning manner without any assumption on

the blur kernel model. Li et al. [18] used a learned im-

age prior to distinguish whether an image is sharp or not

and embedded the learned prior into the MAP framework.

Tao et al. [34] proposed a light and compact network, SRN-

DeblurNet, to deblur the image. While achieving reason-

able performance on various scenarios, the success of these

deep learning based methods depends on the consistency

between the training datasets and the testing datasets, which

can hinder the generalization ability.

(a) Sharp Image (b) |P (L)|

(c) Blurry Image (d) |P (B)|
Figure 2. We use a circle image as an example. The image is

blurred by a linear kernel, where the kernel length is 20 pixels and

the direction is 10 degree.

3. Method

3.1. Fourier Theory of Phase­only Images

This section contains the main theoretical insights of this

paper. Our goal is to find the latent sharp image from a

single blurry image. The blurry image can be modelled as a

convolution of the latent image with a blur kernel,

B = L⊗ k, (1)

where B is the known blurry image, L denotes the latent

sharp image, k is the blur kernel, ⊗ is the convolution op-

erator. Note that this problem is highly under-determined

since multiple pairs of L and k can lead to the same blurry

image.

In the Fourier domain, Eq. (1) corresponds to F(B) =
F(L)⊙F(k), where ⊙ represents the component-wise mul-

tiplication.

The phase and amplitude of a complex number z = keiθ

are eiθ and k ≥ 0 respectively. Applying these component-

by-component to a Fourier transformed image F(L) gives

the phase and amplitude components. We denote taking

the phase of a complex signal by P(·). Taking the inverse

Fourier transform of the phase-component gives the phase-

only image, P (L) = F−1(P(F(L))). It is well known

that the phase-only image bears more similarity to the orig-

inal image than the analogously defined amplitude image.

Fig. 2 shows an example of the phase-only image derived

from a clean and blurry image. As may be observed, taking

a phase-only image acts as a sort of edge-extractor. This is

related to the fact, noted in [14] that the Fourier components
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Figure 3. Given a top-hat function (a), its fourier transform is a sinc shown in (b). (The central peak has twice the width of the others.

Note that since the top-hat is symmetric, its Fourier transform is real, hence its phase is either +1 or −1 shown in (c).) The phase-only

image of the top-hat shown in (d) is obtained by taking the inverse Fourier transform of the function in (c).

of an edge tend to be in-phase with each other. For a real

image L, the phase-only image will also be real. Another

simple property is rotation-covariance: if R represents ro-

tation then P (R(L)) = R(P (L)). It is also shift-covariant.

We now make a basic observation regarding the phase-

only image of a convolution.

lemma 1. The phase-only image of a convolution P (L ⊗
k), equals the convolution of the phase-only image and the

phase-only kernel.

P (L⊗ k) = F−1(P(F(L⊗ k))) = P (L)⊗ P (k) . (2)

This results from a simple calculation.

Linearly-blurred image. For a simple linear (straight-

line) blur kernel, the form of P (k) can be computed. By

rotation and shift covariance, it may be assumed without

loss of generality, that k is axis-aligned, in which case

k(x, y) = δ(y)H(x), where δ(y) is a Dirac delta function

and H(x) is a top-hat. The Fourier transform is separable,

so it follows that P (k)(x, y) = δ(y)P (H)(x). Hence, we

investigate what the 1D phase-only signal P (H) is. The

result is shown in Fig. 3. A formula for the shape of the

phase-only top-hat of width w is derived (for the continuous

Fourier Transform) in the supplementary material, and is

equal to (
√
2π/w) sinc(πx/w)/ cos(πx/w), which is plot-

ted in Fig. 3(d). More details of the properties of this func-

tion are given in the supplementary material.

According to Eq. (2), if B = L ⊗ k, then P (B) is ob-

tained by convolving P (L) in the orientation of the linear

kernel with the phase-only kernel, shown in Fig. 3(d). This

results in the creation of multiple copies (“ghosts”), of the

phase-only image, P (L), separated by the width of the fil-

ter. (The copies due to the principal peaks will be the most

noticeable.)2 This is shown in Fig. 4.

The key advantage of phase-only image. This analysis

and the examples show the advantage and purpose in con-

sidering the phase-only image as a means of determining the

blur kernel, and subsequently deblurring the image. This is

illustrated by the analysis of the linear kernel.

The effect of blurring is to smear the image in the blur

direction, as shown in Fig. 4 (top left). From this image, it is

not easy to discern the shape of the kernel, particularly the

linear extent of the kernel. On the other hand, in the phase-

only image, the effect of blurring is to create two princi-

pal identical copies of P (L) separated by the extent of the

blur kernel. This is immediately evident from Fig. 4(b), or

Fig. 2(d). Thus, the continuous smear in the blurred image

is replaced by a simple sum of two (principle) copies in the

phase-only blurred image. This simplification of the effect

of blurring makes the further image-processing to compute

the blur-kernel much simpler.

