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Phase recovery and holographic image reconstruction
using deep learning in neural networks

Yair Rivenson1,2,3,*, Yibo Zhang1,2,3,*, Harun Günaydın1, Da Teng1,4 and Aydogan Ozcan1,2,3,5

Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and holography. In this study,

we demonstrate that a neural network can learn to perform phase recovery and holographic image reconstruction after appro-

priate training. This deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly

eliminating twin-image and self-interference-related spatial artifacts. This neural network-based method is fast to compute and

reconstructs phase and amplitude images of the objects using only one hologram, requiring fewer measurements in addition to

being computationally faster. We validated this method by reconstructing the phase and amplitude images of various samples,

including blood and Pap smears and tissue sections. These results highlight that challenging problems in imaging science can

be overcome through machine learning, providing new avenues to design powerful computational imaging systems.
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INTRODUCTION

Optoelectronic sensor arrays, such as charge-coupled devices (CCDs) or

complementary metal-oxide-semiconductor (CMOS)-based imagers,

are only sensitive to the intensity of light; therefore, phase information

of the objects or the diffracted light waves cannot be directly recorded

using such imagers. Phase recovery from intensity-only measurements

has emerged as an important field to recover this lost phase information

in the detection process, enabling the reconstruction of the phase and

amplitude images of specimen using various approaches1–13. In fact,

Gabor’s original in-line holography system14, where the diffracted light

from the object interferes with the background light that is directly

transmitted, is an important example where phase recovery is required

to separate the twin-image and self-interference-related spatial artifacts

from the real image of the sample. In various implementations, to

improve the performance of the phase recovery and image reconstruc-

tion processes, additional intensity information is recorded, for example,

by scanning the illumination source aperture15–18, sample-to-sensor

distance19–23 (in some cases referred to as out-of-focus imaging24),

wavelength of illumination25,26, or phase front of the reference

beam27–30, among other methods31–36. All these methods utilize

additional physical constraints and intensity measurements to robustly

retrieve the missing phase information based on an analytical and/or

iterative solution that satisfies the wave equation. Some of these phase

retrieval techniques have enabled discoveries in different fields37–40.

In this paper, we report a convolutional neural network-based

method, trained through deep learning41,42, that can perform

phase recovery and holographic image reconstruction using a single

hologram intensity. Deep learning is a machine learning technique

that uses a multi-layered artificial neural network for data

modeling, analysis and decision making and has shown considerable

success in areas where large amounts of data are available. Deep

learning has recently been applied to solving inverse problems in

imaging science such as in super-resolution43,44, acceleration of the

image acquisition speed of computed tomography (CT)45, magnetic

resonance imaging (MRI)46, photoacoustic tomography47 and

holography48,49.

In this work, we used deep learning to rapidly perform phase

recovery and reconstruct complex-valued images of specimen using a

single intensity-only hologram. This process is very fast, requiring

approximately 3.11 s on a graphics processing unit (GPU)-based laptop

computer to recover the phase and amplitude images of a specimen

over a field of view of 1 mm2 with ~7.3 megapixels in each image

channel (amplitude and phase). We validated this approach by

reconstructing the complex-valued images of various samples, such as

blood and Papanicolaou (Pap) smears as well as thin sections of human

tissue samples, all of which demonstrated successful elimination of the

twin-image and self-interference-related spatial artifacts that arise due to

lost phase information during the hologram detection process. In other

words, the convolutional neural network, after its training, learned to
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extract and separate the spatial features of the real image from the

features of the twin-image and other undesired interference terms for

both the phase and amplitude channels of the object. Remarkably, this

deep learning-based phase recovery and holographic image reconstruc-

tion approach has been achieved without any modeling of light–matter

interaction or wave interference. However, this does not imply that the

presented approach entirely ignores the physics of light–matter inter-

action and holographic imaging, which is in fact statistically inferred

through deep learning in the convolutional neural network by using a

large number of microscopic images as the gold standard in the training

phase. This training and statistical optimization of the neural network is

performed once and can be considered as part of a blind reconstruction

framework that performs phase recovery and holographic image

reconstruction using a single input such as an intensity-only hologram

of the object. This framework introduces a myriad of opportunities to

design fundamentally new coherent imaging systems and can be broadly

applicable to any phase recovery problem, spanning different parts of

the electromagnetic spectrum, including visible wavelengths as well as

X-rays28,30,50,51.

