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A. Carosi3, P. Colin13, E. Colombo7, J. L. Contreras2, J. Cortina1, L. Cossio16, S. Covino3, F. Dazzi16,27, A. De
Angelis16, G. De Caneva11, E. De Cea del Pozo17, B. De Lotto16, C. Delgado Mendez7,28, A. Diago Ortega7,8,
M. Doert5, A. Domı́nguez18, D. Dominis Prester19, D. Dorner12, M. Doro20, D. Eisenacher14, D. Elsaesser14,
D. Ferenc19, M. V. Fonseca2, L. Font20, C. Fruck13, R. J. Garcı́a López7,8, M. Garczarczyk7, D. Garrido20,
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ABSTRACT

We use 73 h of stereoscopic data taken with the MAGIC telescopes to investigate the very high-energy (VHE) gamma-ray emission of the Crab
pulsar. Our data show a highly significant pulsed signal in the energy range from 50 to 400 GeV in both the main pulse (P1) andthe interpulse
(P2) phase regions. We provide the widest spectra to date of the VHE components of both peaks, and these spectra extend to the energy range
of satellite-borne observatories. The good resolution andbackground rejection of the stereoscopic MAGIC system allows us to cross-check the
correctness of each spectral point of the pulsar by comparison with the corresponding (strong and well-known) Crab nebula flux. The spectra of
both P1 and P2 are compatible with power laws with photon indices of 4.0 ± 0.8 (P1) and 3.42± 0.26 (P2), respectively, and the ratio P1/P2
between the photon counts of the two pulses is 0.54± 0.12. The VHE emission can be understood as an additional component produced by the
inverse Compton scattering of secondary and tertiarye± pairs on IR-UV photons.

Key words. gamma rays: stars – pulsars: individual: Crab pulsar

1. Introduction

The Crab pulsar is a young neutron star that is the central rem-
nant of the supernova SN 1054 (Mitton 1978). It is one of the few
pulsars that have been detected in almost all energies, ranging
from radio (e.g., Lyne et al. 1993) to VHE gamma rays. In the
highest-energy regime, it was detected up to a few tens of GeV
by Fermi-LAT (Abdo et al. 2010a), between approximately 25−
100 GeV by MAGIC (Aliu et al. 2008; Saito 2010; Aleksić et al.
2011) and above 100 GeV by VERITAS (Aliu et al. 2011). The
light curves and the spectra obtained by these observationssug-

gest that gamma-ray pulsars have high-altitude emission zones
that avoid a super-exponential spectral cutoff, which would be
caused by magnetic pair production. Consequently, the favored
models to explain the production of gamma rays to at least a few
GeV are those in which fan-like beams of high-energy electrons
scan over a large fraction of the outer magnetosphere, either
very close to the light cylinder (outer gap model, Cheng et al.
1986; Romani 1996) or all along the last open field lines (slot
gap model, Arons 1983; Muslimov & Harding 2004).

1
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For other rotation-powered gamma-ray pulsars beside the
Crab pulsar, Fermi-LAT observations have shown that their en-
ergy spectra exhibit exponential cutoffs at around a few GeV
(Abdo et al. 2010b). This mild cutoff has been widely accepted
as a result of the curvature process bye± migrating along curved
paths. In this scenario, the cutoff energy corresponds to the high-
est characteristic curvature-radiation energy of the particles ac-
celerated in the magnetosphere (e.g., Romani 1996). However,
the spectrum of the Crab pulsar strongly disfavors an exponential
cutoff (Aleksić et al. 2011; Aliu et al. 2011), making this pul-
sar a counterexample of the general property. Thus, to develop
pulsar emission theories beyond the widely accepted curvature-
radiation models, it is essential to examine the detailed phase-
resolved spectrum of this youngest pulsar in the HE to VHE
regimes.

2. Data set and analysis techniques

The two MAGIC telescopes (Aleksić et al. 2012; Zanin et al.
2011) situated on the island of La Palma (28.8◦ N, 17.8◦ W,
2220 m a.s.l.), use the imaging atmospheric Cherenkov tech-
nique to detect gamma rays above a few tens of GeV1. Since
summer 2009, when the system started operating in stereoscopic
mode, its background suppression was substantially improved,
and a sensitivity2 of 0.8 % Crab nebula units above 250 GeV has
been achieved (Aleksić et al. 2012).