This discovery of the application of the phase-only im-

age to deblurring is the key original contribution of this

paper, and the supplementary material provides a rigor-

ous mathematical justification of the empirical observation,

2 A more exact statement is that P (B) consists of multiple ghosts,

separated by the filter width, of the gradient of P (L) in the filter direction.

An exact derivation is given in the supplementary material. This includes

also an exact derivation of P (H).
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(a) Blurry Image (b) |P (B)| (c) A(|P (B)|) (d) Deblurring Results

Figure 4. (a) Input blurry images, the top one is a synthetic image created by ourselves and the bottom one is a real image from dataset

[29]. (b) The absolute phase-only image of the blurry image, |P (B)|, results in two principal copies (others more faint) of P (L). (c) The

autocorrelation of the absolute phase-only image, A(|P (B)|), showing two distinct peaks (separated by the length of the filter kernel).

Distinguishing the two principal peaks of the autocorrelation (apart from the origin) can be used to determine the orientation and width of

a linear (straight-line) blur kernel. (d) shows our deblurring results with sharp edges.

which we hope the reader will enjoy.

3.2. Autocorrelation

Using phase-only to obtain P (B) from a blurry image

results in multiple (two principal) shifted copies of P (L).
Note that P (L) is not known. However, this suggests the

use of autocorrelation of P (B).
Autocorrelation of a signal I (1 or 2-dimensional) is

computed using Fourier transform as:

A(I) = F−1(F(I)⊙F(I)).

Unfortunately, if I is itself a phase-only image, derived from

J, then

F(I) = F(F−1P(F(J))) = P(F(J)).

So A(I)=F−1(P(F(J))⊙ P(F(J)))=F−1(1)= δ

where δ is a Dirac delta function at the origin. In

other words, a phase-only image is completely un-

selfcorrelated.

In other words, we cannot derive any information what-

ever from the autocorrelation of a phase-only image. The

solution is to use the absolute value of the phase-only im-

age instead. In other words, we compute A(|P (B)|), which

should show the desired behaviour.

Fig. 4 shows the absolute phase-only image |P (B)| and

its autocorrelation A(|P (B)|). It is noticed that multiple

copies of |P (L)| are shown in |P (B)|. The most noticeable

repeated edges are due to the principal peak of P (k) (as

analyzed above) indicating the start and end point of the

moving camera.

The autocorrelation of the absolute phase-only image

shows several bright points that indicate the motion of the

camera, e.g., the motion direction and magnitude, which is

referred to as motion pattern. The autocorrelation image

will consist of a central peak plus two side-peaks separated

by the extent (and in the direction) of the blur-kernel.

Consequently, the motion of the camera will provide

faithful information for obtaining the blur kernel. There-

fore, in the following section, we will present our approach

to image deblurring based on the analysis of the autocorre-

lation of the absolute phase-only image.

4. Uniform Deblurring

Based on the analysis of the Fourier theory of phase-only

images, we introduce our approach to estimate the blur ker-

nel and deblur the images.

4.1. Uniform Blur from Linear Motion

Consider the blur caused by a pure linear motion. By

computing the autocorrelation of the absolute phase-only

image, the motion pattern, namely the motion direction and

the motion magnitude, is extracted by directly connecting

the two end bright points in A(|P (B)|). The blur kernel

is then formed based on the extracted motion pattern. In

particular, the motion magnitude determines the kernel size.

The non-zero kernel values are uniformly distributed along

the motion direction (see Fig. 4 the top row for an example).

Given the built blur kernel, the latent image can be easily

obtained by solving the Eq. (3) which will be introduced in

the following section.
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(a) Blurry Image (b) Nah [19]

(c) Coarse Kernel (d) Refined Kernel

Figure 5. (a) The blurry image from dataset [23]. (b) Deblur-

ring results of [19]. (c) Our deblurring result with the coarse blur

kernel built from the autocorrelation of the absolute phase-only

image. (d) Our deblurring result with the refined kernel. The re-

fined kernel can better improve the deblurring result by looking at

the close-up of the part of the sail with detailed sharp edges. Note

that the blur kernel is zoomed in the corner.

4.2. Uniform Blur from Non­linear Motion

The blurry image is formed by the integral of light in-

tensity over the exposure period. For more complex mo-

tion, the autocorrelation image A(|P (B)|) will show more

bright points representing high correlation values (see Fig.