RESULTS AND DISCUSSION

Our deep neural network approach for phase retrieval and holographic

image reconstruction is schematically described in Figure 1 (see also

Supplementary Figs. S1–S4). In this work, we chose to demonstrate

the proposed framework using lens-free digital in-line holography of

transmissive samples, including human tissue sections and blood and

Pap smears (see Matrials and Methods). Due to the dense and

connected nature of these samples that we imaged, their holographic

in-line imaging requires the acquisition of multiple holograms for

accurate and artifact-free object recovery52. A schematic of our

experimental setup is shown in Supplementary Fig. S5, where the

sample is positioned very close to a CMOS sensor chip with a o1 mm

sample-to-sensor distance, which provides an important advantage in

terms of the sample field of view that can be imaged. However, due to

this relatively short sample-to-sensor distance, the twin-image artifact

of the in-line holography, which is a result of the lost phase

information, is strong and severely obstructs the spatial features of

the sample in both the amplitude and phase channels, as illustrated in

Figures 1 and 2.
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Figure 1 Following its training phase, the deep neural network blindly outputs artifact-free phase and amplitude images of the object using only one

hologram intensity. This deep neural network is composed of convolutional layers, residual blocks and upsampling blocks (see Supplementary Information for

additional details) and rapidly processes a complex-valued input image in a parallel, multi-scale manner.
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The first step in our deep learning-based phase retrieval and

holographic image reconstruction framework consists of ‘training’

the neural network. This training involves learning the statistical

transformation between a complex-valued image that results from the

back-propagation of a single intensity-only hologram of the object and

the same object’s image that is reconstructed using a multi-height

phase retrieval algorithm (treated as the gold standard for the training

phase). This algorithm uses 8 hologram intensities acquired at

different sample-to-sensor distances (see Materials and Methods as

well as Supplementary Information). As illustrated in Figures 1,2,3, a

simple back-propagation of the object’s hologram, without phase

retrieval, contains severe twin-image and self-interference-related

artifacts, hiding the phase and amplitude information of the object.

This training/learning process (which is performed only once) results

in a fixed deep neural network that is used to blindly reconstruct the

phase and amplitude images of any object, free from twin-image and

other undesired interference-related artifacts, using a single hologram

intensity.

In our holographic imaging experiments, we used three different

types of samples: blood smears, Pap smears and breast tissue sections,

and separately trained three convolutional neural networks for each

sample type, although the network architecture was identical in each

case, as shown in Figure 1. To avoid over-fitting the neural network,

we stopped the training when the deep neural network performance

on the validation image set (which is different from the training image

set and the blind testing image set) began to decline. We also
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Figure 2 Comparison of the holographic reconstruction results for different types of samples: (a-h) Pap smear, (i-p) breast tissue section. (a, i) Zoomed-in

regions of interest from the acquired holograms. (b, c, j, k) Amplitude and phase images resulting from free-space back-propagation of a single hologram

intensity, shown in a and i, respectively. These images are contaminated with twin-image and self-interference-related spatial artifacts due to the missing

phase information in the hologram detection process. (d, e, l, m) Corresponding amplitude and phase images of the same samples obtained by the deep

neural network, demonstrating the blind recovery of the complex object image without twin-image and self-interference artifacts using a single hologram. (f,

g, n, o) amplitude and phase images of the same samples reconstructed using multi-height phase retrieval with 8 holograms acquired at different sample-to-

sensor distances. (h, p) corresponding bright-field microscopy images of the same samples, shown for comparison. The yellow arrows point to artifacts in f, g,

n, o (due to out-of-focus dust particles or other unwanted objects) that are significantly suppressed by the network reconstruction, as shown in d, e, l, m.
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accordingly made the network compact and applied pooling