In the analysis presented here, we used 73 h of good qual-
ity stereoscopic data from the winter seasons in 2009/2010 and
2010/2011. Of these data, 43 h were taken in the wobble obser-
vation mode (Fomin et al. 1994), and another 30 h in on-source
observation mode. The data were taken at zenith angles below
35◦ to ensure a low threshold.

For the data analysis, we used the standard MAGIC analy-
sis package MARS (Moralejo et al. 2009; Aleksić et al. 2012),
applying the so-calledsum cleaning (Lombardi et al. 2011) to
achieve the lowest possible threshold. For the gamma/hadron
separation and gamma direction estimation we apply the random
forest (RF) technique (Albert et al. 2008). Because our back-
ground is dominated by Crab nebula gamma rays instead of
hadrons already above∼ 120 GeV, we opted for loose and con-
servative selection cuts. The phase of each event with respect to
the main radio pulse was calculated using the TEMPO2 pack-
age (Hobbs et al. 2006) and the monthly ephemerides publicly
provided by the Jodrell Bank Observatory3 (Lyne et al. 1993).

For the spectra, we applied the unfolding algorithms de-
scribed in Albert et al. (2007). This procedure corrects themi-
grations and the energy biases expected in the threshold regime.
During unfolding iterations, the simulated events are reweighted
each time with the appropriate spectrum derived in the previous
iteration.

3. Results

3.1. Folded light curves

We obtained three folded light curves using all data with esti-
mated energies between 46− 416 GeV and for two sub-ranges

1 The nominal threshold in standard trigger mode, defined as the peak
of the simulated energy distribution for a Crab-nebula-like spectrum
after all cuts and at low zenith angles, is 75− 80 GeV.

2 Defined as the source strength needed to achieveNex/
√

Nbkg = 5 in
50 h effective on-time.

3 http://www.jb.man.ac.uk/research/pulsar/crab.html
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Fig. 1. MAGIC folded light curves of the Crab pulsar for our
total range in estimated energy and for two separate sub-bins.
The shaded areas are the on-phase regions P1M and P2M (see
text), the light shaded area is the off-region [0.52− 0.87]. The
dashed line is the constant background level calculated from that
off-region.

46−138 GeV and 138−416 GeV (Fig.1). The median true ener-
gies of these samples were estimated from simulations to be ap-
proximately 100 GeV, 80 GeV and 180 GeV, respectively. The
significance of the pulsation was tested with theZ2

10 test, the H
test (de Jager et al. 1989), and a simpleχ2-test. None of these
tests makes an a priori assumption concerning the position and
the shape of the pulsed emission, and they yield significances
of 8.6σ, 6.4σ and 7.7σ, respectively. The folded light curve
clearly shows two distinct peaks, the well-known P1 and P2.

We fitted a very fine-binned all-energy folded light curve,
maximizing a Poissonian likelihood function that includestwo
Gaussians or Lorentzians over a constant background. The fitted
Gaussian (Lorentzian) positions of P1 and P2 are 0.005± 0.003
(0.005± 0.002) and 0.3996± 0.0014 (0.3993± 0.0015), respec-
tively, with corresponding pulse widths (FWHM) of 0.025±
0.007 (0.025± 0.008) and 0.026± 0.004 (0.023± 0.004). The
signal in P2 is strong enough to also be fitted with an asymmet-
ric Lorentzian, which involves more parameters. The results are
displayed in Fig. 2. All fits to our data yield very similar likeli-
hoods, which neither supports nor excludes the presence of the
tails implied by a Lorentzian function. Furthermore, the asym-
metric fit does not yield a significant difference in the leading and
the trailing wings of P2. Hence, we conclude that the conserva-
tive approach of using a Gaussian parameterization is sufficient
to describe our peaks.

