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Phase Relationships of I-Type Granite With H20 to 35 Kilobars' The Dinkey 
Lakes Biotite-Granite From the Sierra Nevada Batholith 

CHARLES R. STERN 

Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309 

PETER J. WYLLIE 

Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 

The Dinkey Lakes biotite-granite from the Sierra Nevada batholith was reacted (with varying percent- 
ages of H20 in sealed platinum capsules) in a piston-cylinder apparatus between 10 and 35 kbar. The re- 
sults were combined with the results from previously published experiments to provide comprehensive 
phase relationships for an I-type granite: a P-T diagram with excess H20; isobaric T-X•2o diagrams at 
25, 30, and 35 kbar showing H20-undersaturated relations; the H20-undersaturated liquidus surface 
mapped with contours for constant H20 contents and fields for near-liquidus minerals; and the solubility 
of H20 in granite liquids to 35 kbar. Results and their implications show: (1) The solidus temperature de- 
creases from 680øC at 2 kbar to 620øC at 10 kbar, then increases to 700øC at 35 kbar because of changes 
from less dense to more dense subsolidus mineral assemblages. (2) The melting interval with excess H20, 
which is only 35øC at 2 kbar, increases to 105øC at 10 kbar and 150øC at 35 kbar because the liquidus 
m'mimum in the complex rock system departs from granite composition with increasing pressure. (3) The 
solubility of H20 in granite liquid is 27 _+ 2.5 weight percent at 35 kbar and 850øC, indicating that a mis- 
cibility gap persists between H20-saturated silicate magmas and aqueous vapor phase, at least to pres- 
sures corresponding to 120-km depth in the mantle. Dissolution of alkali feldspar (20% of rock) in the 
subsolidus aqueous vapor phase indicates that deep-seated aqueous fluids are concentrated solutions. (4) 
Quartz and toesite are the liquidus minerals at mantle pressures for all H20 contents, indicating that 
granites and rhyolites cannot be primary magmas from mantle peridotitc or subdueted oceanic gabbroic 
crust. (5) The liquidus surface at crustal pressures, with plagioclase and quartz as primary minerals, in- 
dicates that primary liquids of granite composition with moderate H20 contents can be generated in the 
crust at reasonable temperatures; these liquids could rise to near surface levels without vesiculation. 
Granite liquid together with residual crustal minerals could constitute plutonit magmas of intermediate 
composition. 

INTRODUCTION 

Chappell and White [1974] identified two distinctly different 
types of granitoid rocks in southeastern Australia that they 
designated I-type and S-type. White and Chappell [1977] dis- 
cussed their derivation by partial melting of igneous or sedi- 
mentary source rocks, respectively. The granitoid rocks of the 
Sierra Nevada batholith, with abundant hornblende [Bateman 

'et al., 1963], correspond to the I-type. 
The Dinkey Lakes biotite-granite is one of a series of four 

rocks from the central Sierra Nevada batholith (with a tona- 

litc and two granodiorites) that were studied in the presence 
of excess H20 by Piwinskii [1968a, 1973], initially to 3 kbar 
and then to 10 kbar. Additional results on the tonalite were 

presented by Lambert and Wyllie [1974]--excess H,_O rela- 
tionships to 30 kbar and 850øC; Stern and Wyllie [1973b, 
1978]--30 kbar results for H,_O contents from 0% to excess; 
Stern et al. [1975]--completed PT diagram with excess H20 to 

scattered publications) together with previously unpublished 
run data, as representative for an I-type granite. Similar data 
for a muscovite granite, with mineralogy corresponding to an 
S-type granite, are presented in a companion paper [Huang 
and Wyllie, 1981]. 

THE DINKEY LAKES BIOTITE-GRANITE 

The porphyritic biotite granite from the Dinkey Lakes re- 
gion of the Sierra Nevada was provided by P. C. Bateman and 
F. C. Dodge of the U.S. Geological Survey. The geology of 
the area and the mineralogy and petrology of the granitic 
rocks were summarized by Bateman et al., [1963]. The rock is 
number HL-29 in the account by Kistler et al. [1965] and num- 
ber 104 in the system of Piwinskii [1968a]. 

Table 1 provides a chemical analys•s for the rock, its CIPW 

norm, and its mode as determined by F. C. Dodge using 
stained slabs. Piwinskii (1968b) listed the Niggli value and 

30 kbar and the H20-undersaturated liquidus surface. Addi- Differentiation Index. The rock consists of nearly equal pro- 
tional results on the granite have been presented by Boettcher portions of quartz, alkali feldspar, and plagioclase, with less 
and Wyllie [1968a]mnear-solidus results with excess H,_O from than 5 volume percent marie minerals, dominantly biotite. 
10-30 kbar; Stern and Wyllie [1973a, b]--completed PT dia- The alkali feldspar has the composition Or79Ab21, and the 
gram with excess H20 to 35 kbar, preliminary results for 25 plagioclase is zoned form Anl6Abs4 to AnsAb92 [Piwinskii, 
kbar with variable H20 content, and results at 30 kbar with 1968b]. 
5% H20; Stern et al. [1975]--the H,_O-undersaturated liquidus 
surface. 