approaches53. Following this training process, each deep neural

network was blindly tested with different objects that were not used

in the training or validation image sets. Figures 1,2 and 3 show the

neural network-based blind reconstruction results for the Pap smears,

breast tissue sections and blood smears. These reconstructed phase

and amplitude images clearly demonstrate the success of our deep

neural network-based holographic image reconstruction approach to

blindly infer artifact-free phase and amplitude images of the objects,

matching the performance of the multi-height phase recovery. Table 1

further compares the structural similarity54 (SSIM) of our neural

network output images (using a single input hologram, that is,

Nholo= 1) against the results obtained with a traditional multi-height

phase retrieval algorithm using multiple holograms (that is, Nholo= 2,

3,…,8) acquired at different sample-to-sensor distances. A comparison

of the SSIM index values reported in Table 1 suggests that the imaging

performance of the deep neural network using a single hologram is

comparable to that of multi-height phase retrieval, closely matching

the SSIM performance of Nholo= 2 for both Pap smear and breast

tissue samples and the SSIM performance of Nholo= 3 for blood smear

samples. The deep neural network-based reconstruction approach

reduces the number of holograms required by 2-3 times. In addition

to this reduction in the number of holograms, the computation time

for holographic reconstruction using a neural network is also

improved by more than three- and four-fold compared with those

of the multi-height phase retrieval using Nholo= 2 and Nholo= 3,

respectively (see Table 2).

The phase retrieval performance of our neural network is further

demonstrated by imaging red blood cells (RBCs) in a whole blood

smear. Using the reconstructed phase images of RBCs, the relative
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Figure 3 Red blood cell volume estimation using our deep neural network-based phase retrieval. The deep neural network output (e, f), given the input (c, d)

obtained from a single hologram intensity (b), shows a good match with the multi-height phase recovery-based cell volume estimation results (a), calculated

using Nholo=8 (g, h). Similar to the yellow arrows shown in Figure 2f, 2g, 2n and 2o, the multi-height phase recovery results exhibit an out-of-focus fringe

artifact at the center of the field-of-view in (g, h). Refer to Supplementary Information for the calculation of the effective refractive volume of cells.
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phase delay with respect to the background (where no cells are

present) is calculated to reveal the phase integral per RBC (given in

units of rad·μm2—see Supplementary Information for details), which

is directly proportional to the volume of each cell, V. In Figure 3a, we

compare the phase integral values of 127 RBCs in a given region of

interest, which were calculated using the phase images of the network

input, the network output, and the multi-height phase recovery image

obtained with Nholo= 8. Due to the twin-image and other self-

interference-related spatial artifacts, the effective cell volume and the

phase integral values calculated using the network input image

demonstrated a highly random behavior. This behavior is shown as

the scattered blue dots in Figure 3a and is significantly improved by

the network output, shown as the red dots in the same figure.

Next, to evaluate the tolerance of the deep neural network and its

holographic reconstruction framework to axial defocusing, we digitally

back-propagated the hologram intensity of a breast tissue section to

different depths, that is, defocusing distances within a range of

z= [− 20 μm, +20 μm] with Δz= 1 μm increments. After this defo-

cusing, we then fed each resulting complex-valued image as input into

the same fixed neural network, which was trained by using in-focus

images at z= 0 μm. The amplitude SSIM index of each network output

was evaluated with respect to the multi-height phase recovery image

with Nholo= 8 used as the reference (Figure 4). Although the deep

neural network was trained with in-focus images, Figure 4 demon-

strates the ability of the network to blindly reconstruct defocused

holographic images with a negligible drop in image quality across the

imaging system’s depth of field, which is ~ 4 μm.

In a digital in-line hologram, the intensity of the light incident on

the sensor array can be written as

I x; yð Þ ¼ Aþ a x; yð Þj j2

¼ Aj j2 þ a x; yð Þj j2 þ A�a x; yð Þ þ Aa� x; yð Þ ð1Þ

where A is the uniform reference wave that is directly transmitted and

a(x,y) is the complex-valued light wave that is scattered by the sample.

