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Abstract—A synthesis method for the design of large planar
array antennas with phase-only control is here presented. The
synthesis is based on the use of Zernike polynomials, as global
basis function for the phase, to reduce the number of optimization
variables with respect to the number of elements of the array.
Invasive weed optimization (IWO) is applied to polynomial
coefficients’ optimization to circumvent non-linearity and local
trapping issues typical of phase-only problems. The periodicity
of the array factor is exploited to reduce the optimization to a
Voronoi cell of the grating-lobes’ lattice and non-uniform meshing
is introduced to best adapt the control stations to the beam shape
requirements. The technique is applied to the design of shaped
beams for continental coverage from geostationary satellites.

Index Terms—Beam shaping, evolutionary optimization algo-
rithm, large phased arrays, phase-only synthesis

I. INTRODUCTION

SPACEBORNE antennas have always been on the edge
of technology, needing extreme performances in terms

of beam shaping, efficiency, and reliability. In the continuous
evolution of satellite communication systems active array an-
tennas have become the preferred configuration being capable
to adapt the antenna performance to the mission needs which
evolve during the satellite lifetime [1].

Active arrays have distributed amplification (i.e. typically
one amplifier per radiator or per subarray) and offer several
advantages, among them full power allocation flexibility in
transmission and re-configurable generation of multiple beams.

The beams to be generated often need to cover a specific ge-
ographical coverage with gain requirements within the region
of interest and isolation requirements in areas reusing the same
satellite resources (i.e. frequency and polarization). Several
amplitude and phase optimization methods are known in the
literature and could be used for this purpose. Nevertheless, in
transmitting arrays, phase-only optimization can provide max-
imum amplifier efficiency and is attracting growing interest.
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A non-exhaustive list of phase-only optimization approaches
addressing all the individual phases of the array include
gradient methods [2], [3], [19], integer programming [5], alter-
nate projections [6], more recently semi-definite programming
relaxations [7], the steepest descent method [8], [9], Taguchi
method [10] and the non uniform FFT [11]. Furthermore,
for these tough problems, evolutionary algorithm as particle
swarm [12], [13], bat algorithm [14] or cross entropy [15]
are usually preferred since they perform a global optimization,
and do not easily get trapped in local minima, as deterministic
techniques do, especially in complex non-convex optimization
problems as the one faced here. These techniques consent
optimization of spot or contoured beams (which are necessary
for broadcasting applications) with control of gain in the beam
and sidelobes in co-frequential areas.

Main limitation of phase-only stands in the reduced space
of the degrees of freedom (all the excitations have the same
amplitude) and in the high non-linearity of the optimization
problem which may trap the algorithm in largely sub-optimal
local minima. Additionally, the large increase of the number of
elements in future active antennas requires paying attention to
the computational aspects and efficiency of the optimization
methods. As an example, phased arrays antennas in the Ka
frequency band can have dimensions larger than 2 meters and
can be composed by more than 1000 elements.

It is important to note that other antenna architectures have
been also adopted to generate shaped beams. In particular,
shaped reflector antennas have been successfully used in
several missions [16]. An excellent overview of synthesis
techniques for this problem is offered in [17]. While simplified
synthesis techniques exploiting the first-order approximation
of the surface variation as a phase variation were initially
explored in [18], more accurate synthesis tools had to be de-
veloped mainly due to the coupling of the amplitude and phase
in the projected aperture field which forbids the problem to be
considered as a strictly phase-only optimization problem [19].
Part of the complexity and cost associated to the manufacturing
of shaped reflectors can be overcome by reflectarray antennas.
They are typically based on flat panels and to modify the
required coverage only the dimensions of printed elements are
varied [20], [21] with advantages in terms of lead time.

Active phased arrays represent a further evolution because
they permit reconfiguring the coverage when the antenna
is operational; on the other hand, the beamfoming network

Accepted manuscript / Final version



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2021.3119113, IEEE
Transactions on Antennas and Propagation

2

tend to be complex and the power efficiency and thermal
management is critical. For these reasons, especially for a
phased array to be embarked on a satellite with limited power
resources, phase-only excitation represent a suitable solution.
In this respect equi-amplitude excitation have been proposed
together with aperiodic placement of the array elements for
generating shaped beams [22-23]. The objective of the paper
is to present a design method for very large phased array
antennas based on Zernike polynomials and the Invasive Weed
optimization (IWO) evolutionary algorithm.

Zernike polynomials will be used to represent an auxiliary
continuous wave-front which can be sampled to obtain the
array phase excitations. The truncation order of the Zernike
representation substantially limits the number of variables to
be optimized with respect to the number of elements and
allows obtaining a relatively smooth phase wave-front while
a drastic variability is usually observed when implementing a
direct optimization of the phase excitation variables. The use
of Zernike polynomials is well established in optical aberration
analysis [24] and has been used in shaped-reflector synthesis to
represent the reflector metallic surface deviation with respect
to a nominal conic profile [17].