In this paper we present the complete phase relationships 
for the Dinkey Lakes biotite-granite (consolidated from the 

Copyright ¸ 1981 by the American Geophysical Union. 
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EXPERIMENTAL PROCEDURES 

With measured amounts of distilled and deionized water 

the powdered rock sample (passed through 200 mesh) was 
sealed within platinum capsules and reacted in a single-stage 
piston-cylinder apparatus [Boyd and England, 1960], using a 
half-inch diameter tungsten carbide pressure chamber with 
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TABLE 1. Chemistry and Mineralogy of Dinkey Creek Biotite- the pressure was released to the run value. The nominal pres- 
Granite #104 

Chemical Analysis CIPW Norm 

SiO2 75.4 Qz 31.6 
TiO2 0.15 Or 27.2 
A1203 13.5 Ab 34.1 
Fe203 0.0 An 5.0 
FeO 0.64 Hy 0.6 
MnO 0.04 II 0.3 

MgO 0.10 Mode 
CaO 1.0 

Na20 4.0 Quartz 34.8 
K20 4.6 K-feldspar 29.0 
H20 + 0.35 Plagioclase 31.5 
H20- 0.04 Marie minerals, 4.7 
P•O5 0.07 mostly biotite 
CO• <0.05 

Total 99.94 

Sample provided by P. C. Bateman and F. C. Dodge. 

hardened steel liner and talc sleeves and cylinders in the fur- 

nace assembly. Grease-base 'Molykote-G' (MoS2) served as a 
lubricant between the pressure chamber and the furnace as- 

sembly, which was jacketed with lead foil. All runs were 

brought to final pressure by the hot piston-out procedure 

[Boyd et al., 1967]: pressure was raised 5 to 7 kbar above run 

pressure, the sample was heated to the run temperature, and 
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Fig. 1. Phase relations for biotite-granite (#104) with excess wa- 

ter. Definitive experiments are listed in Table 2. Phase boundaries be- 

sure without friction correction is considered accurate to & 5% 

[Huang and Wyllie, 1975]. Thermocouples used were chromel- 

alumel (T •< 850øC) and Pt/Pt 10 Rh (T > 850øC), with no 
correction for pressure effects on output emf. Temperatures 

are precise to _+5øC, and probably accurate to within ñ13øC 
at 1000øC, 30-kbar pressure, considering pressure effects on 

thermocouple emf [Getting and Kennedy, 1971; Merrill and 

Wyllie, 1975]. The oxygen fugacity imposed on the reactants 

by the furnace assembly was slightly below the Ni/NiO buffer 

[Merrill and Wyllie, 1975]. 

Boettcher and Wyllie [1968a] found that above 15.3 kbar, 

metastable melting of this granite could occur below the sol- 

idus unless the high pressure mineral assemblage was used. 

Therefore, most runs above 15 kbar were performed in two 

stages. First, the sample was held below the metastable exten- 

sion of the solidus curve long enough to produce the high- 

pressure mineral assemblage, and then the temperature was 
raised to the required level for the run. These two stages are 

indicated by pairs of rows in the run tables. Normal, single- 

stage runs were used at near-liquidus temperatures, above 
950øC. 

The reversibility of some phas• boundaries was established 
by two-stage runs that were first held at temperature above 
the phase boundary, and then the temperature was lowered to 
the required level for the run. Details of problems and proce- 
dures for establishing reversibility of phase boundaries for 

rock samples within narrow temperature intervals were re- 
viewed by Stern and Wyllie [1975]. 

Runs were quenched rapidly by switching off the power to 
the furnace. The capsules were recovered, tested for leaks by 
the application of gentle heat, and the sample was recovered 
and crushed for examination. 

Identification of Phases 

Phase assemblages were determined by optical and X ray 

studies of the quenched materials, as described by Piwinskii 

[1968a, 1973] and Boettcher and Wyllie [1968a]. Phases present 
at run conditions included crystals, silicate liquid containing 

dissolved H20, and a dense aqueous fluid phase containing 

dissolved solid components. Original crystals were preserved 

during the quench; liquids quenched to glasses; and the vapor 

phase quenched to water and a variety of precipitated solids. 
Minerals encountered include quartz, coesite, plagioclase, 

jadeite, kyanite, garnet, and orthoclase-hydrate. Plagioclase 
and orthoclase-hydrate were positively identified only with X 

ray powder diffraction patterns. Euhedral prisms of quartz 
and coesite were easily identified. Jadeite occurred as small 

distinctive acicular prisms, while kyanite formed larger nee- 

dles and clear euhedral prisms, often curved, with low bire- 
fringence and near-parallel extinction. Positive identification 

of kyanite was achieved with the electron microprobe. Small 

grains of garnet were easily identified optically. 
All runs in the vapor-present region contained deposits 

from vapor such as quench mica and brown aggregates, which 
low 3 kbar are from Piwinskii [1968a], and those between 3 and 25 
kbar incorporate the results of Piwinskii [1973] and Boettcher and were described by Boettcher and Wyllie [1968a]. Glasses in the 
Wyllie [1968a]. Solid circles are runs above the liquidus, empty circles H•O-saturated region were filled with cavities, as were some, 
are subsolidus runs, and half-filled circles represent crystals + liquid. glasses in the vapor-absent region, indicating that exsolution 
Dashed lines: phase boundaries estimated or uncertain. Abbrevi- of vapor from liquids occurred during the quench. Many runs 
ations: P1, plagioclase; Qz, quartz; Or, orthoclase; Bt, biotite; Jd, ja- in the vapor-absent region contained glasses with no cavities. 
deite; Ct, coesite; Ky, kyanite; L, liquid; V, vapor. At low pressures, a 
single feldspar would replace Ab + Or at temperatures above the The glasses from any one run usually appeared to be homoge- 
solvus. neous. 
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TABLE 2. Definitive Experimental Runs for Granite #104 With Excess Water 
Pressure, Temperature, Water Added, Time, 

kbar øC wt % hoiars Phases present 

10 700 50 75 Qz, L, V 
10 725 50 20 L, V 
15 7 •0 50 23 Qz, L, V 
15 ?•0 50 18 Qz, .L, V 
15 740 50 24 L, V 
15 745 25 13 L• V 
15 800 50 10 L, V 
15 900 50 6 Qz, L, V 

