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ABSTRACT

X-ray radiation from black hole binary (BHB) systems regularly displays quasi-periodic

oscillations (QPOs). In principle, a number of suggested physical mechanisms can reproduce

their power spectral properties, thus more powerful diagnostics which preserve phase are

required to discern between different models. In this paper, we first find for two Rossi X-ray

Timing Explorer observations of the BHB GRS 1915+105 that the QPO has a well-defined

average waveform. That is, the phase difference and amplitude ratios between the first two

harmonics vary tightly around a well-defined mean. This enables us to reconstruct QPO

waveforms in each energy channel, in order to constrain QPO phase-resolved spectra. We

fit these phase-resolved spectra across 16 phases with a model including Comptonization

and reflection (Gaussian and smeared edge components) to find strong spectral pivoting and a

modulation in the iron line equivalent width. The latter indicates the observed reflection fraction

is changing throughout the QPO cycle. This points to a geometric QPO origin, although we note

that the data presented here do not entirely rule out an alternative interpretation of variable disc

ionization state. We also see tentative hints of modulations in the iron line centroid and width

which, although not statistically significant, could result from a non-azimuthally symmetric

QPO mechanism.

Key words: black hole physics – methods: data analysis – X-rays: binaries – X-rays: individ-

ual: GRS 1915+105.

1 IN T RO D U C T I O N

Low-frequency quasi-periodic oscillations (hereafter QPOs), are

regularly observed in the X-ray light curves of accreting compact

objects in binary systems (e.g.van der Klis 2006). Their properties

are tightly correlated with the observed spectral transitions in both

black hole and neutron star binaries (BHBs and NSBs). In BHBs,

the QPO fundamental frequency evolves from ∼0.1to30 Hz as the

spectrum transitions from the power-law dominated hard state to the

multicoloured disc blackbody dominated soft state (e.g. Wijnands &

van der Klis 1999). The multicoloured blackbody is well understood

as a geometrically thin, optically thick accretion disc (Novikov &

Thorne 1973; Shakura & Sunyaev 1973) and the power law as

Compton up-scattering of cool disc photons by energetic electrons

in some optically thin (optical depth τ ∼ 1) cloud near the black hole

(BH; Thorne & Price 1975; Sunyaev & Truemper 1979). This cloud

is often interpreted as the evaporated inner accretion disc (the inner

flow; Esin, McClintock & Narayan 1997; Done, Gierlinski & Kub-

ota 2007; Gilfanov 2010), or alternatively the base of a jet (Markoff,

⋆ E-mail: a.r.ingram@uva.nl

Nowak & Wilms 2005; Fabian et al. 2012). The QPO signal origi-

nates in the most part from this Comptonizing cloud (Sobolewska &

Życki 2006; Axelsson, Hjalmarsdotter & Done 2013). When Comp-

tonized photons illuminate the disc, some fraction are scattered into

the line of sight with a characteristic reflection spectrum including

a prominent iron Kα line.

Suggested QPO mechanisms include relativistic precession mod-

els (Stella & Vietri 1998; Wagoner, Silbergleit & Ortega-Rodrı́guez

2001; Schnittman, Homan & Miller 2006; Ingram & Done 2012a)

and disc instability models (e.g. Tagger & Pellat 1999; Cabanac

et al. 2010). All of these models can, in principle, reproduce the

power spectral properties of QPOs. Determining the QPO phase

dependence of the spectrum provides a powerful diagnostic tool to

discern between different models. This is relatively simple for pe-

riodic oscillations such as eclipses and NS pulsations. In this case,

phase-resolved spectra can be constrained by folding the light curve

(e.g. Gierliński, Done & Barret 2002; Wilkinson et al. 2011). How-

ever, simply folding the light curve is not appropriate for QPOs,

since their phase does not evolve linearly, or even deterministically

with time (e.g. Morgan, Remillard & Greiner 1997). In fact, it is

important to ask the question: what makes QPOs quasi-periodic

rather than purely periodic? Specifically, does the oscillation have

C© 2014 The Authors
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QPO phase-resolved spectroscopy 3517

an underlying waveform, whereby the phase differences between

different harmonics and harmonic amplitude ratios are not random

but instead have a well-defined average? We cannot tell using just

the power spectrum and the cross spectrum between energy bands

if an oscillation with two strong harmonics has some average un-

derlying waveform or if it is simply uncorrelated ‘noise’ with a set

of harmonically related characteristic frequencies.

Here, in Section 2, we show for two Rossi X-ray Timing Explorer

(RXTE) observations of the BHB GRS 1915+105 that the amplitude

ratio and phase difference between the first two QPO harmonics do

indeed vary tightly around mean values (as is suggested by measure-

ments of the bicoherence of the signal; Maccarone et al. 2011). This

indicates that there is some average underlying waveform which,

in Sections 3 and 4, we estimate for each energy channel in order

to constrain QPO phase-resolved spectra. Then, in Section 5, we

fit these spectra with a model consisting of Comptonization and

reflection to find strong spectral pivoting and a modulation in the

iron line equivalent width (EW).

