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It is suggested that, given the magnitude of Fourier transforms sampled at the Bragg density, the phase prob-
lem is underdetermined by a factor of 2 for 1D, 2D, and 3D objects. It is therefore unnecessary to oversample
the magnitude of Fourier transforms by 23 in each dimension (i.e., oversampling by 43 for 2D and 83 for 3D)
in retrieving the phase of 2D and 3D objects. Our computer phasing experiments accurately retrieved the
phase from the magnitude of the Fourier transforms of 2D and 3D complex-valued objects by using positivity
constraints on the imaginary part of the objects and loose supports, with the oversampling factor much less
than 4 for 2D and 8 for 3D objects. Under the same conditions we also obtained reasonably good reconstruc-
tions of 2D and 3D complex-valued objects from the magnitude of their Fourier transforms with added noise
and a central stop. © 1998 Optical Society of America [S0740-3232(98)00406-2]
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1. INTRODUCTION

In a number of fields, such as x-ray crystallography, x-ray
diffraction, electron diffraction, neutron diffraction, as-
tronomy, and remote sensing, only the magnitude of the
Fourier transform can be measured and the phase of the
Fourier transform is lost, which raises the well-known
phase problem. In this paper we focus mainly on the
phase problem of nonperiodic objects. The first widely
accepted phase algorithm mainly for nonperiodic objects
was put forward in 1971 by Gerchberg and Saxton.1 The
idea is that, if partial information about the magnitude of
the object density as well as about the magnitude of the
object’s Fourier transform can be supplied, the phase in-
formation may be recovered. In 1978 Fienup developed
two phasing algorithms based partially on the
Gerchberg–Saxton algorithm: the error-reduction itera-
tive algorithm and the input–output iterative algorithm.2

Fienup modified the Gerchberg–Saxton algorithm by us-
ing finite supports and positivity constraints in real space
instead of the magnitude of the object density to retrieve
the phase of real and positive objects. In subsequent
years, Fienup’s algorithms have been successfully imple-
mented in various fields to determine the phase function
of real and positive objects from the magnitude of their
Fourier transforms.3–9

The uniqueness of the phase of multidimensional
(>2D) real and positive objects with finite supports was
shown theoretically in 1979 by Bruck and Sodin10 and in
1982 by Hayes.11 Following some partial ideas proposed
in 1947 by Boyes-Watson et al.12 and in 1952 by Sayre,13

in 1982 Bates developed the oversampling method to re-
trieve the phase from the magnitude of the Fourier
transform,14 and it turned out that Fienup’s algorithms
could be regarded as examples of that method. Using the
argument that the autocorrelation function of any sort of
image is twice the size of the image itself in each dimen-
sion, Bates stated that the phase information could be re-
covered by oversampling the magnitude of a Fourier
transform that is twice as fine as the Bragg density, i.e.,

23 oversampling in each dimension: 43 for two dimen-
sions and 83 for three dimensions.14,15 In 1996 Millane
and Stroud16 showed that a 43 oversampling of the Fou-
rier magnitude is sufficient to uniquely determine a mul-
tidimensional (>2D) image.16 As will be seen, we, along
with Szöke,17 actually go a little further in the same di-
rection. Regarding notation, we define as Bragg density
the density of Bragg peaks that would be produced if the
nonperiodic structure were turned into a crystal by rep-
etition of the structure with contact but without overlap.

In 1984 Barakat and Newsam showed that for complex-
valued objects the nonuniqueness of the phase is patho-
logically rare.18 Thereupon Bates and Tan in 1985 (Ref.
19) and Lane in 1987 (Ref. 20) concluded that, because of
the loss of the positivity constraints, the phase retrieval
from the magnitude of the Fourier transform of complex-
valued objects is much more difficult than that from real
and positive objects. In 1987 Fienup demonstrated the
possibility of reconstructing some special complex-valued
objects by using their tight-support constraints, where
tight support means the true boundary of an original
object.21

In this paper we present our understanding of the
phase problem as carried out in our work on the possible
extension of x-ray crystallography to noncrystals.7,22 In
Section 2 we suggest that, given the magnitude of a Fou-
rier transform sampled at the Bragg density, the phase
problem is underdetermined by a factor of 2 for one-
dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) objects. Thus, at least in principle,
oversampling the magnitude of a Fourier transform by
23 in each dimension is unnecessary for retrieving the
phase of 2D and 3D objects. In Section 3 we propose that
the positivity constraints on the imaginary part of
complex-valued objects can be used to retrieve the phase
from the magnitude of their Fourier transforms, which
makes it much easier to reconstruct complex-valued ob-
jects. In Section 4 we present a few successful computer
phasing experiments to retrieve the phase of 2D and 3D
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complex-valued objects by oversampling the magnitude of
their Fourier transforms that are less than 2 3 in each
dimension and using positivity constraints on the imagi-
nary part. In addition, we study the phase retrieval of
2D and 3D complex-valued objects with noise and a cen-
tral stop.