675 • 16 

22.5 900 50 8 -- 
750 -- 15 Qz, Ky, L, V 

25 595 50 7 
750 • 16 Qz, Ky, L, V 

25 595 50 7 • 
775 --- 16 Qz, Ky, L, V 

25 595 50 6 • 
800 • i4 Ky, L, V 

25 595 50 6 • 
850 m 16 Ky, L, V 

25 595 50 6 m 
925 -- 12 Ky, L, V 

950 • 12 L, V 
25 595 25 6 Qz, Jd, Ky, V 
25 595 25 6 • 

645 • 16 Qz, Jd, Ky, V 
25 595 25 8 m 

6•0 -- 12 Qz, Jd, Ky, L, V 

700 • 16 Qz, Ky, L, V 
25 595 25 6 • 

800 • 16 Qz, K y, L, V 
25 595 25 '6 • 

825 ---' 15 L, V 
25 595 25 6 • 

8,75 • 13 L, V 
25 595 25 6 -- 

900 • 12 L, V 
25 595 25 5 • 

950 • 8 L, V 
30 590 33 6 • 

725 • 14 Ct, Jd, Ky, L, V 
30 800 33 14 Ct, Ky, L, V 
30 590 30 6 Ct, Jd, Ky, V 
30 590 30 6 m 

675 • 14 Ct, Jd, Ky, V 
30 590 26 6 • 

700 • 16 Ct, Jd, Ky, L, V 
30 590 26 6 • 

725 m 14 Ct, Jd, Ky, L, V 
30 5• 26 6 -- 

750 -- 16 Ct, Ky, L, V 
36 590 26 6 -- 

775 -- 16 Ct, Ky, L, V 
30 590 25 6 -- 

625 -- 12 Ct, Jd, Ky, V 
30 590 25 6 • 

650 m 12 Ct, Jd, Ky, V 
30 800 25 12 Ct, Ky, L, V 
30 820 25 12 Ct, Ky, L, V 
35 585 50 6 • 

780 • 14 Ct, Ky, L, V 
35 585 50 6 • 

800 • 16 Ct, Ky, L, V 
35 585 50 6 m 

825 • 17 Ky, L, V 
35 585 50 10 -- 

850 • 12 Ky, L, V 
35 585 50 6 • 

950 -- 1 i L, V 
35 585 30 6 m 

785 • 16 Ct, Jd, Ky, L, V 
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TABLE 2. (continued) 

Pressure, Temperature, Water Added, Time, 
Run kbar øC wt % hours Phases Present 

123T 35 585 30 6 -- 

805 -- 16 Ct, Ky, L, V 
118T 35 585 28 6 -- 

825 -- 16 Ct, Ky, L, V 
119T 35 585 28 6 -- 

850 -- 16 L, V 

All runs conducted in Pt capsules. Abbreviations: Qz, quartz; Ct, coesite; Jd, jadeite; Ky, kyanite; L, 
liquid; V, vapor. Runs occupying double rows were completed in two stages: T--after holding the sample 
at subsolidus conditions indicated in the first row, it was transferred to conditions indicated in the second 

row. R--after holding the sample above the liquidus at conditions indicated in the first row, it was trans- 
ferred to conditions indicated in the second row. 

EXPERIMENTAL RESULTS 

Phase Relationships With Excess H20 

Figure 1 shows the P-T projection for the melting interval 

of the granite with excess water; definitive runs from this 
study are listed in Table 2. The melting relations with excess 
water at 1, 2, 3, 5, and 10 kbar were determined by Piwinskii 

[1968a, 1973]. The near-solidus relations at 10, 15, and 20 

kbar, determined and discussed in detail by Boettcher and 

Wyllie [1968a], were incorporated. Dashed lines are drawn 

where interpretation is uncertain. 
The subsolidus mineral assemblage at crustal pressure cor- 

responds to that of the natural rock, two feldspars, quartz, and 
a trace of biotite. At high pressures, for temperatures just be- 
low the solidus and with between 25 and 50 wt % H20, the 

subsolidus mineral assemblage is jadeite + coesite + kyanite. 

The change is caused by the breakdown of plagioclase to yield 

jadeitc + quartz at about 17 kbar [Boettcher and Wyllie, 
_ 

1968b]; by the transition of quartz to coesite at about 27 kbar 

[Kitahara and Kennedy, 1964]; by the disappearance of ortho- 

clase and biotite at about 18 and 8 kbar, respectively, which is 

due to their solution in the large percentage of vapor [Boett- 

cher and Wyllie, 1968a; Piwinskii, 1973; see discussion below 

for relationships with less H20]; and by the appearance of 

kyanite. No kyanite was found in a reexamination of the run 

products at 20 kbar of Boettcher and Wyllie [1968a]. The for- 
mation of kyanite might be expected to result in part from the 

breakdown of biotite and the anorthite component of the 

plagioclase, but the kyanite boundary is separated from those 
for biotite and plagioclase, and the presence of kyanite is 

probably due more to the preferential solubility of alkalis in 

the vapor as compared to alumina and possibly silica (see dis- 

cussion below for H20-undersaturated conditions). 