Early examples of the use of global basis functions for phase
optimization problems can be found in [18], in relation to
shaped reflector synthesis, and in [25], in relation to linear
phased arrays, respectively. Notwithstanding the reduction in
the number of optimization variables, the synthesis problem
remains highly non linear, non convex, and subject to local
traps. Previous studies in electromagnetics [26], applications to
reflector antennas [27], [28] or to arrays given fixed amplitude
tapering and optimizing for phase [29] proved IWO validity
in electromagnetics. A more recent paper [30] on phase-only
synthesis of linear arrays, showed that with phase distribution
expressed in terms of a reduced set of full-domain basis
functions in order to decrease the variables to be optimized,
IWO outperformed other state-of-the-art evolutionary algo-
rithms like particle swarm or grey wolf optimizer.

The method proposed in this paper can be implemented for
the design of phased array antennas generating spot beams and
shaped beams. The paper is organized as follows: Section II
describes the problem geometry with regards to planar array in
the Voronoi space, in Section III the expansion of the phase
distribution as a combination of basis function is presented,
while in Section IV the IWO optimization algorithm together
with implemented cost function and optimization parameters
are sketched. In Section V the main results are presented for
several cases from the easiest pencil beam to the most complex
shaped and irregular coverages.

II. PROBLEM GEOMETRY

An array of isotropic sources will be considered, to keep
tractation simpler. The element factor, which, anyway, has
a reduced impact on large arrays, can be added trivially to
all subsequent reasonings. If the array elements are arranged
periodically, the periodicity of their array factor can be ex-
ploited to limit the control points of the radiation pattern (i.e.
the points where the radiation pattern need to be evaluated

and controlled) to a single periodic cell in the Fourier domain
which corresponds to the first Brillouin zone (or equivalently
to the Voronoi cell of the main beam in the grating-lobes’
lattice) [31]. The mathematical details are elaborated in the
following.

The array lattice geometry is fully described by two linearly
independent lattice vectors d1, d2, usually arranged in a single
matrix D = [d1,d2].

The set of all linear combinations of d1,d2 with integer
coefficients defines a bi-dimensional lattice Λ(D) (Fig. 1).

By a bi-dimensional Fourier transform of the periodic lattice
in the direct space D, a dual lattice is obtained, having a base
G given by:

G = (D−1)ᵀ (1)

The direct space periodicity matrix, D, and the Fourier domain
periodicity matrix, G, indeed satisfy an orthogonality condi-
tion, D ·GT = I , where I represents the identity matrix. For
a cophasal array the lattice Λ(G) corresponds to the periodic
lattice of the main-lobe and of all grating lobes in the (u, v)
space (Fig. 2).

Indeed, if a Cartesian reference is used for d1, d2 and r̂ =
sin(θ) cos(φ)x̂+sin(θ) sin(φ)ŷ+cos(θ)ẑ is the unit vector of
the observation direction, being (θ, φ) the angles of a spherical
reference, then the array factor can be expressed as:

P (r̂) = a

N1∑
p=1

N+
2 (p)∑

q=N−
2 (p)

ej
2π
λ [pd1·r̂+qd2·r̂]ejΦpq (2)

having N1 elements along d1 and N+
2 (p) − N−2 (p) along

d2. If N−2 and N+
2 are not function of p, then the array

is a parallelogram, otherwise it can be of any shape, for
example, circular as in our case. Amplitude a is the same for
all elements, and Φpq are the phases of every single element.
The pattern, since d1 and d2 are on the xy plane, is more
commonly expressed in the (u, v) plane, defined by:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)
(3)

as:

P (u, v) = a

N1∑
p=1

N+
2 (p)∑

q=N−
2 (p)

ej
2π
λ [pd1+qd2]·[ux̂+vŷ]ejΦpq (4)

The array factor P (u, v) is periodic in the (u, v) plane with
periodicity matrix G. The main beam and all the grating lobes
can be considered the center of periodic cells determined by
the Voronoi tessellation of Λ(G) (refer to Fig. 2). Due to the
periodicity of the array factor, we can limit the evaluation of
the pattern and its cost function to the Voronoi cell of the main
beam which corresponds to the first Brillouin zone (i.e. the
locus of points in reciprocal space that are closer to the origin
of the reciprocal lattice). The phases Φpq in (4) are the only
degrees of freedom. They can be independent, and each is an
optimization variable, in a so-called “brute force” approach; or
they can be expressed as the sampling of a continuous function
defined as a linear combination of a reduced number of basis
functions S, as detailed below.
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Fig. 1: Planar array lattice in direct space.
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Fig. 2: Planar array lattice in dual space with pertinent Voronoi
tessellation. in green the Voronoi cell relative to the main beam.

From the relation among lattices it is apparent how the
closer the elements in the direct space, the farther away the
grating lobes from the main lobe in the dual space.

In satellite applications, the main point is not to suppress
grating lobes, but to guarantee that no grating lobe falls in the
field of view (FoV) of the Earth as seen from the satellite.

Considering the limited FoV of the Earth, that for a geosta-
tionary satellite is of few degrees, a large distance between
elements is possible. Indeed, if the Voronoi tessellation of
the dual space is performed, and assuming the Earth FoV
is within the Voronoi cell of the broadside beam, then it is
also guaranteed that, by electronically scanning within the
Earth FoV, and hence within the Voronoi cell, no grating lobe
will ever enter the cell to cause undesired Earth illumination
(Fig. 2).