2. UNIQUENESS OF THE PHASE PROBLEM

Given the density of an object f(x), its Fourier transform
F(k) is given by

F~k! 5 E
2`

`

f~x!exp~2pik • x!dx, (1)

where x 5 (x1 , x2 , x3), i.e., spatial coordinates in image
space, and k 5 (k1 , k2 , k3), i.e., spatial-frequency coor-
dinates in Fourier space. In practice, we approximate
the object and the Fourier transform by arrays. By using
the conventional sampling, we rewrite Eq. (1) and get

F~k! 5 (
x50

N21

f~x!exp~2pik • x/N !, (2)

where x and k are discretized in Eq. (2) and stand for pix-
els that range in each dimension from 0 to N 2 1. Since
only the magnitude of the Fourier transform can be ex-
perimentally measured, the data correspond to

uF~k!u 5 U(
x50

N21

f~x!exp~2pik • x/N !U . (3)

Equation (3) is really a set of equations, and the phase
problem is to solve these for f(x) at each pixel, where
pixel means the element of the f(x) and F(k) arrays. Be-
cause of the loss of the phase, there are some ambiguities;
that is, one cannot distinguish any of the following three
quantities: f(x), f(x 1 x0)exp(iuc), and f*(2x 1 x0)
3 exp(iuc), where x0 , uc are real constants and * donates
complex conjugation.14 These three quantities are called
the trivial characteristics of f(x). In the following, we
study only the nontrivial characteristics of the phase
problem of f(x). Let us discuss Eq. (3) under two condi-
tions. First, we assume that f(x) is complex valued. For
a 1D object the total number of equations of Eqs. (3) is N,
but the total number of unknown variables is 2N because
each pixel has two unknown variables: the real part and
the imaginary part. For 2D and 3D complex-valued ob-
jects the total number of equations is N2 and N3, respec-
tively, and the total number of unknown variables is 2N2

and 2N3, respectively. Second, we consider f(x) real.
According to Friedel’s law,23 the magnitude of its Fourier
transform, uF(k)u, has central symmetry. Therefore the
equation number for a 1D real object drops to N/2, and
the number of unknown variables is N. For 2D and 3D
real objects, the total number of equations is N2/2 and
N3/2, respectively, and the total number of unknown vari-
ables is N2 and N3, respectively. On the basis of the
above analysis, we suggest that, given the magnitude of a
Fourier transform sampled at Bragg density, the phase
problem is underdetermined by a factor of 2 for 1D, 2D,
and 3D objects.

Apparently, without a priori information Eq. (3) cannot
be solved, and the phase is not unique. To recover the
phase information, we have to introduce some constraints
on Eq. (3). The first strategy that we introduce is to de-
crease the number of unknown variables by using objects
with some known scattering density (i.e., some known-
valued pixels) inside them. A special example is to use
an object with some nonscattering density (i.e., some zero-
valued pixels) inside it. To determine how many known-
valued pixels of f(x) are necessary for solving Eq. (3), we
introduce the concept of ratio s, which is defined as

s 5

total pixel number

unknown-valued pixel number
, (4)

where the unknown-valued pixels are to be solved for.
Since, given the magnitude of a Fourier transform
sampled at Bragg density, the phase problem is underde-
termined by a factor of 2 for 1D, 2D, and 3D objects, the
equations should be solvable, at least in principle, as long
as the ratio s . 2. One may argue that a necessary, but
not sufficient, condition for finding a solution for Eq. (3) is
that the number of unknown variables be equal to the
number of equations. For example, since some of the
equations could be linear combinations of others, it is pos-
sible that there are many solutions for Eq. (3) even
though the number of equations is more than the number
of unknown variables, but we know from Barakat and
Newsam that this situation is pathologically rare.18 Fur-
thermore, although Eqs. (3) are nonlinear, and each has
two solutions because of the modulus sign, the positivity
constraints (see Section 3) eliminate one of the two. This
appears to be one of the important roles played by the
positivity constraints, especially in the case of a loose sup-
port (see Section 4).