Under plane wave illumination, we can assume that A has zero phase

at the detection plane, without loss of generality, that is, A= |A|. For a

weakly scattering object, the self-interference term |a(x,y)|2 can be

ignored compared with the other terms in Equation (1) because

a x; yð Þj jooA. As detailed in our Supplementary Information, none

of the samples that we imaged in this work satisfies this weakly

scattering assumption. More specifically, the root-mean-squared

(RMS) modulus of the scattered wave was measured to be approxi-

mately 28%, 34% and 37% of the reference wave RMS modulus for

breast tissue, Pap smear and blood smear samples, respectively. This is

why, for in-line holographic imaging of such strongly scattering and

structurally dense samples, self-interference-related terms, in addition

to twin-image terms, form strong image artifacts in both the phase

and amplitude channels of the sample, making it difficult to apply

object support-based constraints for phase retrieval. This necessitates

additional holographic measurements for traditional phase recovery

and holographic image reconstruction methods such as the multi-

height phase recovery approach that we used for comparison in this

work. Without increasing the number of holographic measurements,

our deep neural network-based phase retrieval technique can learn to

Table 1 Comparison of the SSIM index values between the deep neural network output images obtained with a single hologram intensity (for both the

sample-type-specific (STS) and universal networks) and the multi-height phase retrieval results for different numbers of input holograms (Nholo)

corresponding to Pap smear samples, breast tissue histopathology slides and blood smear samples

Reconstruction

method

Deep network

input

(Nholo=1)

Deep network

output (STS)

(Nholo=1)

Deep network

output (Univer-

sal) (Nholo=1)

Multi-height

phase-recovery

(Nholo=2)

Multi-height

phase-recovery

(Nholo=3)

Multi-height

phase-recovery

(Nholo=4)

Multi-height

phase-recovery

(Nholo=5)

Multi-height

phase-recovery

(Nholo=6)

Multi-height

phase-recovery

(Nholo=7)

Multi-height

phase-recovery

(Nholo=8)

Sample type
Pap smear

real part
0.726 0.895 0.893 0.875 0.922 0.954 0.979 0.985 0.986 1

Pap smear
imaginary part

0.431 0.870 0.870 0.840 0.900 0.948 0.979 0.986 0.987 1

Blood smear
real part

0.701 0.942 0.951 0.890 0.942 0.962 0.970 0.975 0.977 1

Blood smear
imaginary part

0.048 0.930 0.925 0.46 0.849 0.907 0.935 0.938 0.955 1

Breast tissue
real part

0.826 0.916 0.921 0.931 0.955 0.975 0.981 0.983 0.984 1

Breast tissue
imaginary part

0.428 0.912 0.916 0.911 0.943 0.970 0.979 0.981 0.982 1

In each case, the SSIM index is separately calculated for the real and imaginary parts of the resulting complex-valued image with respect to the multi-height phase recovery result for Nholo=8, and

thus, by definition, the last column on the right has an SSIM index of 1. Due to the presence of twin-image and self-interference artifacts, the first column formed by the input images has the worst

performance.

Table 2 Comparison of the holographic image reconstruction runtime for a field of view of ~ 1 mm2 for different phase recovery approaches

Deep network

output (STS)

(Nholo=1)

Deep network output

(Universal)

(Nholo=1)

Multi-height

phase-recovery

(Nholo=2)

Multi-height

phase-recovery

(Nholo=3)

Multi-height

phase-recovery

(Nholo=4)

Multi-height

phase-recovery

(Nholo=5)

Multi-height

phase-recovery

(Nholo=6)

Multi-height

phase-recovery

(Nholo=7)

Multi-height

phase-recovery

(Nholo=8)

Runtime (s) 6.45 7.85 23.20 28.32 32.11 35.89 38.28 43.13 47.43

All the reconstructions were performed on a laptop using a single GPU (see Supplementary Information for details). Of the 6.45 s and 7.85 s required for image reconstruction from a single

hologram intensity using sample-type-specific and universal neural networks, respectively, the deep neural network processing time is 3.11 s for the sample-type-specific network and 4.51 s for the

universal network, while the rest of the time (that is, 3.34 s for the preprocessing stages) is used for other operations such as pixel super-resolution, auto-focusing and free space back-propagation.
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separate/clean the phase and amplitude images of the objects from

twin-image and self-interference-related spatial artifacts, as illustrated

in Figures 1, 2, 3. In principle, one could also use off-axis interferometry55–57

to image strongly scattering samples. However, this would create a

penalty in the resolution or field of view of the reconstructed images

due to the reduction in the space-bandwidth product of an off-axis

imaging system.