The solidus is identical (within the limits of experimental 
error) with that determined for a muscovite-granite by Huang 

and Wyllie [1973] and the melting curve for the eutectic 

and liquidus minimum in the system Ab-Or-Qz-H20 [Merrill 

et al., 1970; Huang and Wyllie, 1975]. The muscovite-granite 

solidus at 35 kbar is somewhat higher than the other two. The 

solidus determinations of Boettcher and Wyllie [1968a] are 
consistent with Figure 1 at 25 kbar, but somewhat higher in 
temperature at 30 kbar. Below 17-kbar pressure, increasing 
solubility of H20 in the silicate liquid with increasing pressure 
lowers the solidus temperature. At about 17 kbar the solidus 

passes through a minimum and begins to increase in temper- 
ature with increasing pressure. This kind of change has been 
predicted through consideration of progressive change in the 
values of the partial molar volume of H20 in vapor and liquid 

phases [for example, discussion by Carmichael et aL, 1974], 
but in this example it is evidently due to the breakdown of 

plagioclase and the formation of the dense assemblage jadeitc 
+ quartz, as discussed by Boettcher and Wyllie [1967]. 

At 3 kbar, plagioclase is the liquidus mineral [Piwinskii, 

1968a]. Between 5 kbar and 20 kbar, quartz is the liquidus 

mineral. At higher pressures, quartz (or coesite above 28 kbar) 
and kyanite occur together on the liquidus for H20-saturated 

liquids, .but for higher H20 contents, kyanite is the liquidus 
mineral (see Figure 2). 

The liquidus boundary with excess H•O has been reversed 

with 50øC brackets for quartz at 15 kbar (run 60, Table 2) and 
for quartz and kyanite at 22.5 kbar (run 44, Table 2). Huang 
and Wyllie [1973] reported pairs of runs reversing the corre- 
sponding liquidus boundaries in a muscovite-granite within 
25øC brackets for quartz and kyanite at 15 and 25 kbar re- 

spectively. Water at pressures greater than 10 kbar has a re- 
markable kinetic effect on silicate reactions, as demonstrated 

for granite-H•O systems at 10 kbar by Piwinskii and Martin 

[1970]. These facts suggest that the phase boundaries above 10 

kbar in Figure 1 are not far from their equilibrium positions, 
but proof of this in multimineral felsic systems is extraordi- 

narily difficult. 

At pressures below 5 kbar, the melting interval is narrow, 

and the granite behaves as a eutectic-like composition. This is 
consistent with the fact that its composition, projected onto 
the system Ab-Or-Qz, is not far removed from the quartz- 
feldspar cotectic boundary for low pressures. The melting in- 
terval increases significantly at pressures above 5 kbar; it is 
35øC at 2 kbar, 100øC at 10 kbar, and 150øC at 35 kbar. This 

is caused by the increasing temperature of the quartz-out 

curve and is consistent with change of the minimum-melting 
composition in the Synthetic Granite System, Ab-Or-Qz, 

_ 

away from SiO2 towards NaA1Si3Os, both with excess H20 and 

in the dry system [Luth et al., 1964; Luth, 1969; Huang and 
Wyllie, 1975]. 

Phase Relationships With Variable H20 Content 

Figure 2 shows the phase relations determined at 30 kbar 

with varying weight percentages of water and interpolated to 

estimated results for the anhydrous rock composition (Tables 
2 and 3). Phase boundaries are labeled through the melting in- 
terval. Figures 3a and 3b show similar, but less detailed, dia- 

grams for results at 25 and 35 kbar, respectively, with dashed- 

line boundaries estimated according to determinations in Fig- 

ures 1 and 2 (Tables 2 and 3). The granite itself contains 0.35 
wt % H20, mostly in biotite, and this rock composition plots at 
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the point marked R. The excess H20 runs at 25, 30, and 35 
kbar shown in Figure 1 are the runs plotted in Figures 2, 3a, 
and 3b with between 25 and 40 wt % H20 (Table 2). 

The H•_O-saturation boundary (V-out, Figure 2) separates 

the phase fields wth vapor present from those with vapor ab- 
sent. The position of this boundary has not been experimen- 
tally determined but its approximate position is known from 
the analysis of Robertson and Wyllie [1971]. In runs from all 

the relative strengths of X ray peaks, decreases with increasing 
amounts of H•O until it disappears. At 590øC it disappears 

with 27% H•_O. The phase relationships show that all K:O 
has dissolved in vapor at this stage, but we cannot determine 

the distribution of Al:O3 and SiOn_ between vapor and residual 
minerals. The limited data available indicate that the solution 

reaction is strongly dependent on temperature (Figure 2). 

The subsolidus dissolution of 29% alkali feldspar, con- 

gruently or incongruently, indicates that at pressures of 15 
kbar and above (Figure 1) the aqueous fluids coexisting with 

granitic materials are very concentrated solutions [Boettcher 
and Wyllie, 1968a; Stern and Willie, 1973a]. The position of 

the boundary in Figure 3a limiting the subsolidus existence of 

alkali feldspar is assumed to be similar to that for orthoclase- 

hydrate at 30 kbar (Figure 2). Solution in the vapor phase also 

limits the subsolidus field of garnet (Figure 2). Preferential 

solubility of alkalis compared with alumina and possibly silica 
is shown by the development of an increasing area of kyanite 

stability with increasing H:O content in the vapor-present re- 

gion (Figures 2, 3a, and 3b). A segment of the kyanite-out 

curve (Figure 2) is drawn coincident with the saturation 
boundary. This curve connects the determined kyanite-out 

curves in the vapor-present region and in the vapor-absent re- 

gion (which is coincident with the jadeite-out curve within ex- 

perimental limits of detection). 