2 T H E P H A S E D I F F E R E N C E B E T W E E N Q P O

H A R M O N I C S

Before we can phase-resolve the QPO, we must determine if there

even exists a well-defined average underlying waveform. If the

stochastic process producing the QPO is instead uncorrelated be-

tween harmonic frequencies, the meaning of phase-resolved spectra

is difficult to assess. In this section, we show that there is indeed

some average QPO waveform by measuring the harmonic ampli-

tudes and the phase difference between harmonics.

2.1 What makes QPOs quasi-periodic?

We can consider this question in general by representing the count

rate in the kth time bin, xk, as

xk = μ +
N/2
∑

j=1

|Xj | cos[2πjk/N − ϕj ], (1)

where Xj = |Xj |eiϕj is the discrete Fourier transform (DFT) of xk,

μ is the mean count rate and there are N time bins in the light

curve. Hereafter, we refer to ϕj as the phase offset of the jth Fourier

frequency (which has a frequency ν j = j/[N dt]).

Splitting a long light curve which contains a QPO into many short

segments of length N time bins allows us to study how the DFT at the

QPO harmonic frequencies varies between segments. Specifically,

we can measure how the amplitude and phase offsets vary with time

for each harmonic. If the oscillation was instead perfectly periodic,

the amplitude and phase offset of each harmonic would remain

constant. Since a QPO is only quasi-periodic, these conditions must

not all be met. Thus, perhaps a more insightful question is: how

does the amplitude and phase offset vary for each QPO harmonic?

Previous work has already shown that the amplitude of the first two

QPO harmonics in XTE J1550−564 correlate with the flux over an

∼3 s time-scale (Heil, Vaughan & Uttley 2011; also see Ingram &

Done 2011). We note that due to this, the Timmer & Koenig (1995)

algorithm for generating maximally stochastic time series is not

appropriate for simulating realistic QPO signals. In contrast, little

is thus far known about how the phase offsets vary.

Here, we consider variations in the phase offsets of the first two

QPO harmonics. Defining the phase offset of the jth QPO harmonic

as �j (as opposed to the phase offset of the jth Fourier frequency,

ϕj), we can write

�2 = 2(�1 + ψ), (2)

where ψ is the phase difference between the harmonics, defined on

the interval 0 to π . From this definition, ψ is the radians of the first

harmonic by which the second harmonic lags the first. In general,

ψ will vary with time (i.e. from segment to segment), but does it

vary around a well-defined mean value or simply at random? In

this paper, we study two observations of GRS 1915+105 which are

described in the following subsection.

2.2 Data

We consider two RXTE observations of GRS 1915+105 with obser-

vational IDs 60701-01-28-00 (hereafter observation 1) and 20402-

01-15-00 (hereafter observation 2), both in the χ variability class

as defined by Belloni et al. (2000). The white noise subtracted

power spectra of the full band light curves of both observations

are shown in Fig. 1. Both clearly show QPOs with strong contri-

butions from the first two harmonics, which we fit with Lorentzian

functions in order to measure the centroid ν0 and half width at half-

maximum (HWHM) for each component. For the fundamental, we

measure ν0 = 0.46 Hz and HWHM=0.0275 Hz for observation 1

and ν0 = 2.26 Hz and HWHM=0.14 Hz for observation 2. These

two observations have been selected since they both have a high

count rate, a strong QPO and a (comparatively) long exposure. Ob-

servation 1 was taken on 2002 March 6 and observation 2 was taken

on 1997 February 9. The time averaged spectra for these observa-

tions can be well modelled by an absorbed Comptonization model

with a soft power law (Ŵ ∼ 2.3 and Ŵ ∼ 2 for observations 1 and 2,

respectively), in addition to a strong contribution from a broad iron

Kα emission line. Neither spectra require a direct disc component,

but this is simply due to the large absorption column around GRS

1915+105, plus the hard response of the PCA. Whereas observation

2 was observed to be radio faint (Muno et al. 2001), there are no

radio data taken simultaneous with observation 1 (Prat, Rodriguez

Figure 1. White noise subtracted power spectra, plotted in units of fre-

quency × power, for observations 1 (black) and 2 (red). Both display strong

QPOs with at least two harmonics.

MNRAS 446, 3516–3525 (2015)
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3518 A. Ingram and M. van der Klis

& Pooley 2010). However, Yan et al. (2013) define two branches for

GRS 1915+105 on a plot of hardness ratio (7–60 keV flux/2–7 keV

flux) against QPO frequency and find that branch 1 and 2 approx-

imately correspond, respectively, to radio loud and quiet intervals

(Fig. 1 therein). Since observation 1 falls in branch 1, it is likely the

source was radio loud at this time.

We selected times when three and five Proportional Counter Units

(PCUs) were on for observations 1 and 2, respectively, in addition

to applying standard RXTE good time selections (elevation greater

than 10 deg and offset less than 0.02 deg) using FTOOLS from the

HEASOFT 6.15 package. After this screening, observations 1 and 2

contain 9.680 ks and 10.272 ks of good time, respectively, and we

measure mean count rates of 1744 c/s/PCU and 816 c/s/PCU. We

extract light curves using saextrct. Both observations were taken

in the ‘binned’ mode ‘B_8ms_16A_0-35_H’, which has a timing

resolution of dt = 1/128 s and provides 16 energy channels sensitive

to the energy range ∼2–15 keV. For the purposes of spectral fitting,

we generate response matrices using PCARSP and background spectra

using RUNPCABACKEST. We also apply 0.5 per cent systematic errors

using GRPPHA to account for uncertainties in the response of the PCA

and ignore the poorly calibrated lowest energy channel.