Notably, there is a positive excess throughout the region be-
tween the two peaks. Most prominently, the trailing wing TW1
= [0.04−0.14] has an excess corresponding to 3.4σ in the lower-
energy bin (46−138 GeV), which may allow for a significant de-
tection once more data is collected. A bridge emission between
the peaks in our lowest-energy light curve is also expected if one
considers that in the Fermi-LAT data presented in Abdo et al.
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Fig. 2. Close-up display of the two fitted peaks P1 and P2 us-
ing a finer binning and a smaller range. The blue solid curves
represent the Gaussian functions that we use to define the signal
phase intervals. The red dashed curves are the Lorentzian func-
tions, which allow for wider tails, and the green solid curveis an
asymmetric Lorentzian function. The latter did not converge for
P1 (see text).

(2010a), the bridge emission is evident up to at least 10 GeV,and
it is denoted as being spectrally harder than the peak emission.
However, our current significance in the bridge region is toolow
for a spectral analysis and will not be considered in more detail.

The peaks we found are significantly narrower than those in
the GeV regime, and along with MAGIC-Mono and VERITAS
data, a consistent trend from GeV to beyond 100 GeV can be
established (Fig. 3)4. Consequently, the excess we found is
much more concentrated than the wide peak ranges defined in
Fierro et al. (1998) (P1E = [0.94−0.04] and P2E = [0.32−0.43],
where E stands for EGRET, in contrast to theMAGIC and
VERITAS definitions below). Because with too-large phase in-
tervals one integrates an unnecessarily large number of noise
events, we decided to investigate the signal both in the EGRET
intervals and in narrower, a posteriori defined phase intervals, us-
ing the Gaussian peak positions±2σ, as was done in Aliu et al.
(2011). We obtained P1M = [0.983−0.026] and P2M = [0.377−
0.422], the excess of which corresponds to 10.4σ after Li & Ma
(1983, Eq. 17, see also Table 1). The low-/high-energy Li &Ma
significances for P1M (P2M) are 4.4/3.3 (7.9/5.9). A listing of the
all-energy significances can be found in Table 1.

It is important to note that the two phase interval definitions
are equally valid. The difference between them is mainly that
the wide intervals lead to a higher noise contribution but are free
of any possible selection bias, whereas the narrow intervals have
much lower noise, but are affected by a minor selection bias. The
VERITAS results shown in Aliu et al. (2011) were calculated us-
ing P1V = [0.987− 0.009] and P2V = [0.375− 0.421], which is
still a bit narrower than our definitions.

4 A correction to the absolute phase values in Abdo et al.
(2010a) was announced on the Fermi-LAT websites
(http://fermi.gsfc.nasa.gov/ssc/data/access/lat/ephems/) and is in-
corporated in this plot.

�0.1 0.0 0.1 0.2 0.3 0.4 0.5
Phase

10-1

100

101

102

E 
[ G

eV
 ]

Crab Pulsar, Pulse extension and phase definitions
PHM, MAGIC-Stereo (this work)
PHM, MAGIC-Mono (Aleksić et al. 2011)
PHM, VERITAS (Aliu et al. 2011)
PHM, Fermi-LAT (Abdo et al. 2010)
Peak positions
P1/2E  (Fierro et al. 1998)
P1/2M , this work

Fig. 3. Compilation of pulse profile parameters at different en-
ergies, measured by Fermi-LAT (Abdo et al. 2010a, light cir-
cles), MAGIC-Mono (Aleksić et al. 2011, squares), MAGIC-
Stereo (this work, dark circles) and VERITAS (Aliu et al. 2011,
diamonds). The solid points are the phases of the half-maxima
(PHM), while the crosses indicate the corresponding phasesof
the peak. The vertical lines indicate the phase range definitions
used for the spectra in Fig. 4.

For the emission ratio between the two peaks, we found
0.54± 0.12 for P1M /P2M and 0.46± 0.13 for P1E/P2E. We also
looked for the differences in the pulse shape parameters between
the two energy intervals of Fig. 1, but we found no significant
changes in the pulse width, the position, or the relative intensity
(for either phase range definition). This invariance might be re-
lated to the fact that although our energy range is almost an order
of magnitude, the mean energies of the two energy bins (80 vs.
180 GeV) are comparably close to each other; thus, the lever arm
is small compared to the energy-dependent trend in Fig. 3.