1 (c) and Fig. 4 (c) for examples).
In general, in the case of uniform (spatially-invariant)

blur, one may write B = k⊗ L, so, allowing for the possi-
bility of noise, the deblurring problem (with known kernel)

may be formulated as finding argmin
L
‖k⊗ L−B‖2

2
. In

most cases, however, blurring acts as a form of low-pass
filter – high-frequency information is lost. Consequently,
this problem is not well-conditioned. Thinking of convo-
lution with known k as being a linear operator, there ex-
ist near-zero eigenvalues whose eigenvectors correspond to
high-frequency components of the signal (image). The de-
blurring process is to restore the lost frequency compo-
nents of the image. If high-frequency components are over-
emphasized in the deblurring process, the resulting latent
image L will be noisy, or edges will show ringing. A com-
mon solution to this is to add a regularization term that
discourages excessive high-frequency components. One is
therefore led to the following minimization problem.

min
L

‖k⊗ L−B‖2
2
+ µ2 h(∇L) , (3)

where h(·) is a penalty term used to discourage exces-

sive gradients, which are indicative of noise and over-

emphasized edges.

In the case of non-linear motion, the kernel is not known

exactly, but an initial value of k may be estimated directly

from the autocorrelation of the absolute phase-only image

as described previously. Our final goal is to further refine

the kernel k and estimate the latent sharp image L by solv-

ing

min
L,k

‖k⊗ L−B‖2
2
+ µ1 ‖k‖22 + µ2 h(∇L) , (4)

where µ1 and µ2 are weight parameters. The first term en-

codes the fact that the modelled blurry image should be sim-

ilar to the observed image. The second term is to regularize

the solution of the blur kernel. The third term prevents over-

sharpening.

The optimization of our energy function defined in

Eq. (4) involves two sets of variables, the kernel and the

latent image. We perform the minimization iteratively start-

ing with the initial estimate of k given by the phase-only

technique. (See Fig. 5 for an example).

4.2.1 Estimating the Latent Image

The goal is to minimize Eq. (4) by alternation. If k is

known, the problem comes down to minimizing Eq. (3).
Specifically, we use a truncated-quadratic gradient regu-

larization term

h(∇L) =
∑

x,y

min
(

‖∇xyL/ǫ‖
2 , 1

)

where ǫ ∈ [0.1, 1] and ∇xyL represents the gradient of L at

image coordinates (x, y). This regularization term smooths

out small noise, while allowing occasional large gradients

(intensity differences). This type of term, proposed by [2]

is widely used to regularize noise and gradients in stereo

[35] and was also used in deblurring in [42]). Because the

truncated quadratic is non-convex, the optimization prob-

lem is non-convex. We use the method of half quadratic

splitting, as in [40], to minimize this cost function, though

other methods such as Iterative Reweighted Least Squares

could be used for such truncated-quadratic cost [1].

4.2.2 Refining the Kernel

Now, with L known, the motion blur kernel can be refined
by solving

min
k

‖k⊗ L−B‖2
2
+ µ1 ‖k‖

2

2
.

This is a quadratic problem, and can be solved directly by
taking gradients, which results in a set of linear equations.
More efficiently, we solve it in the Fourier domain, in which
case there is a closed-form solution

F(k) = F(L)⊙F(B)
/ (

F(L)⊙F(L) + µ1

)

,

where the division is carried out point-wise (as are the mul-

tiplications). Then k is found by the inverse transform, and

then normalized to sum to 1.

The algorithm alternates between recomputing L and k

until convergence, or for a fixed number of steps.
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(a) Blurry Image (b) Ours (Uniform)

(c) Nah [19] (d) Gong [6]

(e) Blur Kernel (f) Ours (Non-uniform)

Figure 6. Example of our non-uniform blur kernel where the real

blurry image is from [6]. (a) Input blurry image. (b) Our deblur-

ring results by using uniform blur model and its blur kernel. We

can see clearly that the man in a plaid shirt seems not deblurred

because of the improper kernel. (c) Deblurring result of [19]. (d)

Deblurring result of [6]. (e) Non-uniform blur kernel. (f) Our

deblurring result by using non-uniform blur model and kernel.

5. Extension to Non-uniform Deblurring

Our method can be easily extended to handle non-
uniform blur (e.g., the background and foreground undergo
different blur) by deblurring the image patch-by-patch or
layer-by-layer. Each patch or layer of the image corre-
sponds to a different blur kernel. The new non-uniform blur
model can be expressed as

B =

N
∑

i=1

ki ⊗ li, (5)

where N denotes the number of segmented patches or lay-

ers, li = Mi ⊙ L is to extract the i-th patch or layer of

the latent image, Mi is a binary mask with non-zeros val-

ues in the region corresponding to the i-th patch or layer in

L, and ki denotes the blur kernel corresponding to the i-th
patch. Similary, we define Bi = ki⊗ li and B =

∑N

i=1
Bi.