2.3 Measuring the harmonic amplitudes and phase differences

We split both light curves into M segments, with each segment

containing N time bins of duration dt = 1/128 s. We may expect

the QPO to stay roughly coherent (i.e. periodic to a good approx-

imation) for Q cycles, where Q = ν0/FWHM is the quality factor

(FWHM = 2 HWHM). We therefore choose N to ensure that each

segment contains ∼Q cycles of the fundamental, whilst also requir-

ing N to be an integer power of 2 in order to use the fast Fourier

transform algorithm. Thus N ∼ 1/(FWHM dt), giving N = 2048,

M = 605 for observation 1 and N = 512, M = 2548 for observation

2.

We first investigate the relative strength of each har-

monic. We measure the average rms in each harmonic us-

ing our multi-Lorentzian fit to the power spectrum: the inte-

gral from zero to infinity of a Lorentzian component gives

the squared rms in that component. This gives 〈σ 1〉 =
(9.6 ± 0.2) per cent, 〈σ 2〉 = (6.7 ± 0.2) per cent for observation

1 and 〈σ 1〉 = (12.7 ± 0.1) per cent, 〈σ 2〉 = (7.6 ± 0.1) per cent for

observation 2. We now wish to measure σ 1 and σ 2 for each seg-

ment. Since the power spectrum calculated for only one segment is

very noisy, we cannot reliably fit a multi-Lorentzian model for each

segment. Instead, we use the centroids and widths from our exist-

ing fit and calculate the power in the range ν = ν0 ± HWHM for

each segment. We then calculate the normalization of a Lorentzian

function which has this integral in this narrow range (i.e. similar

to a bolometric correction). In Fig. 2, we plot a histogram of the

harmonic ratio calculated for each segment, σ 1/σ 2, normalized by

the number of segments in each observation. We see that, consistent

with previous work (Heil et al. 2011), the harmonic ratio appears to

vary around a well-defined mean, although the distribution is more

narrowly peaked for observation 1.

If the phase difference between the harmonics, ψ , also has some

preferred value, we can conclude that the QPO does indeed have

a well-defined mean waveform. For each segment, we calculate ψ

from the phase offsets of the first and second QPO harmonics, �1

and �2, respectively, using the formula

ψ = [�2/2 − �1]modπ , (3)

Figure 2. Histogram of measured harmonic ratios for observations 1 (black)

and 2 (red).

where the ‘modπ ’ signifies that each ψ value is defined on the

interval from 0 to π . The phase offset for the jth Fourier frequency,

which is simply the argument of the DFT Xj, is given by

tan ϕj =
ℑ[Xj ]

ℜ[Xj ]
. (4)

We define �j = ϕjq, where νq is the nearest Fourier frequency to

the centroid of the fundamental. Since the width of each Fourier

frequency bin is dν = 1/(N dt), this means that dν ∼ FWHM. Thus,

by defining the QPO phase offsets in this way, we are effectively

averaging across the width of the fundamental.

Fig. 3 shows a histogram of the ψ values measured for each seg-

ment. Here, we have defined phase bins on the interval 0 ≤ ψ < π

but we plot values up to 2π by repeating the pattern. We see that

for both observations, the phase difference ψ is clearly distributed

around a mean value, indicating that �1 and �2 do indeed corre-

late. Note that the distribution only has one true peak: the second

peak results because we have repeated the pattern to account for

the cyclical nature of ψ . We formally confirm that the data are in-

compatible with a random distribution using Kuiper’s statistic (see

e.g. Press et al. 1992). This is similar to a KS-test, only adapted

to also be appropriate for a cyclical quantity such as the one we

are considering. It involves calculating the cumulative distribution

function of the data and measuring its maximum distance above,

D+, and below, D−, a theoretical cumulative distribution function.

The probability that the data belongs to the theoretical distribution

can be calculated from Kuiper’s statistic, V = D+ + D−, and the

number of data points in the observed distribution. As expected,

this confirms the distributions shown in Fig. 3 are not random with

a significance ≫5σ .

To compare the QPO with the broad-band noise, we calculate

Kuiper’s statistic for the series of phase differences between each

Fourier component (ν j) and the component with twice its frequency

(2ν j). In Fig. 4 we plot V against ν j for all 1 ≤ j < N/4 (since

2νN/4 is the Nyquist frequency). The green lines indicate 3σ con-

fidence intervals: if V is above the green line for a frequency ν j,

the phase difference between the components at ν j and 2ν j are

MNRAS 446, 3516–3525 (2015)
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QPO phase-resolved spectroscopy 3519

Figure 3. Histogram of measured values of the phase difference between

harmonics, ψ , for observations 1 (black) and 2 (red). The distributions each

show two peaks purely because ψ is defined on the interval 0 → π and we

have shown two intervals by repeating the pattern.