3.2. Energy spectra

We calculated the energy spectra for (P1+P2)M, P1M and P2M ,
which are shown as the red squares in Fig. 4, and for comparison,
we also calculated the spectra for the unbiased EGRET intervals
(see above), which are shown as the yellow circles. The latter can
be compared directly to previous studies, including the mono-
scopic MAGIC observations. Given that the EGRET intervals
cover 21 % of the whole phase, they cause a higher background
noise than the MAGIC phase ranges, which cover only 8.8 %.
The VERITAS phase intervals cover 6.8 % of the whole phase,
which is three times less than the EGRET definitions. Although
most of their narrow pulse may indeed be contained in this inter-
val, one may expect a certain discrepancy in flux related to this
difference in selection.

The spectra we obtain for the EGRET intervals are com-
patible with the monoscopic measurements from Aleksić et al.
(2011), considering that the statistical deviations are atmost∼
2σ and many of the systematic errors of the two measurements
are independent. Our stereoscopic measurements, however,sup-
port the possibility that the gamma-ray energy of MAGIC-mono
data may have been over-estimated, as already discussed in Saito
(2010).

The EGRET and MAGIC phase definitions do not result in
significantly different P1 and P2 spectra, although the points
of the latter are systematically somewhat below the former.
This is self-consistent, because the EGRET intervals enclose the
MAGIC intervals and shows that the selection bias that affects
the latter is probably very small.

To determine the spectral parameters andχ2 values, we ap-
plied a forward unfolding (Albert et al. 2007), which is the most

3
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(c) Crab Pulsar, P2

Fig. 4. Compilation of the spectral measurements of MAGIC and
Fermi-LAT for the two emission peaks P1 and P2, separately
(b, c) and for both peaks together (a). The VERITAS spectrum
is only available (and shown) for P1V+P2V (light blue squares
and solid line). For comparison, the Crab nebula measurements
of MAGIC and Fermi-LAT (excluding the pulsed component)
are also shown (green solid circles and diamonds, resp.). Points
of similar color refer to the same phase intervals (dark red for
MAGIC, yellow for EGRET, blue forVERITAS intervals, and
green points for the nebula spectrum, see also text). The blueish
solid line in the upper plot is the model discussed in Sect. 4 and it
is above the points because it includes the bridge emission.The
displayed systematic error of the MAGIC-Stereo measurement
corresponds to a shift of±17 % in E and±19 % in flux.

robust method to parameterize the data. The spectra could bede-
scribed by power laws as shown in Table 1. It should be noted
that theχ2 values that we found are not optimal, especially for
the spectrum of P1M . However, the significance of this incon-
sistency (2.6σ pre-trial) is too low to claim a feature with the
data we present here, especially if the systematic uncertainties
are considered.

The ratio of the normalization constants between P1 and
P2 at 100 GeV is 0.4 ± 0.2, which is consistent with the val-
ues directly derived from the light curves. We cross-checked the
(P1+P2)M spectrum by comparing the 2009/10 data to 2010/11
data, on- to wobble-mode data, two zenith angle ranges, two
quality cut levels and four unfolding algorithms, and foundthat
the spectrum was stable within the errors.