At low pressures, where the vapor-phase composition is 
nearly pure H20, the phase boundaries for vapor-present con- 

ditions are isothermal. At high pressures, where the vapor is a 
concentrated solution, these phase boundaries are not isother- 

mal, although this may not be detectable within the limits of 

experimental measurement [Robertson and Willie, 1971]. Fig- 

ures 2, 3a, and 3b show that in the system granite-H:O at 25 

kbar or higher pressure, the vapor-present phase boundaries 

do depart measurably from isothermal lines. At 30 kbar the 
solidus rises 25øC between 8% and 25% H:O; at 30 and 35 

kbar the quartz-out and coesite-out curves drop 25 øC between 

25% and 50% H:O; and at 35 kbar the jadeite-out curve drops 
25øC between 25% and 50% H•_O. 

There are three solidus reactions shown in Figure 2, de- 

fields labeled vapor present, there are deposits from the 'pending on the amount of water present. In an anhydrous 

quenched vapor. Similar deposits also occur in some runs rock containing no hydrous minerals, the solidus is high, near 
from the vapor-absent areas, and we believe that these derive 1250øC, as estimated from the results of Luth [1969] and 
from vapor that exsolved from liquid during the quench, as Huang and Wyllie [1975] in the dry synthetic granite system. 
discussed above in connection with cavities in quenched glass. Green and Ringwood [1968] estimated 1300øC for the an- 

The process was discussed by Boettcher and Wyllie [1968a], hydrous solidus temperature of a rhyolite with 70% silica at 30 
and interpretation of the observed products in similar systems kbar. For low H:O contents (0.7%) all H20 may be structur- 
at lower pressures was reviewed in detail by Whitney [1975a]. ally bound in orthoclase-hydrate, and the beginning of melt- 

For low H:O contents (<5%) or low temperatures in the ing would be the temperature on the breakdown of ortho- 
subsolidus region, which minimizes the effects of the solution clase-hydrate, near 800øC at 30 kbar [Huang and Wyllie, 
of solids in the vapor, the high-pressure subsolidus assemblage 1974]. For a rock with more than 0.7% H•_O and a free vapor 

is jadeite + coesite + kyanite + orthoclase-hydrate + garnet phase, the solidus is between 660 ø and 690øC, depending on 
(Figure 2). This assemblage results from the subsolidus teac- the H:O content, as discussed bove. 
tions discussed for H•_O-excess conditions and, in addition, the In the vapor-absent region the upper stability temperature 

transition of orthoclase to orthoclase-hydrate [Seki and Ken- of quartz, jadeite, kyanite, orthoclase-hydrate, and garnet in- 

nedy, 1964] and the breakdown of biotite to produce garnet. crease with decreasing H:O content. The phase boundary for 
At low pressures the vapor phase composition is almost quartz has been reversed within a 25øC bracket at 30 kbar 

pure H•_O, but with increasing pressure, increasing amounts of with 12.5% H:O (run 200, Table 3). The estimated liquidus 
rock dissolve in the vapor (see Figure 4). The high solubility temperature for the anhydrous granite is taken from Green 
of solids in the vapor at 30 kbar is indicated by the subsolidus and Ringwood [1968]. 
disappearance of orthoclase-hydrate (Figure 2). Granite 104 For a rock containing 5% H20 at 30 kbar, melting begins at 
contains 29% orthoclase, all of which presumably would form 670øC, garnet having already dissolved in the vapor phase 
orthoclase-hydrate, given enough H:O. At a given temper- just below the solidus. A few degrees above the solidus, the 
ature the amount of orthoclase-hydrate, as determined from H•_O is completely dissolved in the liquid. With increasing 
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TABLE 3. Definitive Experimental Runs for Granite #104 With Amounts of Water Less Than 
Required to Saturate the Liquid 

Pressure, Temperature, Water Added, Time, 
Run kbar øC wt % hours Phases Present 

109T 25 595 20 6 -- 
825 -- 15 L 

108T 25 595 20 6 • 
850 -- 21 L 

•07T 25 595 20 6 -- 
875 -- 12 L, (V) 

100T 25 595 18 6 • 
800 -- 16 Qz, L 

113T 25 595 16 6 -- 
850 • 18 Qz, L 

112T 25 595 16 6 -- 
875 • 14 L 

11 ! T 25 595 16 6 -- 
900 • 14 L 

229 25 595 6 6 Qz, Jd, Ky, Or, Ga, V 
129 25 1000 6 6 Qz, L 
133 25 1040 6 8 L 
294 30 590 24 12 Ct, Jd, Ky, OrH, V 
220T 30 590 20 6 • 

750 -- 14 Ct, Jd, Ky, L 
217T 30 590 20 6 • 

775 -- 14 Ct, (Ky), L 
187 30 825 20 11 Qz, L 
186 30 850 20 11 L 
200R 30 1050 12.5 6 -- 

900 • 14 Qz, L 
297T 30 590 10 4 • 

675 • 12 Ct, Jd, Ky, OrH, L, V 
191T 30 590 10 6 • 

775 -- 12 Ct, Jd, Ky, L, V 
193T 30 590 10 6 • 

825 • 12 Ct, Jd, Ky, L 
212T 30 590 10 6 • 

850 • 14 Qz, L 
192 30 950 10 12 Qz, L 
242T 30 590 8 6 • 

650 -- 6 Ct, Jd, Ky, OrH, V 
297T 30 590 8 4 • 

675 • 12 Ct, Jd, Ky, OrH, L, V 
244T 30 590 8 6 • 

700 • 6 Ct, Jd, Ky, L 
195T 30 590 8 6 • 

900 • 14 Qz, L 
196 30 1000 8 8 Qz, L 
198 30 1025 8 8 L 
208T 30 590 7 6 m 

850 -- 14 Qz, Jd, Ky, L 
203T 30 6 590 7 6 • 

875 • 14 Qz, Jd, Ky, L 
209T 30 590 6 6 • 

900 -- 14 Qz, L 
236 30 590 5 6 Ct, Jd, Ky, OrH, 

Ga, V 
299T 30 590 5 5 • 

700 12 Ct, Jd, Ky, OrH, L 
298T 30 590 5 5 • 

900 • 6 Qz, Jd, Ky, L 
201 30 950 5 12 Qz, L 
214 30 1075 5 8 Qz, L 
194 30 1100 5 8 L 
103T 35 585 25 6 • 