In Fig. 3, direct space (top) and main beam Voronoi cell in
the dual space (bottom) are shown for a triangular equilateral
distribution of the radiating elements. Within the main beam
Voronoi cell (black filled hexagon in the figure) a target beam
contour can be defined (e.g. the red polygon representing
an European coverage as seen by a Geostationary satellite).
The figure also shows how the dual space can be sampled
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Fig. 3: Triangular lattice with d1 = [1, 0.5], d2 = [0,
√
3/2] for an

hexagonal array and relevant far-field Voronoi Cell

TABLE I: Field of view for triangular and squared lattices.

Triangular d = 3λ d = 2λ d = 1λ d = 0.5λ
[umin, umax] ±0.22 ±0.33 ±0.67 ±1.33
[vmin, vmax] ±0.19 ±0.29 ±0.58 ±1.15

Square d = 3λ d = 2λ d = 1λ d = 0.5λ
[umin, umax] ±0.17 ±0.25 ±0.5 ±1
[vmin, vmax] ±0.17 ±0.25 ±0.5 ±1

(far-field sampling grid) and how the cost function can be
limited to the sampling points falling within the Voronoi cell
(black dots). The mesh of points where the array factor is
sampled for the evaluation of the cost function can be either
structured (e.g. bottom of Fig. 3 or unstructured (e.g. in FEM-
like discretization of Fig. 9).

Depending on the array lattice base, inter-element distance
can be varied, as in Table I, in order to guarantee that the
Voronoi cell is larger than the Earth FoV.

III. PHASE EXPANSION INTO ZERNIKE POLYNOMIALS

As stated earlier, phases Φpq shall not be optimized inde-
pendently but rather seen as a sampling of a continuous phase
distribution described in terms of a limited number of full-
domain polynomial bases.

In this paper Zernike polynomials will be used. Even
if “polynomials” is the usual way of addressing Zernike
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Fig. 4: First Zernike functions, up to radial order four.

functions, these are not polynomials strictly speaking since
trigonometric functions are present in their definition. These
form a class of orthogonal functions over the continuous unit
circle (see [32], [33]) and are particularly suitable for this
application, since the unit circle maps naturally with just a
scale factor over a circular array.

Indeed the radial-azimuth dependence of Zernike polyno-
mials, as opposed to 2D polynomials resulting by the product
of x−dependant and y−dependant polynomials in a Cartesian
reference, makes them the optimal choice when dealing with a
circular array since the domain is exactly covered. Other bases,
like Bessel functions, exhibit the same symmetry with no
additional advantage but at a higher computational complexity.

In polar coordinates, Zernike function Zm
n (ρ, θ) is expressed

as:

Zm
n (ρ, θ) =

{
Nm

n R
|m|
n (ρ) cos(mθ) if m ≥ 0

−Nm
n R

|m|
n (ρ) sin(mθ) if m < 0

(5)

being Nm
n is a normalization factor and Rm

n (ρ) a polynomial
in ρ. In detail:

Nm
n =

√
2(n+ 1)

1 + δm0
(6)

being δm0 the Kronecker delta function (i.e . δm0 = 1 for m =
0, and δm0 = 0 for m 6= 0), and:

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n−m
2 − k)!(n+m

2 − k)!
ρn−2k

for n−m even, and zero otherwise (7)

In Zernike functions definition, n is a positive integer named
the radial degree or order, and m, named the azimuthal or
angular frequency, is a negative or positive integer such that
|m| ≤ n .

A continuous phase distribution is then defined as:

Φ̄(ρ, θ) =

N,M∑
n,m

αm
n Z

m
n

(ρ
r
, θ
)

(8)

being r the radius of the circle circumscribed to the array. The
discrete phases Φpq in (1) are hence samples of Φ̄:

Φ̄pq = Φ̄

(
|pd1 + qd2|, tan−1

[
(pd1 + qd2) · ŷ
(pd1 + qd2) · x̂

])
(9)

For the sake of simplicity the two indexes n,m are replaced
by a single-index k:

Φ̄pq(ρ, θ) =
K∑

k=0

αkZk

(ρ
r
, θ
)

(10)

To obtain the single index k, it is convenient to arrange the
polynomials in a pyramid with row number n and column
number m. It will be k = 1 for n = 0,m = 0 and the index
increases from top to bottom and from left to right (Fig. 4):

k =
n(n+ 2) +m

2
⇔

{
n = d(

√
9 + 8k − 3)e

m = 2k − n(n+ 2)
(11)

Obviously, if

N =

N1∑
p=1

(N+
2 (p)−N−2 (p)) (12)

is the total number of elements in the array, if K � N the
optimization will have a much lower number of variables to
work on, with respect to a brute force approach.

Furthermore, additional reductions can be obtained if sym-
metries in the desired patterns are present, by excluding
Zernike functions non complying to said symmetry. For ex-
ample if a broadside beam independent of φ is desired then
only m = 0 Zernike functions are necessary.

IV. OPTIMIZATION IMPLEMENTATION

There are two main key points in a numeric optimization
strategy: the definition of the cost function to be minimized
and the choice of the optimization algorithm. In our case a
third key point, related to the selection of an appropriate sub-
set of the complete Zernike basis set is analyzed.

A. Cost function

Cost function for the optimization procedure is defined in
terms of two or more masks to which the pattern must comply.
The simplest presented here is for a wide-angle uniform
circular beam, while the most complex is aimed at a South
America coverage with different pattern levels on different
countries.