Figure 4. We measure the phase difference between the Fourier component

at each frequency, νj, and twice that frequency, 2νj, for many segments. V is

Kuiper’s statistic, which assess the likelihood that the phase differences are

compatible with being drawn from a random distribution. Values of V above

the green line are not compatible with a random distribution (>99.7 per cent

confidence). Both observations show a very strong peak at the fundamental

QPO frequency, and the higher signal to noise observation 2 also shows

significant peaks at higher harmonics (see text for details).

not randomly distributed (at least with confidence >99.7 per cent).

For both observations, all pairs of broad-band noise frequencies

are consistent with a random phase difference, in sharp contrast to

the phase difference between first and second QPO harmonics. We

also see evidence of an interaction between a subharmonic and the

fundamental. Observation 2 additionally shows a deviation from

random phase differences between the second and fourth and even

the third and sixth harmonics. This may provide a sensitive method

for detecting previously undetectable QPO harmonics. In this paper

however we concentrate on the interaction between first and second

harmonics, which contain the bulk of the variability power.

To measure the mean phase difference between first and second

QPO harmonics, 〈ψ〉, we must account for the cyclical nature of ψ .

For a particular trial value of 〈ψ〉, the distance between ψm and 〈ψ〉
(in the mth segment) is

dm =
{

δ if δ < π/2,

π − δ otherwise,
(5)

where δ = |ψm − 〈ψ〉|. This can be understood by picturing

all the ψm values on a circle (with only π radians around its

circumference): there are always two paths around the circle to

any point; dm is the shortest of these two paths. We find the 〈ψ〉
value which minimises χ2 =

∑M

m=1 d2
m using Brent’s method (e.g.

Press et al. 1992), and calculate the standard deviation on the

mean as χmin/M. This gives 〈ψ〉/π = 0.667 ± 9.9 × 10−3 and

〈ψ〉/π = 0.133 ± 4.6 × 10−3 for observations 1 and 2, respectively.

The fact that the phase difference is different between observations

indicates that the underlying QPO waveform has changed. In fu-

ture, we will study how 〈ψ〉 depends on QPO frequency for many

observations.

3 R E C O N S T RU C T I O N O F T H E Q P O

WAV E F O R M

Since we are able to measure average values for the amplitudes of,

and phase difference between, the first two QPO harmonics, we can

reconstruct an average underlying waveform. That is, we can define

a periodic function of QPO phase, φ, given by

w(φ) = μ

⎡

⎣1 +
√

2

J
∑

j=1

〈σj 〉 cos(jφ − �j )

⎤

⎦ , (6)

where 〈σ j〉 is the measured fractional rms in the jth harmonic1 and

�j is the phase offset of the jth harmonic. Here, the phase offset

of the first harmonic is arbitrary: we are interested in the shape of

the waveform rather than the starting point. We set �1 = π/2. The

phase difference between each harmonic and the first, in contrast,

is important. Here, we only consider J = 2 harmonics since these

contain the bulk of the power.

It is simple to measure the mean count rate μ, and we use our

measurement of the phase difference between the first two harmon-

ics, 〈ψ〉, from the previous section. We also use our measurements

of 〈σ 1〉 and 〈σ 2〉 from the previous section. We then use equation

(6) to obtain an estimate of the average underlying QPO waveform.

How exactly this relates to the physical QPO mechanism depends,

in general, on the details of the processes generating the waveform

and those decohering it (Ingram & van der Klis 2013). If the de-

cohering process is highly non-linear, this may introduce a bias in

our estimate of the true underlying waveform, or indeed may make

such a true waveform difficult to define. In the absence of a full un-

derstanding of all the processes decohering the QPO, we define our

waveform as a periodic function with the average QPO properties.

1 The factor of
√

2 appears in equation (6) because the variance of a sine

wave is 1/
√

2.

MNRAS 446, 3516–3525 (2015)
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3520 A. Ingram and M. van der Klis

Figure 5. Reconstructed QPO waveform for both observations. The shape

of the waveform differs dramatically between observations 1 (black) and 2

(red).

To obtain an error estimate, we use our measurements of σ j and ψ

for each segment (see the previous section), along with a measure-

ment of the mean count rate for each segment, in order to calculate a

waveform (using equation 6) for each segment. This gives M func-

tions wm(φ), in addition to our estimate for the average waveform,

w(φ). For each discrete value of φ considered, we calculate the stan-

dard deviation on the mean of the wm(φ) points around the average

w(φ). Fig. 5 shows the resulting waveforms for both observations,

evaluated for 128 QPO phases. Our reconstructed waveforms have

small errors since we can measure each of the five parameters in

equation (6) accurately, and there are correlations between these

parameters. Note that different phase values in Fig. 5 are not statis-

tically independent of one another, and so we do not expect to see

a scatter in the data consistent with the size of the error bars, nor

will we be able to reduce the size of the errors by binning on phase.

The errors determined here are errors on the function w(φ) and the

phase values are instances rather than intervals.

We note that this is not the first derivation of a QPO waveform.

Tomsick & Kaaret (2001) used a folding method to estimate the

QPO waveform in observations of GRS 1915+105. This method,

as expected, yields similar results to ours but crucially, it implic-

itly assumes that the phase difference between QPO harmonics is

constant, which we find to only be approximately true.