The second strategy to increase the number of known
quantities of Eq. (3) is to use the oversampling method.
The idea of oversampling is to sample the magnitude of a
Fourier transform finely enough to get a finite support for
the object in which the pixel value outside the finite sup-
port is zero. To solve the phase problem, we have to
oversample the magnitude of the Fourier transform to
make the ratio s . 2. The requirement corresponds to
the oversampling by .2 for a 1D object, .21/2 in each di-
mension for a 2D square object, and .21/3 in each dimen-
sion for a 3D square object.

3. INTERNAL CONSTRAINTS

In Section 2 we discussed the finite support or zero-valued
pixel constraints for phase retrieval, where we call these
constraints the external constraints. In this section we
will study the constraints on the object itself: the inter-
nal constraints.

As mentioned in Section 1, if an object is real and posi-
tive, one can use both the external and the internal (i.e.,
positivity) constraints to successfully recover the phase
information from the magnitude of the Fourier transform.
However, for complex-valued objects, the positivity con-
straints have been considered inapplicable,19–21 which
has made phase retrieval difficult. However, they are
not entirely inapplicable. In the case of x-ray diffraction,
for example, the complex-valued object density can be ex-
pressed by using the complex atomic scattering factor, f1
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1 if2 , (Refs. 24 and 25), where f1 is the effective number
of electrons that diffract the photons in phase and is usu-
ally positive for x-ray diffraction, and f2 represents the at-
tenuation and is always positive for ordinary matter.26

The statement that f1 is usually positive and f2 is always
positive is rigorously verified in experiment (see, for ex-
ample, Henke et al.24). The above-mentioned argument
can also be extended to electron and neutron diffraction.
We therefore propose that one can generally use the posi-
tivity constraints on the imaginary part of complex-
valued objects as internal constraints for phase retrieval.

4. RESULTS OF THE COMPUTER PHASING
EXPERIMENT

A few computer phasing experiments on complex-valued
objects have been performed by adding the internal con-

straints mentioned in Section 3 to Fienup’s input–output
iterative algorithm.2 The jth iteration of the algorithm
includes the following four steps:

1. Fourier transform an input object f j(x) and get a
Fourier pattern F j(k) in reciprocal space.

2. Generate a new Fourier pattern F j8(k) by using
uF(k)u as its magnitude and the phase of F j(k) as its
phase, F j8(k) 5 uF(k)u 3 F j(k)/uF j(k)u.

3. Inverse Fourier transform F j8(k) to get a new object
f j8(x).

4. Generate the ( j 1 1)th object by

fj11~x! 5 H f j8~x! x, f j8~x! P S

f j~x! 2 bf j8~x! x, f j8~x! ¹ S
, (5)

where b is a constant between 0.5 and 1 and S represents
those pixels that are inside a finite support and whose
imaginary parts are positive. The lower part of Eq. (5)
plays two roles: (i) if the pixels are outside the finite sup-
port, the pixel values decrease gradually to zero, and (ii) if
the pixels are inside the finite support and their imagi-
nary parts are negative, the imaginary parts of those pix-
els increase at every iteration until they are positive.
This represents the modification to Fienup’s algorithm.
For the jth iteration, a reconstruction error function E j is
introduced to monitor the progress of the algorithm,

E j 5 S (
x¹s

u f j8~x!u2

(
xPs

u f j8~x!u2
D

1/2

. (6)

In our computer phasing experiment, we generate the ini-
tial input by using the magnitude uF(k)u and a random
phase. The constant b is set to 0.8. All of the objects
that we try to reconstruct are complex valued, with real
and imaginary parts. We mentioned in Section 3 that
the real parts of complex-valued objects are usually posi-
tive and the imaginary parts are always positive; there-
fore we generate the original objects by setting all the
imaginary parts and most of the real parts positive (ap-
proximately 90%) in the following computer phasing ex-
periments.

The effect of the ratio s on the quality of phase re-
trieval for 2D and 3D complex-valued objects was studied.
First we investigated complex-valued objects in which

Fig. 1. Examples of image reconstruction from the magnitude of
the Fourier transforms of complex-valued objects by use of the
positivity constraints on the imaginary part and zero-valued
pixel constraints. (a) Magnitude of an original 2D complex-
valued object with s 5 4. (b), (c), (d), and (e) Magnitude of the
reconstructed objects with s 5 4, 3, 2.6, and 2.5, respectively.
Note that s is the ratio of the total array area to the area other
than the square hole and that for (b), (c), (d), and (e) the square
hole in the object grows smaller.