Hence, in general, several masks C(t) are defined with a
desired gain level for each zone within the coverage, plus an
outer mask O for controlling the side lobe maximum level.
Between the SLL mask and the coverage mask(s) a transition
zone in which the gain is unchecked allows faster convergence
(Fig. 5).
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Pattern is sampled uniformly or non-uniformly within the
main Voronoi cell to check for out-of-mask levels. Sampling
points in (u, v) plane are indexed with a single index s =
1, . . . , S, sampled pattern values are Ps = P (us, vs) and the
same notation is used for mask samples C(t)

s = C(t)(us, vs)
and Os = O(us, vs).

With this notation the cost function is:

c =
T∑

t=1

[
S∑

s=1

η
(t)
1 |Ps − C(t)

s |δ
C(t)
s ±R

(t)

Ps

]

+
S∑

s=1

η2|Ps −Os|δPsOs (13)

where:
• δb±ca = 1 if a < b − c or a > b + c or if point q is not

within the current mask definition area;
• εba = 1 if a < b and zero otherwise or if point q is not

within the current mask definition area:
• η

(t)
1 and η2 are appropriate weights of the coverage

and side lobe masks, taken inversely proportional to the
number of evaluation points within each sub-area.

The cost function is evaluated on the normalized pattern and
evaluated in logarithmic scale. The coverage mask allows for
a dynamic R(t) within each coverage mask.

B. IWO algorithm

Optimization is then performed by a single-objective im-
plementation of the IWO algorithm [26], [34], [36]. Such
an algorithm relies on the paradigm of an invasive weed
specie colonizing a field, producing seeds proportionally to
the richness of the soil (how good the cost function value is
at the point where the plant grows) and spreading these seeds
around its location with a Gaussian distribution.

The algorithm has a few control parameters:
Pi : initial number of plants, randomly scattered on the

domain;

Pm : maximum number of plants. To avoid exponential
grow of plants, worse specimens are discarded, so as
to maintain this maximum number of plants at next
generation.

Mi : maximum number of iterations;

Ms : stall; if the optimal solution is not updated within
this number of steps the algorithm ends (with a warning)
even if Mi is not reached;

Smin : minimum number of seeds a plant produces at each
iteration;

Smax : maximum number of seeds a plant produces at each
iteration;

σi : initial variance for seed dispersion;

σf : final variance (at iteration Miter) for seed dispersion;
variance is decreased linearly with iteration number;

Optimization variables are internally rescaled in the IWO al-
gorithm to [0, 1] so that σi and σf are not problem-dependent.

Details on the algorithm can be found also in [35], [37],
[38]. It is worth mentioning that in [30] an accurate compari-
son between different optimization techniques was carried out
on the problem of the phase-only synthesis of linear arrays and
IWO over-performed the competitors. Hence it is used here.

C. Criteria of polynomials selection

While in the linear case [30] a symmetrical mask would
call for symmetrical phases and hence the number of basis
functions at a given order could be reduced by selecting only
even basis, in the planar case, we must distinguish patterns
with a rotational symmetry, which would call for the same
symmetry in the phases and hence only Z0

n functions and non-
rotationally symmetrical masks which will need, in principle,
all Zm

n . In practice, if the beam is rotationally symmetric but
not pointing broadside, just the two Zm

1 functions, can be
added since they allow for a linear phase and hence for the
beam scanning to a generic (u0, v0).

For what concerns the maximum radial degree n to be
chosen, preliminary studies in [30] showed that the key issue
is allowing enough variation for the phase, as a rule of thumb
one full variation (from maximum to minimum or vice versa)
in a 4λ radial direction, as the following example will show.
Variation of αk coefficients is constrained within an allowable
range [UBk, LBk], which, also according to the previous
experience [30], are decreasing with the square of the radial
order of the considered Zernike polynomials:

UBk, LBk = ± Φmax

∂Zn,m(r)
∂r

∝ 1

n2
(14)

with k the single index given by (11) and Φmax selected taking
into account the overall array dimension and maximum order,
as analyzed in the next section.

V. NUMERICAL RESULTS

A list of results is presented for planar arrays using the
combination of the Zernike functions for the IWO synthesis.
Three cases are here presented, from the easiest case of
a broadside wide-angle pencil beam followed by two more
challenging masks: an Europe uniform coverage and a South
America non-uniform coverage.

Table II shows IWO parameters for the three cases. Pi,
Pm, Smin, and Smax are chosen, according to the authors’
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TABLE II: Invasive weed optimization parameters.

Pencil
beam Europe South

America
Pi 20 20 30
Pm 50 50 60
Mi 100 300 500

Smin 1 1 1
Smax 5 5 5

σi 0.1 0.1 0.1
σf 0.001 0.001 0.001

TABLE III: Optimized amplitude coefficients for the pencil beam.

αk
k

2 3 5 13 25 38

(a) – – 2.876 1.452 −0.401 −0.382
(b) – – 2.600 1.496 – –

experience, to have an average number of plants per iteration
of about ten times the dimension of the variable space. The
total number of iterations presented is experience based and
related to a control over algorithm stall in finding better
solutions.