4 PH A S E R E S O LV I N G M E T H O D

Now that we can reconstruct a waveform for the full band, we can

reconstruct a waveform for each energy channel by generalizing

equation (6) to

w(E, φ) = μ(E)

⎧

⎨

⎩

1 +
√

2

J
∑

j=1

〈σj (E)〉 cos[jφ − �j (E)]

⎫

⎬

⎭

. (7)

For each energy channel, we extract a light curve for which it

is again simple to measure the mean. We fit a multi-Lorentzian

model to the power spectrum of each light curve and define the

Figure 6. Fractional rms for the first (circled points) and second (no marker)

QPO harmonics as a function of energy for both observations.

rms in the first and second QPO harmonics as the integral of the

corresponding Lorentzian function (following e.g. Axelsson, Done

& Hjalmarsdotter 2014). Fig. 6 shows the measured fractional rms

in the first (circles) and second (points) harmonics as a function of

channel energy.

The most obvious way of measuring the phase offsets would

perhaps be to measure 〈ψ〉 for each energy channel using the method

described in Section 2.3. We would then need to measure the phase

difference between energy bands of the first harmonic. Instead,

we maximize signal to noise by measuring the phase lag at each

harmonic, �j(E), between each energy band, E, and the full band.

With our measure of 〈ψ〉 for the full band, we can calculate the

phase offsets using the formulae

�1(E) = π/2 + �1(E)

�2(E) = 2(�1(E) + 〈ψ〉) + �2(E). (8)

We calculate the lags in the usual way by taking the cross spectrum

between each subject band, s(E, t), and the reference band r(t) (e.g.

van der Klis et al. 1987), which we define as the full band with the

subject band subtracted to avoid correlating s(E, t) with itself (Uttley

et al. 2014). For each harmonic, we evaluate the complex cross

spectrum, Cj(E), at the nearest Fourier frequency to the centroid

frequency of that harmonic. The phase lag is then

tan �j (E) =
ℑCj (E)

ℜCj (E)
. (9)

Fig. 7 shows the lags as a function of energy for the first (circles)

and second (points) harmonics.

We now have all the information required to reconstruct a wave-

form for each energy channel using equation (7). Note from equa-

tions (8) that, even though we have only measured the phase dif-

ference between harmonics, 〈ψ〉, in the full band, the waveforms in

different channels are free to have different shapes. This is because

their phase offsets depend on the phase lags between energy bands

which in general can be different for different harmonics. Light

curves for three channels (with the energy at the centre of the chan-

nel labelled) are shown in Fig. 8. We see that the waveform shape

MNRAS 446, 3516–3525 (2015)
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QPO phase-resolved spectroscopy 3521

Figure 7. Phase lags between a given energy channel and the full band for

the first (circled points) and second (no marker) QPO harmonics.

changes with energy channel for both observations considered here.

We note that, much like the case of the full band considered in the

previous section, the relation between the waveform measured for

each energy channel and the physical QPO mechanism can po-

tentially be biased by highly non-linear decohering effects. If the

nature of these effects is strongly energy dependent, this could bias

the energy dependence of the measured waveforms. Again, in the

absence of a full understanding of the decohering mechanism, we

define the waveform in each energy channel as a periodic function

with the average QPO properties.

We calculate an error estimate for the waveform in each channel

in the same way as we did for the full band: we calculate a waveform

for each segment and measure the dispersion around w(E, φ). This

involves the additional step of calculating the phase lags �j(E) for

each segment. We can now plot the count rate as a function of

energy for any given number of QPO phases: i.e. we can plot and

analyse QPO phase-resolved spectra. In Fig. 9, we plot spectra for 4

QPO phases, represented as a ratio to the phase averaged spectrum.

For both observations, we see strong spectral pivoting. Even though

different values of QPO phase are not statistically independent, it

is important to note that different energy channels are statistically

independent. This means that we can use χ2 statistics in order to

fit models to the spectrum for each phase and study how spectral

parameters vary with QPO phase. We note that Miller & Homan

(2005) studied the phase-resolved behaviour of ‘Type-C’ QPOs in

GRS 1915+105 (in fact, they studied our observation 2) by selecting

spectra from high and low flux intervals. Our technique takes this

further, allowing us to study the evolution of spectral parameters

with QPO phase rather than for just two phases. Phase-resolved

spectroscopy has also been used to investigate the ‘Heartbeat’ state

of GRS 1915+105 (Neilsen, Remillard & Lee 2011) and also the

QPO in the active galactic nucleus RE J1034+396 (Maitra & Miller

2010), although we note that all previous analyses have assumed

the phase difference between harmonics to be constant, in contrast

to this paper.

5 SP E C T R A L M O D E L L I N G

We use XSPEC version 12.8 to fit the spectral model

PHABS ∗ SMEDGE ∗ (EWGAUS ∗ NTHCOMP), (10)

for 16 QPO phases. Here, PHABS accounts for interstellar absorp-

tion for a given hydrogen column density Nh and a given set of

elemental abundances. We fix Nh to a reasonable value consistent

with previous analyses of these observations (e.g. Miller & Homan

2005) and assume the solar abundances of Wilms, Allen & Mc-

Cray (2000). The model NTHCOMP (Zdziarski, Johnson & Magdziarz

1996; Życki, Done & Smith 1999) calculates a Comptonization

spectrum consisting of a power law (photon index Ŵ) between low-

and high-energy breaks, governed, respectively, by the seed photon

and electron temperature, kTbb and kTe. Since the data do not ex-

tend beyond 15 keV, we cannot constrain the electron temperature

so arbitrarily fix kTe = 100 keV. In contrast, we allow Ŵ and kTbb to

go free in the fit. The model SMEDGE mimics the shape of a smeared

reflection edge in the PCA bandpass and has input parameters EEdge,

Figure 8. Waveforms reconstructed using equation (7) for three different energy channels. The energy at the centre of the channel is labelled.
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3522 A. Ingram and M. van der Klis