To ensure a good understanding of all possible systematic ef-
fects, we furthermore determined the Crab nebula spectrum from
the data taken in wobble mode, analyzing the same energy range
with the same energy binning. The nebula spectrum that we ob-
tained with our cuts (see Fig. 4) agrees with both the recent Crab
nebula analysis in Zanin et al. (2011) and the Fermi-LAT data
in Abdo et al. (2010a), which confirms the good performance of
our spectral analysis down to 46 GeV. Notably, also the Crab
nebula flux of the lowest-energy point, which is at approximately
55 GeV, agrees within errors with the function derived with a
combined Fermi-LAT/MAGIC fit in Zanin et al. (2011). This fit
function is basically independent of the lowest-energy MAGIC
point because it is determined by the statistically much more
precise points at higher and lower energies. From these results,
we find no indication that the total systematic flux uncertainty is
beyond the standard low-energy numbers given in Aleksić etal.
(2012)5. These systematic uncertainties are 17 % on the energy
scale and 19 % on the flux normalization, which is displayed in
the upper panel of Fig. 4. Assuming a photon index of 3.6, the
total flux uncertaintyincluding a possible energy bias is there-
fore∼ 44 % at low energies. The uncertainty of the spectral in-
dex of such a soft spectrum is approximately 0.2. All MAGIC
spectra shown in Fig. 4 are unfolded; thus, the statistical errors
are correlated by 20−60 %, reflecting our energy resolution and
bias, which vary from 15− 40 %, depending on the energy (see
Aleksić et al. 2012).

Figure 4 also shows the Fermi-LAT spectra in the EGRET in-
tervals as determined in Aleksić et al. (2011). They extrapolate
consistently to the monoscopic and stereoscopic spectra within
systematic and statistical uncertainties. To estimate a Fermi-LAT
spectrum for the MAGIC phase range definition, we summed up
the matching phase-resolved fit functions provided in Abdo et al.
(2010a). Because their flux constants are differential in phase,
the emission from the partly covered phase intervals could also
be approximated. We find that our narrower intervals lead to sub-
stantially lower GeV equivalent flux spectra.

In general, when comparing our energy spectra to those ex-
tracted from Fermi-LAT, VERITAS or MAGIC-Mono data, it is
important to bear in mind that in addition to the different phase
interval definitions, all of these experiments suffer different and
energy-dependent systematic uncertainties that may lead to dis-
crepancies on the order of 10− 30 % in energy.

5 This argument may be regarded as a calibration of the pulsar spectra
on the nebula spectrum, a method that is not applicable on thenebula
spectrum itself, but holds for any other source.
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Table 1. Results of the spectral fits.

Phase S det
a f100 GeV

b Phot. index χ2/n.d.f .c prob.d

(P1+P2)M 10.4 13.0± 1.6 3.57± 0.27 10.3/4 0.04
P1M 5.5 3.9± 1.7 4.0± 0.8 9.3/2 0.01
P2M 9.9 8.8± 1.0 3.42± 0.26 6.1/5 0.30

(P1+P2)E 7.7 15.5± 2.9 3.9± 0.4 9.5/4 0.05
P1E 3.9 6.5± 2.0 3.3± 1.0 3.8/2 0.15
P2E 8.0 11.2± 1.9 3.7± 0.4 7.2/5 0.21

(a) Detection significance after Li & Ma (1983, Eq. 17)
(b) Flux at 100 GeV in units of 10−11 cm−2 s−1 TeV−1

(c) Number of degrees of freedom taken from the distribution of
estimated energies, which may deviate from the number of unfolded
points in Fig. 4.
(d) The fit probabilities calculated from theχ2 values do not include
systematic effects.

4. Discussion and conclusions

We found a pulsed VHE gamma-ray signal from the Crab pul-
sar that allows us to present spectra with an unprecedentedly
broad energy range and phase resolution. For completeness and
comparison, we provide analyses for both the previously used
phase intervals in Fierro et al. (1998), and the narrower peaks
that we find in our folded light curves. The range of our spectra
is about one order of magnitude, and, along with the MAGIC-
Mono (Aleksić et al. 2011) and the Fermi-LAT data (Abdo et al.
2010a), comprise the first gamma-ray spectrum of the Crab
pulsar from 100 MeV to 400 GeV without any gap. On the
high-energy end, this result agrees with the recently published
VERITAS spectrum of P1+P2 above 100 GeV, including also
the positions and the remarkably narrow widths of the two
pulses.