Fig. 2. Reconstruction error versus iteration number for the re-
construction of Fig. 1. Curves 1B, 1C, 1D, and 1E correspond to
the reconstruction of Figs. 1(b), 1(c), 1(d), and 1(e), respectively.
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many zeros have been provided. Figure 1(a) illustrates
the magnitude of a complex object (all the figures in the
following show the magnitude of a complex-valued object)
of 512 3 512 pixels with a square hole of s 5 4 inside it

in which the pixel values are zero. The reason that we
set the square hole off center is to avoid any artificial ef-
fects of symmetry on the reconstruction. From the mag-
nitude of the object’s Fourier transform, which is not over-

Fig. 3. Examples of image reconstruction from the magnitude of
the Fourier transforms of complex-valued objects by oversam-
pling; positivity constraints on the imaginary part were used to-
gether with loose support constraints. (a) Magnitude of an
original 2D complex-valued object. (b), (c), (d), and (e) Magni-
tude of the reconstructed objects with s 5 4, 3, 2.6, and 2.5, re-
spectively. The ‘‘corner’’ symbols in (b)–(e) outline the region of
added zero pixels.
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sampled, we retrieved the phase by using the constraints
of zero-valued pixels inside the square hole (external con-
straints) and positivity constraints on the imaginary part
of the object (internal constraints). Here we assume that
we know the boundary between the zero-valued and the
unknown-valued pixels. Figure 1(b) illustrates the suc-
cessfully reconstructed result (although we display only
the magnitude of the reconstructed object, we correctly re-
construct both the real and the imaginary parts of the ob-

ject). Then we gradually reduced the ratio s to 3 and 2.6,
respectively. The reconstructed objects still looked excel-
lent, as Figs. 1(c) and 1(d) show. Curves 1B, 1C, and 1D
of Fig. 2 show the reconstruction error versus iteration
number for the reconstruction of Figs. 1(b), 1(c), and 1(d),
respectively. From the three curves, one can see that the
error function of the reconstruction stays at approxi-
mately 1% for a few thousand iterations and then sud-
denly drops to a much lower level. However, when the

Fig. 3. (continued). (f ) Isodensity of the magnitude of an origi-
nal 3D complex-valued object. (g), (h), (i), and ( j) Isodensity of the
magnitude of the reconstructed objects with s 5 7.8, 4, 2.57, and
2.3, respectively.
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ratio went down to 2.5, the algorithm hardly converged,
as curve 1E of Fig. 2 illustrates, and the reconstructed ob-
ject became noisy [Fig. 1(e)]. This result brings out an
apparent contradiction between the theory of Section 2
and the computer phasing experiment. As we stated in
Section 2, the phase of nonperiodic objects should be
unique as long as the ratio s > 2. But the phasing ex-
periment showed that the phase can be perfectly re-
trieved only with the ratio s > 2.6 for the case in Fig. 1.
Our interpretation is that, when the ratio s is larger than
a certain number (for the case in Fig. 1 the number is 2.6),
the algorithm always converges to the global minimum
and the correct phase information can always be recov-
ered. However, when the ratio s is less than the number,
the algorithm converges to a local minimum instead of the
global minimum. In the following phasing experiments,
we will see the same phenomenon.

We also used the oversampling method to generate
zero-valued pixels around an object in which the nonperi-
odicity and the presence of an envelope permit us to pro-
vide those pixels. Figure 3(a) is an illustration of an
original complex-valued object with 512 3 512 pixels.
Figures 3(b), 3(c), and 3(d) are the successful reconstruc-
tions from the magnitude of the Fourier transforms with
use of the positivity constraints on the imaginary part
and loose supports with ratio s 5 4, 3, and 2.6, respec-
tively, where a loose support is a support that is bigger
than the true boundary of a specimen. In this example
we choose as loose supports squares with edges four pix-
els larger than those of the square objects, and we define
s as being equal to the ratio of the total pixel number to
the pixel number inside the loose support. The reason
that we tested with loose supports is that it may be diffi-
cult in actual practice to locate the true boundary of an
object. However, when the ratio was reduced to 2.5, the
reconstruction almost failed, as Fig. 3(e) shows. Curves
3B, 3C, 3D, and 3E of Fig. 4 illustrate the reconstruction
error versus iteration number for the reconstruction of
Figs. 3(b), 3(c), 3(d), and 3(e), respectively.

