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ABSTRACT

We present a variational reconstruction algorithm for the phase-

retrieval problem by using the differential interference contrast

microscopy. Principally, we rely on the transport-of-intensity

equation that specifies the sought phase as the solution of a

partial differential equation. Our approach is based on an

iterative reconstruction algorithm involving the total variation

regularisation which is efficiently solved via the alternating

direction method of multipliers. We illustrate the applicability

of the method via real data experiments. To the best of our

knowledge, this work demonstrates the performance of such

an iterative algorithm on real data for the first time.

Index Terms—Phase retrieval, transport-of-intensity equa-

tion,sparse reconstruction, total variation regularisation.

1. INTRODUCTION

Reconstructing the phase of a complex field given its intensity

is a fundamental problem in bioimaging. Most cells and soft

tissues are highly transparent. Thus, without staining or tag-

ging, they generate very low contrast intensity images. This

implies that they are barely visible under a standard brightlight

microscope. Knowing that such specimens change the phase

of the light wave (i.e. shape and structure of the specimen is

encoded in the phase image) has led to the development of

many well-established imaging modalities [1].

Differing from the instrumentation-based solutions, the

transport-of-intensity equation (TIE) serves as a purely com-

putational approach [2]. Originating from the parabolic wave

equation, TIE links the phase image to the variations in the

intensity induced by wave propagation. The essence of this

method is to measure the intensity along the propagation direc-

tion at multiple (three in our case) positions. In mathematical

terms, the relationship between these measurements and the

phase image is expressed via an inhomogeneous second-order

differential equation whose solution is unique (up to an addi-

tive constant) [3].
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An advantage of TIE is that the resulting phase does not

need to be unwrapped, as is common for many other interfer-

ometric methods [4]. Allowing phase images to be obtained

by using numerical methods—rather than implementing spe-

cialised hardware modifications—TIE-based imaging is a vi-

able tool for electron microscopy [3] and X-ray imaging [5].

In addition, TIE can be applied to a partially coherent source,

even though it has been initially derived for coherent illumi-

nation [6]. This makes it applicable to a practical differential

interference contrast (DIC) microscope [7].

The common practice for resolving TIE has been the di-

rect inversion of the model (with appropriate boundary condi-

tions) [3, 5, 7]. Although this approach is non-iterative, it is

extremely sensitive to the measurement noise since the said in-

version is characterised by an integral operator. Consequently,

the reconstructed phase images suffer from noise amplifica-

tion. This observation strongly motivates the development

of reconstruction algorithms that are resilient to noise. Also,

the reconstruction performance can be further improved by

imposing suitable characteristics on the solution.

The main contributions of the present work are as follows:

! The variational formulation of the phase reconstruction

problem by utilising TIE for DIC microscopy. The

proposed method incorporates total variation (TV) regu-

larisation which allows for preservation of abrupt phase

transitions.

! An iterative reconstruction algorithm, based on the al-

ternating direction method of multipliers (ADMM), that

decomposes the optimisation into sub-problems that are

solved efficiently.

! The validation of the method by applying it to experi-

mentally-acquired DIC data.

The remainder of the paper is organised as follows: In

Section 2, we start by explaining the underlying mathematical

scheme that constitutes our forward model. In Section 3, we

state an inverse problem formulation and explain our iterative

algorithm. We conduct experiments where we reconstruct

phase images from a series of DIC images of HeLa cells in

Section 4.
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Fig. 1. Simplified representation of our approach for optical

phase retrieval via transport-of-intensity equation.

2. PHYSICAL MODEL

2.1. Transport-of-Intensity Equation

Consider a monochromatic, scalar field at some axial plane

z ∈ R, over some closed and bounded transverse domain. This

field is propagating in the +z direction and is represented by

U(x, z) = U0(x, z)e
jkz ,

where U0 is the complex-amplitude with x = (x1, x2) ∈
R

2, and k = 2π/λ is the wave number with λ being the

wavelength.

Under the paraxial approximation, which is to say that the

propagation is dominantly along the z-axis and the dispersion

in the transverse plane is negligible, we have

U0(x, z) =
√

I(x, z)ejφ(x,z), (1)

where I and φ denote the intensity and the phase, respectively.

Note that any physical measurement yields |U0|
2= I , so the

phase information is lost.