A. Pencil beam coverages

Firstly, a planar array with triangular lattice of diameter
D = 30λ and element spacing d = 3λ with an internal
circular mask centred in zero with radius rC = 0.05 (which
corresponds to an angular aperture θ = 2.87◦) and an external
concentric mask with radius rO = 0.06 (an angular aperture
θ = 3.43◦) is considered. Only Z0

n polynomials are used, due
to symmetry, and in particular those for k = 5, 13, 25, 41. Note
that, since Z0

0 would give a uniform phase distribution, that is
a simple bias, the base for k = 1 is never considered in the
optimization. Here η1 = 0.7, η2 = 0.3 and Φmax = 8π are
considered.

Patterns are presented in Fig. 6 in (u, v) plane by selecting
an appropriate parameter w as linear coordinate along the cuts
(w = u and w = v in the principal planes for the broadside
pattern). The optimal αk are reported in Table III, row (a).
Due to the negligible amplitude of the k = 25 and k = 38
coefficients, a separate optimization with only two variables
is also carried out, leading to the values in the row (b) of
Table III. Anyway four coefficients produce a better pattern as
compared to only two, as Fig. 6 clearly shows, while further
coefficients do not significantly improve the compliance to
the mask, while lengthening computational time and making
convergence slower.

B. Irregular coverages

Focusing on irregular coverages, both even and odd poly-
nomials are investigated in the synthesis of the pattern with
the optimized coefficients within the phase distribution.

1) Typical European Coverage: the typical European cov-
erage has a polygon defined in (u, v) space for the internal
mask, uvpoly. The external mask is constructed by enlarging
the internal mask in all direction by a quantity ∆ = 0.01 to
allow for a transition zone (Fig. 7, where the internal mask is
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Fig. 6: Synthesis of the broadside pencil beam. Top: normalized gain
on the (u, v) plane, internal mask is defined by the black circle,
external mask by the red circle; bottom, normalized gain on the
principal planes (blue and red lines on top map).

TABLE IV: Optimized amplitude coefficients for the European cov-
erage.

k 2 3 4 5 6
αk −19.847 4.719 1.116 2.591 2.098

k 11 12 13 14 15
αk −0.204 −0.038 −0.783 −0.006 −0.012

black and the external mask red). The weights in (13) are: η1

= 0.7, η2 = 0.3 and Φmax = 8π.
The analyzed planar array with triangular lattice has a

diameter of D = 60λ and intra-element spacing d = 3λ, Nel

= 363 elements.
The amplitude of computed coefficients versus the Zernike

order functions and their combination in the phase distribution
is hence displayed in Table IV. There is still an important
advantage in the reduction of the computational complexity
as optimization variables are:

• 10 optimized weights with Zernike,
• 363 optimized weights with Brute Force technique.
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Fig. 7: Synthesis of the European coverage. Top: normalized gain on
the (u, v) plane. Bottom: map of the continuous phase distribution
synthesized and sampling points at elements.

TABLE V: Gain mask specifications.

Nominal Gain (dB)
SA1 SA2 SB SC1 SC2 SD
28.82 28.81 25.81 22.81 20.66 19.81

2) Multi-polygonal of South-America Test Case: The final
challenging problem is to guarantee a multi-gain coverage
of the regions of South-America exploiting the phase-only
tapering, as in Fig. 8. Gain requirements, summarized in
Table V are relative to an existing shaped reflector realized
by AIRBUS currently on orbit. The same problem has been
addressed by synthesizing a reflectarray comprising 6944 three
layers patches [40]. Here the problem will be addressed with
just 199 or 177 active elements.

Indeed attaining simultaneously several desired levels of
gain on neighbouring zones, as well as a maximum value of
−20dB, with respect to the maximum, for the SLL out-of-
coverage is extremely challenging. Although a transition zone
is defined between the main beam and the out of coverage area,
no transition is foreseen in the requirements between different
areas of the coverage, this too makes the problem really tough.
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u

-0.15

-0.1

-0.05

0

0.05

0.1

v

SB

SC2

SA2

SD

SA1

SC1

Fig. 8: Implemented masks for South America for a geostationary
satellite positioned at 61◦W longitude.

To ease convergence the cost function implemented is an
extension of the (13) attained as a sum over T = 6 + 1 areas
of single costs. Within each coverage area a dynamic with
respect to the nominal value, R(t) = −1dB is tolerated and
the level of side lobes imposed is SLL = −20 dB.

Indeed the upper cap to gain could be avoided, leading to
an easier optimization, but this would reflect into a lower
efficiency of the system since, to guarantee the minimum
power level in the lowest-illuminated zones, an excess of
power would be delivered to zones where gain is unneedengly
high, hence requiring higher than necessary output power from
the transmitter.

Each contribution of the cost function in this case is
weighted proportionally to the number of evaluation points
belonging to the area, hence achieving an error which is
consistent between areas. As for the previous analysis on
planar arrays, the discretization of the evaluation points for
the pattern could be done using a regular grid in the (u, v)
plane. Another approach is possible, and used here, that to
define sampling points on an unstructured grid which is finer
in critical areas and coarser in less-critical ones, for example
out of coverage.

Optimization is computed by evaluating the cost function
either on a structured (regular, square) and a unstructured
mesh of points, this latter based on a FEM-like mesh of
the domain [39], which allows for a coarser sampling in the
SLL region and hence faster optimization (Fig. 9). Distance
between elements is either 2λ or 3λ, in both cases grating
lobes fall outside Earth and, of course, the latter requires less
radiating elements for a given aperture area.