Figure 9. The spectrum corresponding to four QPO phases, plotted as a ratio to the mean spectrum. Phases are selected to be representative of rising (blue),

peak (black), falling (red) and trough (green) intervals. For observation 1, these phases are φ = 0, 0.1875, 0.625 and 0.75 QPO cycles, respectively. For

observation 2, they are φ = 0, 0.3125, 0.4375 and 0.625 cycles. For both observations, we clearly see spectral pivoting.

f and W, which govern the position, depth and width of the reflec-

tion edge. In our fits, we fix these parameters to reasonable values.

We find that the data do not statistically require a disc component

due to the high column density surrounding GRS 1915+105 and

the hard response of the PCA.

Since the EW of the iron line is of interest, we define a new

XSPEC model EWGAUS, which is simply a Gaussian function with

three parameters: centroid energy in keV (Ec) width in keV (σ )

and EW in eV. Thus, the only difference to the standard XSPEC

Gaussian function is that the EW is an input parameter rather than

the line flux. We define this as a convolution model, since we must

determine from the continuum the normalization required to give

the line the specified EW, for which we use Brent’s method. Note

that, even though this is defined as a convolution model, this is

not the mathematical operation: we simply add the Gaussian to

the continuum, we define a convolution model purely to allow the

continuum to be input to the model.

In the following subsection, we present the results of our spectral

fits for both observations. We allow five parameters of physical

interest to be free in the fit as a function of QPO phase: the continuum

parameters Ŵ and kTbb, plus the iron line parameters Ec, σ and EW.

For each of these parameters, we use an f-test comparing a fit with

the parameter held constant to the best-fitting model to assess if it

varies with QPO phase, and with what statistical significance.

5.1 Results

5.1.1 Observation 1

We achieve a good fit with χ2
ν = 158.07/144 by freezing the hydro-

gen column density to Nh = 5.2 × 1022 cm−2 and the SMEDGE param-

eters to EEdge = 8.25 keV, f = 0.3 and W = 5 keV. Fig. 10 (left) shows

the evolution of the five physically interesting parameters across

16 phases, with the full band waveform also reproduced at the top

for reference (error bars are all 1σ ). We quote with what statistical

significance each spectral parameter varies with QPO phase in the

top-left corner of each panel. We see that Ŵ and kTbb vary with a very

high significance and both contain a strong second harmonic. We

also see that the iron line parameters vary, also with a strong second

harmonic, but not above the 3σ level. Clearly, the points as plotted

are incompatible with a constant but, when each iron line parameter

is held constant for an alternative fit, changes in other parameters

can, to some extent compensate. Note that the systematic nature of

these modulations does not alone indicate they are real. A random

1σ fluctuation in, say, the measured rms can potentially result in a

systematic looking modulation in the phase-resolved spectrum. We

must therefore use the f-tests to assess significance.

5.1.2 Observation 2

We again achieve a good fit with χ2
ν = 144.06/144, this time by

freezing the hydrogen column density to Nh = 5.4 × 1022 cm−2 and

the SMEDGE parameters to EEdge = 8.5 keV, f = 0.3 and W = 5 keV. We

plot the QPO phase evolution of the best-fitting parameters on the

right of Fig. 10. We again see a highly significant modulation of Ŵ

but this time kTbb only varies with 1σ confidence. The modulations

in the iron line centroid and width are not statistically significant,

but the EW varies with 3.6σ confidence. Our results are consistent

with those of Miller & Homan (2005), who analysed spectra for

this observation selected for high and low flux intervals.

5.2 Interpretation

We can conclude with high statistical confidence that the spectral

index varies with QPO phase for both observations and also that

the parameter kTbb varies with phase in observation 1. We also find

a >3σ modulation in the iron line EW for observation 2. Here,

we discuss possible interpretations of these modulations as well as

speculating about what modulations we may expect to see in the

iron line shape for higher quality data sets.

5.2.1 Continuum parameters

We can picture the observed spectral variability, on the simplest

level, as a power law with changing index and normalization. If

the total flux in a broad energy band lags the power-law index,
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QPO phase-resolved spectroscopy 3523

Figure 10. Best-fitting parameters of our spectral fit plotted as a function of QPO phase. Both observations show highly significant spectral pivoting and we

see a modulation in the relative strength of the iron line. The statistical significance of each modulation is quoted in the corresponding plot.

hard photons will lag soft photons. This is because Ŵ is a proxy

for spectral softness, and thus this means the peak flux lags the

softest spectrum, or in other words the hardest spectrum lags the

peak flux. This corresponds to a positive gradient in the lag versus

energy spectrum. For observation 1, we do indeed find that the total

PCA count rate lags Ŵ by ≈0.29 cycles for the fundamental and

≈0.06 cycles for the second harmonic, which is consistent with

the positive gradient seen in Fig. 7 for the lag spectrum of both

harmonics. For observation 2, we instead find that the total count

rate leads Ŵ by ≈0.42 cycles for the fundamental and lags Ŵ by

≈0.12 cycles, which is consistent with the negative gradient of the

lag spectrum of the fundamental and the positive gradient for the

second harmonic. It is this spectral pivoting which is at the heart of

the generic models for alternating phase lags recently proposed by

Misra & Mandal (2013) and Shaposhnikov (2012).