To recover the phase, Teague [2] has derived the so-called

transport-of-intensity equation (TIE):

−k
∂

∂z
I(x, z) = ∇⊥ · I(x, z)∇⊥φ(x, z), (2)

where ∇⊥ is the transverse gradient operator and · denotes the

dot product. The remarkable aspect of (2) is that it establishes

a direct mathematical link between two physical quantities,

namely the spatial phase and the axial derivative of the inten-

sity of the field.

For bioimaging applications, one usually assumes that U0

represents the field leaving a thin, phase-only object—this

is reasonable for most biological samples such as cells and

microorganisms—that is illuminated uniformly. This means

that I(x, z) is constant over x so that (2) is rewritten as

−
k

I(x, z)

∂

∂z
I(x, z) = ∇2

⊥φ(x, z), (3)

where ∇2
⊥

denotes the two-dimensional Laplacian over the

transverse plane.

Practically speaking, the axial derivative of the intensity

is approximated by finite differences. One possible approx-

imation is carried out by using two equispaced defocused

measurements:

∂

∂z
I(x, z) ≈

I(x, z +∆z)− I(x, z −∆z)

2∆z
, (4)

where ∆z is the defocus amount. That being the case, (3)

indicates experimental access to the Laplacian of the phase by

acquiring three images.

In microscopic imaging applications, the defocused mea-

surements are recorded via moving the stage of the microscope

(see Figure 1), which is equivalent to displacing the detector

along the optical axis. Therefore, by solving (3), one retrieves

the phase at the detector plane which, assuming a perfect imag-

ing system, corresponds to a magnified version of U0.

2.2. Differential Interference Contrast Microscopy

We are now interested in combining the TIE formalism with

differential interference contrast (DIC) images. Fundamen-

tally, DIC microscope relies on polarising optics to produce

two orthogonally polarised beams. These beams traverse the

specimen small distance apart from each other. Hence, they

perceive the same phase profile with a very small displacement.

Then, the beams are optically interfered such that the intensity

image—related to the derivative of the phase—has increased

contrast [8].

Let us denote the differently polarised fields by U1 and

U2 and their intensities by I1 and I2. We first note that (2) is

satisfied for both U1 and U2. Again under uniform illumination

and thin sample assumptions, it further holds that I1 = I2 = I .

Considering these along with the image formation in DIC, Kou

et al. [7] have developed the following model:

−kC

IDIC(x, z)

∂

∂z
IDIC(x, z) = ∇2

⊥φ(x, z), (5)

where IDIC is the intensity image recorded by the DIC mi-

croscope. In (5), C is a constant depending on the bias value

introduced by the microscope and is known to the practitioner.

By looking at (5), we see that the TIE technique can be readily

extended to DIC imaging.

For solving (5), Kou et al. [7] have applied the inverse

operator
(

∇2
⊥

)−1 F
←→ ∥ω∥−2

with ω = (ω1,ω2) representing the spatial frequency. The

singularity at the origin is handled with a constant treatment:

∥ω∥−2 → ∥ω + ε∥−2. As mentioned in the introduction, due

to the inherent noise, this introduces “cloudy” artefacts in the

reconstructed phase images.

In the sequel, we shall develop a variational framework to

obtain a regularised solution of TIE.
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3. PHASE RECONSTRUCTION

Let us now consider the following forward model:

y = HΦ+ e, (6)

where Φ ∈ R
N is the original phase1, H ∈ R

N×N is the

matrix representation of the Laplacian operator with N being

the total number of pixels on the detector. In (6), y is the left

hand side of (5) that is computed in accordance with (4), and

e represents the noise.

In bioimaging applications, it is desirable that the speci-

mens be well-isolated from the background. This necessitates

that the reconstruction algorithm preserves the discontinuities

across the boundaries. Thus, for regularising the solution, we

choose to use the total variation (TV) functional that is defined

as

RTV(Φ) =
∑

i∈P
∥LiΦ∥2, (7)

where P is the set of all pixels and LiΦ ∈ R
2 represents the

first-order finite differences of Φ at pixel i along the vertical

and horizontal directions. Then, we propose to reconstruct the

phase by solving the optimisation problem:

min
Φ

1

2
||HΦ− y||22 + τ

∑

i∈P
∥LiΦ∥2. (8)