The results obtained shows a good matching with earlier
results presented in literature, but using much less elements for
the present array. Fig. 10 shows synthesized pattern and phase
distribution by an array of D = 45λ diameter and distance
between elements d = 3λ considering a triangular lattice (Nel

= 199) for the conventional structured discretization in the
(u, v) plane. In this case the element factor is either with
a cosq(θ) [41] or a more realistic Bessel-like pattern of an
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Fig. 9: FEM-like discretization of the (u, v) plane for the multi-gain
problem cost function evaluation.

uniform aperture of radius rB . The optimization has been
addressed exploiting only 27 optimized coefficients related to
the Zernike functions from k = 2 up to k = 28 and attaining
the values in Table VI. In Table VII the compliances within
each areas, defined as the percentage of sampling points where
gain is equal or greater than the required, are given.

Using the unstructured discretization in the (u, v) plane,
and for an array of D = 45λ diameter and distance between
elements d = 3λ but with a square lattice of only (Nel = 177),
the performances in Fig. 11 are attained.

The number of coefficients used for the expansion is 20
(so from k = 2 to k = 21). The amplitude of the optimized
coefficients are displayed in Table VIII.

Compliances for the unstructured discretization are pre-
sented in Table IX. Finally Table X gives computing time for
an optimization run. The relative speed up linked to the limited
number of samples, concentrated in critical area, is evident.

It is interesting to note how the unstructured lattice gives
both better results and lower CPU times. This because pattern
sampling points are better distributed: more concentrated in
the coverage zone, and less concentrated in the SLL areas.

TABLE VI: Optimized amplitude coefficients for the South America
coverage and structured discretization.

k 2 3 4 5 6 7

αk 3.869 2.290 1.506 −3.344 1.311 −0.097

k 8 9 10 11 12 13

αk 0.330 −0.497 0.451 0.377 −0.412 0.662

k 14 15 16 17 18 19

αk −0.288 −0.629 0.053 0.151 0.198 0.561

k 20 21 22 23 24 25

αk −0.165 0.477 −0.076 −0.218 0.332 −0.083

k 26 27 28

αk 0.696 0.628 −0.101
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Fig. 10: Synthesized denormalized gain and phase distribution using
the structured discretization (with element factor cos2(θ)).

VI. CONCLUSION

A novel synthesis of planar arrays exploiting the phase-only
technique with an efficient number of basis functions within
the phase distribution has been investigated. Considering that
only phase tapering has been exploited, the results for shaped
coverages and multi-gain problems are very satisfying. A
reduced number of basis functions has been combined to
synthesize the phase distribution in order to reduce the compu-
tational time in the optimization process. The proposed design
procedure is particularly effective in the case of complex
coverages and large arrays as the ones considered for satellite
applications.

TABLE VII: Compliances of the multi-gain problem with structured
discretization.

Compliances cos2(θ) (%)
SA1 SA2 SB SC1 SC2 SD

d = 3λ
d = 2λ

100.0
100.0

94.59
100.0

97.76
100.0

100.0
100.0

100.0
100.0

97.46
100.0

Compliances Bessel (%)
SA1 SA2 SB SC1 SC2 SD

rB = 1.3λ d = 3λ
rB = 0.8 d = 2λ

100.0
100.0

92.97
100.0

97.53
100.0

100.0
100.0

100.0
100.0

97.39
99.84
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Fig. 11: Synthesized denormalized gain and phase distribution using
the unstructured discretization (with element factor cos2(θ)).

TABLE VIII: Optimized amplitude coefficients for the South America
coverage and unstructured discretization

k 2 3 4 5 6 7

αk 5.138 1.186 4.913 −0.706 4.388 −1.141

k 8 9 10 11 12 13

αk −0.453 0.118 0.446 0.122 −0.210 0.576

k 14 15 16 17 18 19

αk −0.779 −0.233 0.017 −0.090 0.222 −0.124

k 20 21

αk 0.569 0.073
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[5] J. I. Echeveste, M. A. González de Aza, J. Rubio, J. Zapata, “Synthesis
of coupled antenna arrays using digital phase control via integer pro-
gramming,” IET Microwaves, Antennas Propagation, Vol. 12, No. 6, pp.
999-1003, May 2018

[6] O. M. Bucci, G. D’Elia, G. Mazzarella, G. Panariello, “Antenna pattern
synthesis: a new general approach,” Proceedings of the IEEE, Vol. 82,
No. 3, pp. 358-371, Mar. 1994

[7] P. J. Kajenski, “Phase Only Antenna Pattern Notching Via a Semidefinite
Programming Relaxation,” IEEE Transactions on Antennas and Propaga-
tion, Vol. 60, No. 5, pp. 2562-2565, May 2012

[8] J. F. DeFord O. P. Gandhi, “Phase-only synthesis of minimum peak
sidelobe patterns for linear and planar arrays,” IEEE Transactions on
Antennas and Propagation, Vol. 36, No. 2, pp. 191-201, Feb. 1988

[9] J. F. DeFord, O. P. Gandhi, “Mutual coupling and sidelobe tapers in phase-
only antenna synthesis for linear and planar arrays,” IEEE Transactions
on Antennas and Propagation, Vol. 36, No. 11, pp. 1624-1629, Nov. 1988

[10] E. Agastra, G. Pelosi, S. Selleri, R. Taddei, “Taguchi’s method for
multi-objective optimization problems,” International Journal of RF and
Microwave Computer-Aided Engineering, Vol. 23, No. 3, pp. 357-366,
May 2013

[11] A. Capozzoli, C. Curcio, A. Liseno, G. Toso, “Fast, phase-only syn-
thesis of aperiodic reflectarrays using NUFFTs and CUDA,” Progress In
Electromagnetics Research, Vol. 156, 83-103, 2016.