Each layer can be handled using our proposed uniform de-

blurring approach in Section 4. The final latent image L is∑N

i=1
li. In Fig. 6, we give an example of the deblurring re-

sults for uniform and non-uniform blur models. The image

is a real blurry image from dataset [6]. Clearly, our non-

uniform deblurring achieves better results than our uniform-
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Figure 7. Quantitative evaluations on dataset [17]. We report the

experimental results with and without using the blur kernel es-

timated from the phase-only image (’Ours(no phase)’). The re-

sults further demonstrate the effectiveness of blur kernel estima-

tion from the phase-only image.

Table 1. Quantitave comparison on the dataset [17].

Cho [4] Pan [23] Yan [43]
Our

(no phase)
Our

PSNR(dB) 25.63 27.54 24.70 25.74 28.38

SSIM 0.7907 0.8626 0.8760 0.7842 0.9250

SSD 2.6688 1.2747 1.6802 3.2517 0.8776

deblurring model and the other existing non-uniform de-

blurring methods which either use additional depth, camera

pose information [8, 7, 36] or use deep convolutional neural

networks [6, 19].

6. Experiment

6.1. Experimental Setup

Dataset. We evaluate our approach on the datasets provided

by [13, 23, 30, 6, 17] and images captured by ourselves,

which covers images from man-made scene, natural scene

and images containing text (see Fig. 5, 6, 8 for examples).

Baselines and evaluation metric. Since our proposed ap-

proach can handle both uniform and non-uniform blurs, we

compare with state-of-the-art methods for both cases sep-

arately. For traditional methods (non-deep learning meth-

ods), we compare with [43, 23, 3, 36, 42]. For deep learn-

ing based methods, we compare with [6, 19, 16] which can

handle spatially-variant blur. We report the PSNR, SSIM

on datasets [17, 13] and error ratio3 on dataset [17] which

provides the ground truth blur kernels for evaluation.

Implementation details. We validate the parameters in our

model on three reserved images for each dataset and use

coarse-to-fine strategy for deblurring. We set µ1 = 2, µ2 =
0.005 for our experiment. Our framework is implemented

using MATLAB with C++ wrappers. It takes around 40

second to process one image (800×800) on a single i7 core

running at 3.6 GHz.

3 Error ratio is introduced in [17] which measures the ratio between

the SSD (Sum of Squared Distance) of the deconvolution error computed

with the estimated kernel and the ground truth kernel.

6040



(a) Blurry Image (b) Yan [43] (c) Pan [23] (d) Ours

Figure 8. Qualitative comparison on example images from dataset [13](top), [17](bottom) and image taken by ourselves (middle). (a) Input

blurry images. (b) Deblurring results of [43]. (c) Deblurring results of [23]. (d) Our deblurring result. (Best viewed on screen).

Table 2. Quantitative comparisons on the dataset [13], where [19, 16] are deep based methods.
Blurry Image Whyte et al. [36] Xu et al. [42] Pan et al. [23] Yan et al. [43] Nah et al. [19] Kupyn et al. [16] Ours

PSNR(dB) 24.93 27.03 27.47 29.95 28.42 26.48 26.10 30.18

SSIM 0.783 0.809 0.811 0.932 0.897 0.807 0.816 0.933

6.2. Experimental Results

The dataset introduced in [17] is a widely used uniform

blur dataset, which contains 32 blurry images generated by

4 ground truth images and 8 blur kernels. We perform the

quantitative and qualitative evaluation on this dataset. Re-

sults are shown in Fig. 7, 8 and Table 1, which demonstrates

that our proposed approach achieves competitive results.

The Natural dataset is generated by [13] with camera

motion measured and controlled by a Vicon tracking sys-

tem. Specifically, the dataset provides blurry image, its

latent image, and ground truth blur kernel, which allows

the quantitative comparison of our approach with baselines.

The captured images are of size 800 × 800. In Table 2,

we show the quantitative comparison with the state-of-the-

art Single-image deblurring approaches on dataset [13]. It

demonstrates that our approach can achieve the best perfor-

mance on the PSNR and SSIM score.

We further show the corresponding qualitative compari-

son results on example images in [13] in Fig. 8. It clearly

shows that our approach can recover more sharp details and

with less ringing artifacts than other approaches, which are

highlighted in the presented results. We also report our de-

blurring result in Fig. 1, 4, 5 and 6, respectively. Note that

our deblurring results can recover the color more faithfully

than the baselines.

7. Conclusions

Our proposed phase-only image based kernel estima-

tion approach is simple (implemented in a few lines of

code). The resulted image deblurring algorithm achieves

better quantitative results (using PSNR, SSIM, and SSD),

than the state-of-the-art methods by extensive evaluation on

the benchmark datasets. While our approach can handle the

general blur cases, it still suffers from low lighting condition

like other deblurring methods. Our future work will explore

how to remove blurs less sensitive to lighting conditions.
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