To interpret the observed pulsed spectrum in the context of
the outer-gap (OG) model, we follow the same method as de-
scribed in Sect. 8.2 of Aleksić et al. (2011). In this framework,
the VHE compontent of the spectrum is the inverse Compton
radiation of secondary and tertiary electron pairs on magneto-
spheric IR-UV photons. To derive the expected gamma-ray flux
of this scenario, we solve the set of Poisson equations for the
non-corotational potential (Eq. [9] in Aleksić et al. (2011)) with
the Boltzmann equations for the created electrons and positrons
and the radiative transfer equation of the emitted photons.

We present our theoretical calculation of the total pulsed
spectrum as a violet solid curve in the upper plot of Fig. 4. In
this calculation, the angle between the rotational and the mag-
netic axes is assumed to beα = 65◦, and the observer’s viewing
angle isζ = 106◦.

In Aleksić et al. (2011), the calculations of bothE‖ (the elec-
tric field component projected along the local magnetic field
line, which acceleratese±) and the resultant primary gamma-ray
emissions (curvature+IC) were carried out within 0.7RLC from
the rotation axis, whereRLC is the radius of the light cylinder. In
our new calculation, to take account the strong primary IC emis-
sion that becomes important near the light cylinder, we extend
the calculation region up to 0.9RLC for E‖ and up to 1.5RLC for
primary gamma-ray emissions, after confirming that the emis-
sion above 1.5RLC is negligible. Here, 0.9RLC is a safe upper
boundary for theE‖ calculation, becauseE‖ is anyway dimin-
ished at 0.9RLC owing to the curving-up field-line geometry to-
wards the rotation axis near the light cylinder.

A remarkable consequence of this extended calculation is an
increased inward flux of primary gamma rays originating from
the upper side of the gap, which leads to a higher abundance of

pair-producede± at lower altitudes (< 0.6RLC). This screens the
original E‖ and hence reduces the curvature-radiation compo-
nent in the primary spectrum. This reduction makes our new cal-
culation more compatible with the Fermi-LAT data at GeV en-
ergies but does not significantly affect the secondary and tertiary
components at energies beyond a few tens of GeV. Hence, we
conclude that our revised model can reproduce the total pulsed
spectrum between 1 and 400 GeV well (see also Lyutikov et al.
(2011) for an analytical argument of this process).

However, a remaining caveat of our new calculation is that
it still includes the bridge emission that is not contained in the
spectra of only P1+P2. Therefore, it is still above the Fermi-LAT
flux points in Fig. 4. A phase-resolved modeling is ongoing and
will be presented in the future. In general, it is however difficult
to compute the spectral shape above 100 GeV with high preci-
sion in the present OG model for the Crab pulsar. This is because
the photon-photon cross section, and therefore the gamma-ray
absorption, depends on the square of the collision angle, which
is typically a few degrees. Hence a small variation in the geom-
etry can have a large impact on the flux that escapes the pulsar.
Thus, our model should not be interpreted as a hard quantata-
tive prediction; instead, it is meant to show that the hard compo-
nent we see in the experiment can quantitatively be met within
the present understanding of the OG model. Similarly, the slight
modulations of the power law component are not to be inter-
preted as a significantly predicted feature.

Other possible Ansätze to explain the VHE emission in-
clude the production of inverse Compton radiation in the un-
shocked pulsar wind outside the light cylinder by pulsed photons
(Aharonian et al. 2012; Aharonian & Bogovalov 2003), a striped
pulsar wind (Pétri 2011), or the annular gap model presented in
Du et al. (2012). The two crucial spectral features to establish to
test these models are the expected spectral upward-kink in the
transition region between the curvature and the hard component,
and the detection or exclusion of a terminal cutoff at a few hun-
dred GeV.

Another topic that we will be able to address with a 2− 3
times larger dataset is the energy dependence of the pulse shape
parameters. The narrowness of the pulses and its evolution with
energy are a stringent requirement that the theoretical model-
ing must fulfill because the folded light curve is almost sta-
ble against systematic uncertainties. Moreover, the indication of
pulsed emission in the trailing wing of P1 may indicate that a
VHE signal between the two peaks might be within reach for
low-threshold IACT systems. The MAGIC telescopes, which are
being upgraded in 2011/12, can address these topics in the com-
ing years when more data will improve the statistical precision
of the measurements.
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