Physically, this spectral pivoting can either be attributed to

changes in Comptonization or perhaps changes in the reflection

hump, which we do not model here. If the pivoting were exclu-

sively down to a changing flux in the reflection hump, the spectral

hardness would track the reflection fraction. We would therefore

expect an anti-correlation between Ŵ and the iron line EW – i.e. a

phase difference of 0.5 cycles for each harmonic. Since the phase

difference for the strong second harmonic is ∼0.24 and ∼0.23 cy-

cles for observation 1 and 2, respectively, it seems likely that there

is at least some pivoting of the Comptonized spectrum itself. This

can result from modulations in the temperature, kTe, and/or opti-

cal depth, τ , of the corona. The simple formula Ŵ − 1 ∝ 1/[τkTe]

approximates the case of thermal Compton scattering (Pietrini

& Krolik 1995). Although we cannot discern between these two

interpretations here, we note that it should be possible to measure

both the electron temperature and the shape of the reflection hump as

a function of QPO phase by carrying out a similar analysis with the

Nuclear Spectroscopic Telescope ARray (NuStar; Harrison 2013),

which has a high spectral resolution and reasonable throughput up

to ∼70 keV.

The fits for observation 1 also clearly require kTbb to change with

QPO phase with very high significance. Since we do not detect a

direct disc component, it is difficult to interpret exactly what this

means. This could really be a measure of the seed photon temper-

ature. Alternatively, the NTHCOMP component could be mimicking a

combination of weak direct disc emission plus Comptonized emis-

sion. If the true disc flux were to increase in this scenario, the

low energy cut off of the NTHCOMP component would move to a

lower energy in order to find a fit. Thus, a minimum in kTbb could,

counter-intuitively, correspond to a maximum in direct disc flux.

We are unable to determine if this is the case with these data, but

will investigate for less absorbed sources with a visible direct disc

component in future.

5.2.2 Iron line parameters

Although we see a systematic variation in iron line EW with QPO

phase for both observations, the modulation is only statistically

significant (3.6σ ) for observation 2. For both observations, EW(φ)

has a strong second harmonic. The ratio of the amplitude in the

second harmonic relative to the first is σ 2/σ 1 ≈ 1.5 and σ 2/σ 1 ≈ 1.0

for observations 1 and 2, respectively, in contrast to σ 2/σ 1 ≈ 0.70

and σ 2/σ 1 ≈ 0.59 for the total flux. Modulations in the iron line EW
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3524 A. Ingram and M. van der Klis

indicate that the reflection fraction changes throughout the QPO

cycle. This could be because the accretion geometry is changing

over the cycle (i.e. geometric origin) and thus the solid angle of the

emitter as seen by the reflector and/or the solid angle of the reflector

as seen by the observer is changing. Alternatively, the geometry

may remain constant and the reflection fraction changes purely

because an increase in illuminating flux ionizes the disc further, thus

increasing the reflection albedo of the reflector (e.g. Matt, Fabian &

Ross 1993). In the latter case, the change in ionization will be very

fast compared with the QPO period and thus the modulation in EW

can be modelled as

EW(φ) ∝ C(φ)δ, (11)

where C(φ) is the continuum flux and δ > 1 is a constant. This

non-linear response model can explain why EW(φ) has a stronger

second harmonic than the total flux [assuming this is a proxy for

C(φ)]. It cannot however explain any phase lag between EW(φ)

and the total flux. In observation 1, the iron line EW leads the total

flux by ∼0.45 cycles for both the first two harmonics – although

we caution that the EW modulation is only 2.4σ significant. In

observation 2, the EW leads the total flux by ∼0.044 and ∼0.013

cycles for the first and second harmonics, respectively. Since this is

compatible with zero lag on the 10 per cent level, our results do not

fully rule out the EW modulation in observation 2 resulting purely

from changes in disc ionization, although they strongly hint that a

change in geometry is required. Clearly, much information about the

system can be learned by carrying out this analysis on many more

observations. In particular, a significant EW modulation with a large

phase lag relative to the total count rate would provide confirmation

of a geometric QPO origin.

In addition, we see very tentative hints of modulations in the cen-

troid and width of the iron line, which are not significant enough to

make conclusions. None the less, the prospect of detecting shifts in

the iron line shape in future is exciting since the line profile is heav-

ily influenced by Doppler shifts from rapid Keplerian rotation close

to the BH, as well as general relativistic effects (e.g. Fabian et al.