825 • 14 Ct, Ky, L, V 
114T 35 585 25 6 • 

850 -- 14 L 
98T 35 585 25 6 -- 

890 • 14 L, V 
66 35 585 22.5 6 Ct, Jd, Ky, V 
86T 35 585 22.5 6 -- 

690 • 14 Ct, Jd, Ky, V 
83T 35 585 22.5 6 • 

720 • 14 Ct, Jd, Ky, L, V 
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Table 3. (continued) 

Run 

Pressure, Temperature, Water Added, Time, 
kbar øC wt % hours Phases present 

75T 35 

74T 35 

115T 35 

124 35 

125 35 

120 35 

121 35 

585 22.5 6 -- 

745 -- 14 Ct, Jd, Ky, L, V 
585 22.5 6 -- 

765 • 14 Ct, Jd, Ky, L, V 
585 22.5 6 • 

785 • 14 Ct, Jd, Ky, L, V 
900 22.5 8 L 

900 20 8 Ct, L 
975 14 11 Ct, L 

1025 12.5 8 L 

All runs conducted in Pt capsules. Abbreviations and symbols as in Table 2 and Ga, garnet; Or, ortho- 
clase; OrH, orthoclase-hydrate; ( ) indicates trace amounts. 

temperature, first, orthoclase-hydrate, then jadeite and kyan- 

ite, and finally quartz, at 1090øC, dissolve in the liquid. Equi- 

librium crystallization of a granite liquid containing 5% dis- 

solved H,•O proceeds in exactly the reverse sequence, with a 

free vapor phase separating from the liquid only at a very late 
stage of crystallization. 

The liquidus boundary changes slope at its point of inter- 
section with the vapor-saturation boundary, and this point 

gives the solubility of H,•O in the liquid [Robertson and Wyllie, 

1971]. We have determined the position of the change in slope 
of the liquidus in Figures 2, 3a, and 3b as a measure of H20 

solubility. Figure 4 shows the solubility of H,•O in a granite 
liquid with increasing pressure, as determined from these dia- 

grams and previously published results up to 8 kbar [Clark, 

1966], as well as previously published results for the solubility 
of H,•O in basaltic and andesitic liquids and in the eutectic 

composition in the Residua System up to 8 kbar. The solubil- 
ity of albite in aqueous vapor up to 10 kbar is also given. The 

high-pressure results are consistent with the approximate val- 

ues and limits determined for albite composition by Boettcher 

and Wyllie [1969]. The brackets are wide, but they demon- 

strate that solubility of H20 in granite liquids is limited with 

increasing pressure. Complete miscibility between liquid and 

vapor has been reported in the system $iO,•-H:O at pressures 
above the second critical endpoint near 10 kbar [Kennedy et 

al., 1962], but the results in Figures 2, 3a, 3b, and 4 show that 

a miscibility gap persists between H:O-saturated granite liq- 

uid and aqueous vapor at least to 35 kbar. The solubility rela- 

tionships in silicate magma-H:O systems thus appear to corre- 
spond more closely to the type predicted by Smith [1963, 

Figure 12-35] than to the type with critical endpoints, at least 

to mantle depths of 120 kin, as discussed by Boettcher and 

Wyllie [ 1968a]. 

The H20- Undersaturated Liquidus Surface 

Figure 5 shows the H:O-undersaturated liquid0s surface for 
the granite, extending from the dry liquidus (estimated from 

Green and Ringwood [1968]) to the H20-saturated liquidus 

(from Figure 1). The H:O content of the saturated liquid in- 
creases from 0% at 1 bar to 27% at 30 kbar, as shown in Figure 
4. 

The surface is contoured by lines of constant H,•O content 

drawn from the known points on the excess-H,•O boundary 

(Figure 4) through corresponding points on the liquidus 
boundaries determined from the rock-water isobars at 15, 25 

(Figure 3a), 30 (Figure 2), and 35 kbar (Figure 3b). The values 
at 15 kbar are consistent with results of Huang and Wyllie 

[1973] for a muscovite granite. The map of the surface in P-T- 
X•i2o space•hows the fields for the liquidus and near-liquidus 
minerals based on the results shown in Figures 1, 2, 3a, and 3b, 
and it takes into account the results of H•_O-deficient experi- 
ments on similar compositions below 10 kbar [Eggler and Bum- 

ham, 1973; Whitney, 1975a]. Kyanite, a minor accessory mineral 

in Figures 1, 3, 3a, and 3b has been omitted from Figure 5 be- 
cause kyanite does not appear on the liquidus for H•_O-under- 

saturated conditions (Figures 2, 3a, and 3b). Although the po- 

sitions of the boundaries and the shape of the liquidus surface 

in Figure 5 may change with changes in some chemical pa- 

rameters, the relative positions of the phase boundaries are 
correct for most rocks called granites and rhyolites. As far as 

the major minerals are concerned, the liquidus for all H•O 

contents is dominated at high pressure by quartz or coesite 
and at pressures below 10 kbar corresponding to crustal 

depths, by quartz and plagioclase. 

DISCUSSION 

The phase relationships for a single rock summarized here 
provide constraints about its origin, but they do not provide 
an adequate basis for detailed discussion of the petrogenesis 
of I-type granitoids. It is necessary to consider, in addition, 
the phase relationships of the other rocks constituting a bath- 
olithic series as well as the field relationships and the geo- 

chemistry of trace elements and isotopes. 