Another important property of this deep neural network-based

holographic reconstruction framework is that it significantly sup-

presses out-of-focus interference artifacts, which frequently appear in

holographic images due to dust particles or other imperfections in

various surfaces or optical components of the imaging setup. These

naturally occurring artifacts are also highlighted in Figure 2f, 2g, 2n, 2o

with yellow arrows and cleaned in the corresponding network output

images of Figure 2d, 2e, 2l, 2m. From the perspective of our trained

neural network, this property to suppress out-of-focus interference

artifacts stems from the fact that these holographic artifacts fall into

the same category as twin-image artifacts due to the spatial defocusing

operation, helping the trained network reject such artifacts in the

reconstruction process. This is especially important for coherent

imaging systems because various unwanted particles and features

form holographic fringes on the sensor plane and superimpose on the

object’s hologram, degrading the perceived image quality after image

reconstruction.

In this study, we used the same neural network architecture depicted

in Figure 1 and Supplementary Figs. S1–S2 for all object types, and

based on this design, we separately trained the convolutional neural

network for different types of objects (for example, breast tissue vs Pap

smear). The neural network was then fixed after the training process to

blindly reconstruct the phase and amplitude images of any object of the

same type. If a different type of sample (for example, a blood smear

image) was used as an input for a specific network trained on a different

sample type (for example, Pap smear images), reconstruction artifacts

would appear, as exemplified in Supplementary Fig. S6. However, this

does not pose a limitation because in most imaging experiments, the

type of the sample is known, although its microscopic features are

unknown and must be revealed with a microscope. This is the case for

biomedical imaging and pathology since the samples are prepared (for

example, stained and fixed) with the correct procedures, tailored for the

type of the sample. Therefore, the use of an appropriately trained neural

network for a given type of sample can be considered well aligned with

traditional uses of digital microscopy tools.

We also created and tested a universal neural network that can

reconstruct different types of objects after its training, based on the
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f and h, with the image obtained by using the multi-height phase recovery algorithm with Nholo=8, shown in b.
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same architecture used in our earlier networks. To handle different

object types using a single neural network, we increased the number of

feature maps in each convolutional layer from 16 to 32

(Supplementary Information), which also increased the complexity

of the network, leading to increased training times. However, the

reconstruction runtime (after the network was fixed) increased

marginally from approximately 6.45 s to 7.85 s for a field of view of

1 mm2 (Table 2). Table 1 also compares the SSIM index values

achieved using this universal network, which performed similarly

to the individual object-type-specific networks. A further

comparison between the holographic image reconstructions

achieved by this universal network and the object-type-specific

networks is also provided in Figure 5, confirming the same conclusion

as in Table 1.

CONCLUSIONS

In this paper, we demonstrated that a convolutional neural network

can perform phase recovery and holographic image reconstruction

after training. This deep learning-based technique provides a new

framework in holographic image reconstruction by rapidly eliminating

twin-image and self-interference-related artifacts using only one

hologram intensity. Compared to existing holographic phase recovery

approaches, this neural network framework is significantly faster to

compute and reconstructs improved phase and amplitude images of

the objects with less number of measurements.