[12] D. Gies, Y. Rahmat-Samii, “Particle swarm optimization for reconfig-
urable phase-differentiated array design,” Microwave and Optical Tech-
nology Letters, Vol. 38, No. 3, pp. 168-175, Aug. 2003

[13] S. Selleri, M. Mussetta, P. Pirinoli, R. E. Zich, L. Matekovits, “Differ-
entiated meta-PSO methods for array optimization,” IEEE Transactions
on Antennas and Propagation, Vol. 56, No. 1, pp. 67-75, Jan. 2008

[14] T. Van Luyen, T. Vu Bang Giang, “Interference Suppression of ULA
Antennas by Phase-Only Control Using Bat Algorithm,” IEEE Antennas
and Wireless Propagation Letters, Vol. 16, pp. 3038-3042, 2017

[15] M. H. Weatherspoon, J. D. Connor, S. Y. Foo, “Shaped beam synthesis
of phased arrays using the cross entropy method,” International Journal
of Numerical Modelling: Electronic Networks, Devices and Fields, Vol.
26, No. 6, pp. 630-642, 2013

[16] R. A. Pearson, Y. Kalatidazeh, B. G. Driscoll, G. Y. Philippou, B.
Claydon, D. J. Brain, “Application of contoured beam shaped reflector
antennas to mission requirements,” 1993 International Conference on
Antennas and Propagation, Edinburgh, UK, 30 Mar. - 2 Apr. 1993.

[17] K. Clausing, M. Aliamus, “Reflector Shaping”, in S. K. Sharma, S. Rao,
L. Shafai, (Eds), Handbook of Reflector Antennasand Feed Systems: Vol
1, Artech House, 2013

[18] R. Jorgensen, “Coverage shaping of contoured-beam antennas by aper-
ture field synthesis,” IEE Proceedings H Microwaves, Antennas and
Propagation, Vol. 127, No 4, pp. 201–208, Aug. 1980.

[19] A. R. Cherrette, S.-W. Lee, R. J. Acosta, “A method for producing a

Accepted manuscript / Final version



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2021.3119113, IEEE
Transactions on Antennas and Propagation

10

shaped contour radiation pattern using a single shaped reflector and a
single feed,” IEEE Transactions on Antennas and Propagation, Vol. 37,
No. 6, pp. 698-706, Jun. 1989

[20] A. Capozzoli, C. Curcio, A. Liseno, G. Toso, “Fast, Phase-Only Syn-
thesis of Aperiodic Reflectarrays Using NUFFTs and CUDA,” Progress
in Electromagnetics Research - PIER, Vol. 156, pp. 83-103, 2016.

[21] J. A. Encinar, R. Florencio, M. Arrebola, M. A. S. Natera, M. Barba,
J. E. Page, R. R. Boix, G. Toso “Dual-polarization reflectarray in
Ku-band based on two layers of dipole arrays for a transmit–receive
satellite antenna with South American coverage,” International Journal
of Microwave and Wireless Technologies, Vol. 10, No. 2, pp. 149-159,
Mar. 2018.

[22] G. Toso, P. Angeletti, “Aperiodic linear arrays for rectangular shaped
beams,” 3rd European Conference on Antennas and Propagation, 23-27
Mar. 2009

[23] C. Luison, A. Landini, P. Angeletti, G. Toso, P. Valle, P. Capece, S.
Selleri, G. Pelosi, “Aperiodic Arrays for Spaceborne SAR Applications,”
IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, pp.
2285-2294, May 2012

[24] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge
University Press, 1999.

[25] R. Vincenti Gatti, L. Marcaccioli, R. Sorrentino, “A novel phase-only
method for shaped beam synthesis and adaptive nulling,” 33rd European
Microwave Conference, Munich, Germany, Vol. 2, pp. 739-742, 2-10 Oct.
2003.

[26] S. Karimkashi, A. A. Kishk, “Invasive Weed Optimization and its
Features in Electromagnetics,” IEEE Transactions on Antennas and Prop-
agation, Vol 58, No. 4, pp. 1269-1278, Apr. 2010

[27] A. Foudazi, A. R. Mallahzadeh and M. M. S. Taheri, “Pattern synthesis
for multi-feed reflector antenna using IWO algorithm,” 2012 6th European
Conference on Antennas and Propagation (EUCAP), pp. 1-5, 2012.

[28] A. Dastranj, H. Abiri and A. Mallahzadeh, ”Design of a Broadband
Cosecant Squared Pattern Reflector Antenna Using IWO Algorithm,” in
IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3895-
3900, July 2013.