The phase relationships can be used to determine the condi- 
tions under which granite #104 could be a primary magma 
form various source rocks. The near-liquidus minerals for a 

primary magma must correspond to major minerals in the 
source rock at the depth and temperature of origin. The liq- 
uidus mineralogy of the granite is dominated by quartz or 
coesite at pressures above about 10 kbar (Figure 5), and no 
other mineral crystallizes through a considerable temperature 
interval below the liquidus (Figures 1, 2, and 3). The only 
candidates for source rocks above 10 kbar are mantle perido- 

tite, subducted oceanic crust, and deep continental crust. Nei- 
ther of the first two potential source rocks could yield granite 
liquid and residual quartz or coesite, and there are few deep 
crustal rocks likely to leave residual quartz. At pressures be- 
low 10 kbar, quartz on the liquidus is joined or replaced by 
plagioclase (Figures 5 and 1), and this is consistent with deri- 
vation of the granite liquid by partial fusion of continental 
rocks of varied composition. 

The eutecticlike character of granite # 104 with excess H•_O 

exists only up to pressures of about 5 kbar (Figure 1). At 
higher pressures the melting interval increases, indicating that 
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Fig. 3. Phase relationships for granite #104 at 25 and 35 kbar, with varying H20 contents. Definitive runs are listed in 
Tables 2 and 3. Symbols and abbreviations as in Figures 1 and 2. 

the composit, ions of liquids produced by partial melting of about 400oc, and H20-undersaturated liquid coexists with 
rocks of granitic composition depart progressively from the quartz, plagioclase, and alkali feldspar through 200øC. Con- 
low-pressure eutectic composition. This has been demon- sidering source roeIts with realistically low proportions of 
strated in synthetic sy.stems [Luthet al., 1964; Luth, 1969; aqueous pore fluid, it is evident that this fluid dissolves within 
Huang and Wyl!ie , 1975]. Therefore, we would not expect liq- a few degrees of the solidus. Note in Figure 6 that without 
uids of granite composition to be derived by partial melting of aqueous pore fluid, the solidus temperature of the biotite 
quartzo-feldsPathic rocks at very high pressureS. granite is considerably higher. Melting begins where biotite 

The eutecticlike Character of granite exists only for the con- 
ditions of excess H20. If there is less H•O present than that re- 
quired to saturate the liquid, there is a wide temperature inter- 
val for crystals plus liquid between liquidus and solidus. 
Figures 2 and 3 illustrate the phase relationships for high pres- 
sures, and the same general picture exists at lower crustal 

pressures [Robertson and WYllie, 1971; Whitney, 1975a]. This is 
illustrated in Figure 6 for .another biotite granite studied by 
Maal•e and Wyllie [1975] at 2 kbar. The melting interval with 

reacts t ø release H•O for the liquid phase. The normal prOd- 
uct of partial fusion of a wide range' 'of crustal rock•-iS-•O- 
undersaturated granite liquid [Piwinskii and Wyllie, 1970; 
Brown and Fyfe,, 1970; Robertson and Wyllie, 1971; Wyllie, 
1977a]. 

According to Figure 5, granite # 104 at 40-km depth would 
be completely liquid at 1000øC with 2% H•O, and at 860øC 
with 5% H•O. Therefore, primary garnite melts with moderate 
H20 contents COuld be generated in the crust at temperatures 

excess H•O at 2 kbar is higher than that for granite #104 (Fig- attained during regional metamorphism [Turner, 1968]. These 
ure 1) because the ratio of plagioclase/quartz is higher. The magmas could reach near-surface levels before vesiculating 
interval between solidus and liquidus for H•O content of 1% is where their paths crossed the excess-H•o boundary (Figure 
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Fig. 4. The solubilities of H20 in silicate liquids at the liquidus 
and of dissolved solid components in aqueous vapor, as a function of 
pressure. Brackets for the solubility in granite at 25, 30, and 35 kbar 
are from the eXPerimental data in Figures 2, 3a, and 3b. The curve for 
basalt-peridotite is from Green [1973]. The data below 10 kbar are 
from the compilation by Clark [1966]. 

TEMPERATURE øC 

Fig. 5. The H20-undersaturated liquidus surface for granite #104 
(rhyolit e liquidus surface) connecting the H20-saturated liquidus 
(from Figure 1) with the dry liquidus. The surface is contoured by 
lines of constant H20 content and mapped with areas of liquidus and 
near-liquidtis minerals. 
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Fig. 6. Phase relationships for a biotite granite with varying H20 
contents at 2 kbar, with oxygen fugacity buffered [Maalde and Wyllie, 
1975]. Note the boundary between the phase fields with vapor and 
those without vapor (run circles filled). The heavy line is the upper 
stability limit of biotite, which intersects the phase boundaries for 
quartz and the feldspars in the vapor-absent region. 

Maal•e and Wyllie [1975] concluded on the basis of granite 
petrography and experiments that most large bodies of gra- 
nitic magma initially contained relatively low H20 contents, 
probably less than 1.5%, and that most batholiths remained 
H20-undersaturated through most of their histories. H20- 

saturation and evolution of vapor occurs either as a result of 

uprise to lower pressures (Figure 5; Whitney [1975b]) or through 

crystallization (Figure 6; Jahns and Burnham [1969]). Robert- 
son and Wyllie [1971] pointed out that although most granitic 
magmas evolve aqueous vapors only in the late stages of crys- 
tallization, insoluble volatile components, such as CO2, may 

be concentrated in a vapor phase at an earlier stage together 
with a small proportion of H20. The consequences of this be- 
havior were explored by Holloway [1976]. 