1989). In the model of Ingram, Done & Fragile (2009), the QPO

results from Lense–Thirring precession of the entire inner accretion

flow. This model predicts that the iron line should rock between

red- and blueshift as the inner flow preferentially illuminates, re-

spectively, the receding and approaching sides of the disc (Ingram

& Done 2012b). Although we do not have the statistics to test this

prediction here, we note that the observed iron line centroid and

width can only realistically be influenced by dynamical smearing

(i.e. variable Doppler and gravitational shifts) or ionization. As dis-

cussed above, increased illuminating flux will further ionize the disc

material. In addition to changing the albedo, this will also increase

the rest-frame energy and width of the iron Kα line (e.g. Matt et al.

1993). Thus, the geometry may be fixed but varying degrees of ion-

ization cause modulations in Ec and σ . In this case however Ec and

σ must both be in phase with the illuminating flux. Thus, observ-

ing the centroid to vary out of phase with the width would provide

strong evidence of a non-azimuthally symmetric QPO mechanism.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We present a QPO phase-resolved spectral analysis for two obser-

vations of GRS 1915+105. In order to do this, we have developed a

method to reconstruct QPO waveforms in each energy channel from

the average properties of the first two QPO harmonics. We note that

our method does not a priori assume that there is a well-defined

average underlying waveform, rather we independently verify that

this is the case for the two observations considered. We determine

the distribution of phase differences, ψ , between QPO harmon-

ics over many short segments of time and formally demonstrate

that ψ varies tightly around some mean value, 〈ψ〉. This indicates

that the QPO is not simply an uncorrelated noise process with

excess variability at harmonically related frequencies, but instead

has a well-defined underlying waveform. This conclusion can be

inferred a posteriori from the bicoherence measurements of Mac-

carone et al. (2011). We measure the mean phase difference to be

〈ψ〉/π = 0.667 ± 9.9 × 10−3 and 〈ψ〉/π = 0.133 ± 4.6 × 10−3

for observations 1 (νqpo = 0.46 Hz) and 2 (νqpo = 2.26 Hz), re-

spectively. Clearly, the phase difference evolved between these two

observations. Since these observations display very different QPO

frequencies, it is possible that 〈ψ〉 correlates in some way with QPO

frequency. To test this in upcoming work, we will measure 〈ψ〉 for

many more observations.

We reconstruct an estimate for the underlying waveform from

these measurements of 〈ψ〉 and the rms variability in each har-

monic. This now opens up the possibility of using waveform fitting

to test theoretical QPO models (e.g. Veledina, Poutanen & Ingram

2013), in direct analogy to the pulse profile modelling technique

routinely used for coherent NS pulses (e.g. Poutanen & Gierliński

2003). Reconstructing a waveform in each energy channel allows

us to constrain spectra for 16 QPO phases which we fit with a model

including Comptonization and reflection, with the latter accounted

for simply by Gaussian and smeared edge components. We find that

the photon index of Comptonization varies with very high signifi-

cance for both observations but the modulation in best-fitting seed

photon temperature is only statistically significant for observation

1. We conclude that the former could be due to some combination

of changes in the electron temperature or optical depth of the corona

and changes in the amplitude of the reflection hump in the spectrum.

This degeneracy can be broken by carrying out a similar analysis

up to high energies, as is now possible with NuSTAR. As for the

seed photon temperature, this is difficult to interpret since we do

not include a direct disc component in our model due to the high

absorption column around GRS 1915+105 and the hard response of

the PCA. More light can be shed on this result by studying sources

with a lower absorption column in states with more prominent di-

rect disc emission, preferably with XMM–Newton which has a softer

response than RXTE.

Our best-fitting model shows a modulation in the EW of the Gaus-

sian representing the iron line, which has a significance of 2.4σ and

3.6σ for observations 1 and 2, respectively. This indicates that the

reflection fraction varies over the QPO cycle, which in turn implies

that the accretion geometry is changing over the QPO cycle. We

note however that our results can possibly be explained with a con-

stant accretion geometry with the iron line EW variations given by

changes in ionization state of the disc material. This interpretation

seems fairly unlikely; however, especially since the QPO amplitude

appears to correlate with the source inclination angle (Heil, Uttley

& Klein-Wolt 2014; Motta 2014). Phase-resolved spectral analysis

of more observations may well soon provide the required body of

evidence to conclude that the QPO does indeed have a geometric

origin.

We also see tentative hints that the iron line shape may change

with QPO phase, but do not achieve the required statistics to make a

conclusion. Modulations in the iron line shape have been predicted

for a few QPO models (Karas, Martocchia & Subr 2001; Ingram &

Done 2012b; Tsang & Butsky 2013), all due to variable Doppler

shifts. In the precessing inner flow model, the iron line is predicted

to rock between red- and blueshift as the inner flow illuminates,
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QPO phase-resolved spectroscopy 3525

respectively, the receding and approaching sides of the accre-

tion disc (Ingram & Done 2012b). This model predicts an anti-

correlation between the line centroid and width, since the line is

dominated by the narrow blue horn when approaching disc material

is illuminated but includes strong contributions from both the red

wing and the blue horn when the receding disc material is illumi-

nated. In contrast, variable disc ionization would cause a correlation

between iron line centroid and width. These predictions can perhaps

be tested by analysing more observations; however, it is clear that

high quality observations with good spectral resolution are required,

as would be provided by, for example, XMM–Newton, NuSTAR or,

best of all, the Large Observatory For X-ray Timing (Feroci et al.

2012), should it fly.
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