[29] Y. Liu, Y.-C. Jiao, Y.-M. Zhang, Y.-Y. Tan, “Synthesis of Phase-Only
Reconfigurable Linear Arrays Using Multiobjective Invasive Weed Op-
timization Based on Decomposition,” International Journal of Antennas
and Propagation, vol. 2014, Article ID 630529.

[30] P. Angeletti, L. Berretti, S. Maddio, G. Pelosi, S. Selleri, G. Toso,
“A comparison between basis functions for the efficient invasive weed
optimization-based optimization of phase-only linear array patterns,”
Microwave and Optical Technology Letters - early view, 2021

[31] P. Angeletti, “Multiple Beams From Planar Arrays,“ IEEE Transactions
on Antennas and Propagation, Vol. 62, No. 4, pp. 1750-1761, Apr. 2014

[32] V. Lakshminarayanan, A. Vasudevan, “Zernike polynomials: A guide,”
Journal of Modern Optics, Vol. 58, No. 7, pp. 1678-1678, Apr. 2011

[33] V. Mahajan, “Zernike circle polynomials and optical aberrations of
systems with circular pupils,” Applied Optics, Vol. 33, No. 34, pp. 8121-
8124, Dec. 1994

[34] A. R. Mehrabian, C. Lucas, “A novel numerical optimization algorithm
inspired from weed colonization,” Ecological Informatics, Vol. 1, No. 4,
pp. 355-366, Dec. 2006

[35] S. Maddio, G. Pelosi, M. Righini, S. Selleri, “A Multi-Objective Invasive
Weed Optimization for Broad Band Sequential Rotation Networks,” 2018
IEEE International Symposium on Antennas and Propagation,Boston
(MA), USA, pp. 955-956, 8-13 July 2018

[36] B. Xing, W. J. Gao, “Invasive Weed Optimization Algorithm”, pp. 177-
181, in B. Xing, W. J. Gao, (Eds), Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Springer, 2014

[37] S. Maddio, G. Pelosi, M. Righini, S. Selleri, “A Comparison Between
Grey Wolf and Invasive Weed Optimizations Applied to Microstrip Fil-
ters,” 2019 IEEE International Symposium on Antennas and Propagation,
Atlanta (GA), USA, pp. 1033-1034, 7-12 Jul. 2019

[38] S. Maddio, G. Pelosi, M. Righini, S. Selleri, I. Vecchi, “Optimization
of the Shape of Non-Planar Electronically Scanned Arrays for IFF Ap-
plications via Multi-Objective Invasive Weed Optimization Algorithm,“
Applied Computational Electromagnetics Society Journal, Vol. 35, No.5,
May 2020

[39] G. Pelosi, R. Coccioli, S. Selleri, Quick Finite Elements for Electromag-
netic Waves, 2nd Ed., Artech House, London, UK, 2009

[40] J. A. Encinar, M. Arrebola, L. F. de la Fuente, G. Toso, “A Transmit-
Receive Reflectarray Antenna for Direct Broadcast Satellite Applica-
tions,” IEEE Transactions on Antennas and Propagation, Vol. 59, No.
9, pp. 3255-3264, Jul. 2011

[41] P. Angeletti, F. Frezza, R. Vescovo, G. Toso, “On the Directivity
of Planar Arrays with cosq(θ) Element Patterns,” 30th ESA Antenna
Workshop, ESA/ESTEC Noordwijk, The Netherlands, 27-30 May 2008.

Piero Angeletti (M’07–SM”13) received the Laurea
degree (summa cum laude) in electronics engineer-
ing from the University of Ancona, Italy, in 1996,
and the Ph.D. degree in electromagnetism from the
University of Rome La Sapienza, Italy, in 2010. He
has more than 20 years of experience in RF systems
engineering and technical management encompass-
ing conceptual/architectural design, trade-offs, de-
tailed design, production, integration and testing of
satellite payloads, and active antenna systems for
commercial/military telecommunications and navi-

gation (spanning all the operating bands and set of applications) as well as
for multifunction RADARs and electronic counter measure systems. He is
currently a Member of the Technical Staff of the European Space Research
and Technology Center (ESTEC), European Space Agency, Noordwijk, The
Netherlands. He is heading the Radio Frequency Payloads and Technology
Division, Directorate of Technology, Engineering and Quality (TEC), which
is responsible for RF payloads, instruments, and relevant technologies. In
particular, he oversees ESA research and development activities related to
flexible satellite payloads, RF front-ends, and on-board digital processors.
He has authored/coauthored over 300 technical reports, book chapters, and
articles published in peer reviewed professional journals and international
conferences’ proceedings. He holds several patents related to satellite payload
and antenna technology. Together with Giovanni Toso, he is an Instructor
of the course on Multibeam Antennas and Beamforming Networks, which
has been offered at main IEEE and European microwaves, wireless and
antenna conferences (the IEEE APS, the IEEE IMS, EuMW, EuCAP, the
IEEE ICWITS, ESA Internal University, and so on), since 2012.

Lisa Berretti (S’19) was born in Grosseto, Italy in
1995. She received the M.Sc. degree in electronics
engineering from the University of Florence in 2020.
Since 2021, she has been a PhD candidate at the Na-
tional Institute of Applied Sciences (INSA), Institut
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