It has been established in experimental studies on granitoid 

rock sequences tonalite-granodiorite-granite-H20 that the 
rocks consist of two groups of minerals with different charac- 
teristics. The minerals of the residua system, quartz, ortho- 

clase, and the sodic portion of plagioclase feldspar melt to- 
gether to produce a euteticlike granite liquid that coexists with 
the more refractory assemblage of calcic plagioclase, biotite, 
and amphibole, with little exchange of components among 
coexisting phases through a wide temperature interval [Pi- 
winskii, 1968a, 1973; Piwinskii and Wyllie, 1968, 1970; Gibbon 

and Wyllie, 1969]. A wide range of granitoid magmas can be 
developed by combinations of granite liquid and suspended 
minerals of the more refractory group. The mafic inclusions in 

many batholiths are composed of the refractory mineral group 
with compostions consistent with the hypothesis that the mag- 
mas represent mixtures of granite liquid and residual minerals 
from the source rocks [e.g., Piwinskii, 1968b]. The designation 
of granite #104 as a eutecticlike granite liquid of I-type is 
based on the association of granite #104 with I-type gran- 

odiorities and tonalites [Piwinskii, 1968a, 1973]. 
For more detailed reviews of these and other experimental 

results relevant to the I-type granitoid series, including the 

phase relationships of amphibole in the rocks and some dis- 
cussion of the involvement of material from mantle and sub- 

ducted oceanic crest, see Piwinskii and Wyllie [1968], Stern et 

al. [197.5], Wyllie et al. [1976], Wyllie [1977a, b], and Stern and 
Wyllie [1978]. 

Johannes [1980] presented detailed studies on melting reac- 
tions in the synthetic granite system with excess H20 at 5 kbar 
and raised an important question. To what extent is it valid to 
apply roetastable experimental results to natural processes? 
He reviewed some of the previous attempts to test for equilib- 
rium in experiments on similar systems. He concluded that 
overinterpretation of granitic systems should be carefully 
avoided and that controversies about the formation of gra- 

nites and migmatites are due to contradictory experimental 
data and inconsistent interpretations of the data. Johannes' 
results indicate that solidus curves determined for crystalline 

materials with excess H20 are close to equilibrium but that 

other melting curves may be considerably below stable tem- 

peratures. He demonstrated that plagioclase of intermediate 
composition melts almost stoichiometrically, producing too 
much liquid enriched in (Ca + A1)/(Na + Si) compared with 
the equilibrium amount and composition. Under these condi- 
tions the whole system is roetastable, and the positions 6f 
phase boundaries for other minerals must also be roetastable. 
He estimated that it would take 10 •4 years to reach composi- 

tional equilibrium at 665øC. Therefore, he concluded, the •sep- 
aration of melts with roetastable compositions may occur dur- 
ing anatexis, just as the occurrence of zoned plagioclase 
illustrates disequilibrium between plagioclase and melt during 
crystallization. 

We agree that the attainment and demonstration of revers- 
ible equilibrium within narrow temperature intervals in many 
parts of multimineral granitic systems is impossible [Stern and 
Wyllie, .1975; Wyllie, 1977b]. From our experience with gra- 
nitic systems at crustal pressures we would consider any appli- 
cations claiming to use precise temperatures or compositions 
of feldspars and liquid to be suspect because of the dear evi- 
dence that equilibrium values cannot be attained experimen- 

tally [McDowell and Wyllie, 1971; Johannes, 1980]. 
Reaction rates improve with increasing temperature, with 

increasing pressure in the presence of H20, and in PT regions 
where feldspars are unstable. Note the two-stage runs required 

at pressures above 15 kbar to remove •eldspar from the start- 
ing material in order to avoid roetastable melting (Table 2). 
Even at high pressures, the demonstration of reversible brack- 
ets narrower than 50øC is difficult [Stern and Wyllie, 1975]. In 

general it appears that the phase relationships best approach- 
ing equilibrium conditions are at the solidus and near the liq- 
uidus. At crustal pressures, particularly within the vapor-ab- 
sent region, details of the phase relationships within the 
crystallization interval are unreliable. Conditions are greatly 
improved at pressures above about 15 kbar, but there are 
many examples of metastability at temperatures below 800 ø- 
900øC. 

We endorse Johannes' [ 1980] conclusion and hope that we do 

not overinterpret our data. Metastable conditions are most 

prevalent in the H20-undersaturated region illustrated in Fig- 
ure 6, the region most applicable to natural granites. Because 
the phase compostions in experiments are certainly not equi- 
librium values, the positions of the phase boundaries are not 

precisely located. Only the biotite-out boundary could be re- 
versed [Maal•e and Wyllie, 1975], but because the liquid com- 
position was roetastable, even the biotite phase boundary 
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could represent metastable equilibrium. However, from the 

available experimental data and interpolation between dry 

and excess-H20 conditions [Robertson and Wyllie, 1971], it is 

evident that the general pattern illustrated in Figure 6 is valid. 

To that extent it is appropriate to draw petrogenetic con- 

clusions about processes and changes in sequence of crystalli- 

zation as a function of changes in H20 content. Overviews of 

the phase relationships for series of related granitic rocks [e.g., 
Piwinskii, 1968a, 1973; Piwinskii and Wyllie, 1968, 1970; Gib- 

bon and Wyllie, 1969] illustrate sufficient consistency, within a 

given series and from one series to another, that we feel con- 

fident in the broad pattern of phase relationships that 

emerges, which we have applied in the cited papers and out- 
lined above. 
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