To solve (8), we first express an equivalent constraint problem:

min
Φ,u

1

2
||HΦ− y||22 + τ

∑

i∈P

∥ui∥2 : u = LΦ, (9)

where u is an auxiliary variable and τ > 0 is the regularisation

parameter. For (9), we introduce the associated augmented

Lagrangian (AL) that is of the form

LA(Φ,u,α) =
1

2
||HΦ− y||22 + τ

∑

i∈P

∥ui∥2

− α
T(u− LΦ) +

β

2
∥u− LΦ∥22,

where α is the Lagrange multiplier and β > 0 is the penalty

parameter. We then use alternating direction method of mul-

tipliers (ADMM) [9] where the main idea is to minimise the

AL functional with respect to each variable as the others are

kept fixed. Applying ADMM to AL functional results in the

given iterative framework:

ut+1 ← argmin
u

LA(Φ
t,u,αt),

Φ
t+1 ← argmin

x

LA(Φ,u
t+1,αt),

α
t+1 ← α

t − β(ut+1 − LΦt+1).

Let us now focus on the sub-minimisation problems. We note

that the minimisation over u is separable and is computed by

1Note that the phase image is thought to be lexicographically reordered.

the following vectorial shrinkage:

ut+1
i = max

{

||zi||2 −
λ

β
, 0

}

zi

||zi||2
,

where zi = Lix
t +

α
t

i

β
. As for the second sub-problem, we

remark that H is a self-adjoint operator (i.e. HT = H) . The

minimizer Φt+1 is computed by

Φ
t+1 =

(

H2 + βLTL
)−1

(

Hy + βLT

(

ut+1 −
α

t

β

))

.

Assuming periodic boundary conditions, this is directly solved

by using the fast Fourier transform [10]. The final step of the

ADMM is a trivial update.

4. EXPERIMENTAL RESULTS

To test the capability of the technique, we chose to directly

operate with real data (sound simulations of image formation in

DIC microscopy is rather involved). Paraformaldehyde-fixed

unstained HeLa cells—a cell line commonly used in biology—

were imaged at room temperature (∼ 22◦C). Images were

acquired on a Zeiss Axio Observer Z1 (Carl Zeiss AG, Jena,

Germany) equipped with an APlan 10 × / 0.25 NA with a

DIC analyser II. The defocused images were recorded with a

distance of 2 µm from the best focus position. We observed that

such defocus provides a good compromise for approximation

quality and the measurement noise.

For the phase reconstruction, we compared the direct FFT-

based method and the proposed approach. We also included

the Tikhnonov regularisation with the same L operator (solved

directly as well) in the comparisons for completeness. We

manually chose the regularisation parameter (for Tikhonov

and our method) such that the best results (in term of contrast

and physiological relevance) are obtained. We set β = τ/100
and used 30 ADMM iterations which was observed to be

enough for convergence. A JAVA implementation—on a 2.66

GHz Quad-Core Intel Xeon Mac Pro computer—took roughly

3.5 seconds to reconstruct the phase from 891 × 704 pixel

images.

By looking at the results given in Figure 2, we first observe

that the phase images obtained via TIE render some intra-

cellular structures in a more revealing way than DIC images.

For instance, the cell nucleolus (indicating concentrated DNA)

is more visible in TIE, especially so with our reconstruction

method (see the region inside the circles in Figure 2.(e)). Also,

our method produces an image where the nucleus is better

resolved compared to the other reconstructions (indicated by

arrows in Figure 2.(e)). Finally, we note that the background

is reconstructed with improved homogeneity and the halos

around the cell membrane (see the circles in Figure 2.(f)) are

significantly reduced. The latter can be of importance if further

morphological analysis of such cells is considered for which a

proper segmentation is needed.
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b) Direct TIE reconstructiona) DIC image (in-focus)

d) Proposed TIE reconstructionc) Tikhonov reg. TIE reconstruction

f) Detail from dash-bordered regione) Detail from solid-bordered region

Fig. 2. Phase reconstruction using TIE and DIC: See text for a detailed explanation of the experiment.

5. CONCLUSION

We have introduced a variational framework for phase recon-

struction using TIE and the DIC microscopy. Our model uses

TV regularisation and is solved iteratively via ADMM. Finally,

we have demonstrated our phase reconstruction method with

experimentally-recorded DIC images.
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