MATERIALS AND METHODS

Multi-height phase recovery

To generate the ground truth amplitude and phase images used to

train the neural network, phase retrieval was achieved by using a

multi-height phase recovery method19,21,22. For this purpose, the

image sensor is shifted in the z direction away from the sample by

~ 15 μm increments 6 times and ~ 90 μm increment once, resulting in

8 different relative z positions of approximately 0, 15, 30, 45, 60, 75, 90

and 180 μm. We refer to these positions as the 1st, 2nd, …, 8th

heights, respectively. The holograms at the 1st, 7th and 8th heights are

used to initially calculate the optical phase at the 7th height, using the

transport of intensity equation (TIE) through an elliptic equation

solver52 implemented in MATLAB (Release R2016b, The MathWorks,

Inc., Natick, MA, USA). Combined with the square root of the

hologram intensity acquired at the 7th height, the resulting complex

field is used as an initial guess for the subsequent iterations of the

multi-height phase recovery. This initial guess is digitally refocused to

the 8th height, where the amplitude of the guess is averaged with the

square root of the hologram intensity acquired at the 8th height, and

the phase information is kept unchanged. This updating procedure is

repeated at the 7th, 6th,..., 1st heights, which defines one iteration of

the algorithm. Usually, 10–20 iterations give satisfactory reconstruc-

tion results. However, to ensure the optimality of the phase retrieval

for the training of the network, the algorithm is iterated 50 times, after

which the complex field is back-propagated to the sample plane,

yielding the amplitude and phase or real and imaginary images of the

sample. These resulting complex-valued images are used to train the

network and provide comparison images for the blind testing of the

network output.

Generation of training data

To generate the training data for the deep neural network, each

resulting complex-valued object image from the multi-height phase

recovery algorithm, as well as the corresponding single hologram

back-propagation image (which includes the twin-image and self-

interference-related spatial artifacts), is divided into 5× 5 sub-tiles with

an overlap of 400 pixels in each dimension. For each sample type, this

results in a dataset of 150 image pairs (that is, complex-valued input

Sample-type-specific deep network Universal deep network
Multi-height reconstruction from 8

holograms

Amplitude

a b c d e f

lkjihg

m n o p q r

Phase Amplitude Phase Amplitude Phase

50 µm 50 µm 50 µm

Figure 5 Comparison of the holographic image reconstruction results for the sample-type-specific and universal deep networks for different types of samples.

The deep neural network used a single hologram intensity as input, whereas Nholo=8 was used in the column on the right. (a–f) Blood smear. (g–l)

Papanicolaou smear. (m–r) Breast tissue section.
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images for the network and the corresponding multi-height recon-

struction images), which are divided into 100 image pairs for training,

25 image pairs for validation, and 25 image pairs for blind testing. The

average computation time for the training of each sample-type-specific

deep neural network (which is done only once) was ~ 14.5 h, whereas

it increased to approximately 22 h for the universal deep neural

network (refer to Supplementary Information for additional details).

As an example, the progression of the universal network training as a

function of the number of epochs is shown in Supplementary Fig. S4.

Speeding up holographic image reconstruction using GPU

programming

As further detailed in the Supplementary Information, the pixel super-

resolution and multi-height phase retrieval algorithms are implemen-

ted in C/C++ and accelerated using the CUDA Application Program

Interface (API). These algorithms are run on a laptop computer using

a single NVIDIA (Santa Clara, California) GTX 1080 graphics card.

The basic image operations are implemented using customized kernel

functions and are tuned to optimize the GPU memory access based on

the access patterns of individual operations. GPU-accelerated libraries,

such as cuFFT58 and Thrust59, are utilized for development produc-

tivity and optimized performance. The TIE initial guess is generated

using a MATLAB-based implementation, which is interfaced using the

MATLAB C++ engine API, allowing the overall algorithm to be

maintained within a single executable after compilation.

Sample preparation

Breast tissue slide. Formalin-fixed paraffin-embedded (FFPE) breast

tissue is sectioned into 2 μm slices and stained using hematoxylin and

eosin (H&E). The de-identified and existing slides are obtained from

the Translational Pathology Core Laboratory at UCLA.

Pap smear. De-identified and existing Papanicolaou smear slides

were obtained from the UCLA Department of Pathology.

Blood smear. De-identified blood smear slides are purchased from

Carolina Biological (Item # 313158).
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