The reconstruction of 3D complex-valued objects from
the magnitude of their Fourier transforms by using the
oversampling method was also investigated. Figure 3(f )
is an isodensity map of the magnitude of the original
complex-valued object with 64 3 64 3 64 pixels. Fig-
ures 3(g), 3(h), 3(i), and 3( j) were reconstructed from the
magnitude of the Fourier transforms by using the positiv-
ity constraints on the imaginary part and loose supports
with ratio s 5 7.8, 4, 2.57, and 2.3, respectively, where
the loose supports are spheres with radii two pixels larger
than those of the spherical objects. From these figures,
one can see that the reconstruction is excellent, with s

> 2.57, but it failed with s 5 2.3. In Fig. 4, curves 3G,
3H, 3I, and 3J illustrate the reconstruction error versus
iteration number for the reconstructions of Figs. 3(g),
3(h), 3(i), and 3( j), respectively. All the above computer
phasing experiments showed that the phase is retrievable
from the magnitude of the Fourier transform as long as
the ratio is larger than a certain number. According to
our computer phasing experience, this number depends
somewhat on the object.

To examine the applicability of this approach to real
data, we have to investigate the sensitivity of the algo-

rithm to noise. In our computer phasing experiments,
random noise

noise 5

signal

SNR
3 random (7)

was added to the magnitude of the Fourier transform,
where SNR is the desired signal-to-noise ratio and the
random function generates random numbers from 20.5 to
0.5. We used Fig. 3(a) as an original 2D complex-valued
object. With added noise with SNR 5 20, Fig. 5(a) was
reconstructed by using positivity constraints on the
imaginary part and a loose support with s 5 2.6. We
then reduced SNR to 10 and kept the same loose support.
Figure 5(b) illustrates the reconstructed object from
which we are still able to see the features. The other fac-
tor that we considered is the central stop, which arises
from the fact that the diffraction intensity (i.e., the abso-
lute square of the magnitude of a Fourier transform) in
the central pixels cannot be precisely measured by experi-
ment. We modeled a central stop by removing the cen-
tral 11 3 11 pixels from the magnitude of the Fourier
transform, which corresponds to 0.05% of the total data.
Figure 5(c) shows the reconstructed object with an 11
3 11 pixel central stop and SNR 5 20. The effect of
noise on the 3D object reconstruction was also studied.
We used Fig. 3(f ) as the original complex-valued 3D ob-
ject. Figures 5(d) and 5(e) show two reconstructed
isodensity maps of the magnitude of the original object
with SNR 5 40 and 20, respectively; we used positivity
constraints on the imaginary part and loose supports with
s 5 2.57. Meanwhile, we did not see any improvement
of the reconstruction at larger values of s. From Figs.
5(a), 5(b), 5(d), and 5(e) one can see that the reconstruc-
tion of the 3D complex-valued object with noise is not as
good as that of 2D case. But this does not mean that 2D
object reconstruction can tolerate much more noise than
3D object reconstruction. The reason for the difference is
that in 2D reconstruction we illustrated the magnitude of
complex-valued objects, but in 3D reconstruction we used
an isodensity display, making a direct visual comparison
somewhat difficult.

Fig. 4. Reconstruction error versus iteration number for the re-
construction of Fig. 3. Curves 3B, 3C, 3D, 3E, 3G, 3H, 3I, and
3J correspond to the reconstruction of Figs. 3(b), 3(c), 3(d), 3(e),
3(g), 3(h), 3(i), and 3( j), respectively.
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5. SUMMARY

Our theoretical analysis suggests that, given the magni-
tude of a Fourier transform sampled at the Bragg density,

the phase problem is underdetermined by a factor of 2 for
1D, 2D, and 3D objects. Therefore, at least in principle,
the phase can be retrieved from the magnitude of a Fou-

Fig. 5. Examples of image reconstruction from the magnitude of
the Fourier transforms of complex-valued objects with noise and
a central stop, with oversampling and the use of positivity con-
straints on the imaginary part and loose supports. (a), (b), and
(c) are reconstructed from the magnitude of the Fourier trans-
form of the original 2D complex-valued object shown in Fig. 3(a).
(a) Reconstructed with SNR 5 20 and s 5 2.6, (b) reconstructed
with SNR 5 10 and s 5 2.6, (c) reconstructed with SNR 5 20,
s 5 2.6, and 11 3 11 pixel central stop. (d) and (e) illustrate
the isodensity of the magnitude of a 3D complex-valued object re-
constructed from the magnitude of the Fourier transform of the
original 3D complex-valued object shown in Fig. 3(f ). (d) Recon-
structed with SNR 5 40 and s 5 2.57, (e) reconstructed with
SNR 5 20 and s 5 2.57.
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rier transform as long as the ratio s . 2, and the require-
ment of phase retrieval by oversampling the magnitude of
a Fourier transform by 43 in 2D reconstruction and 83

in 3D reconstruction is unnecessary.
Having studied the physics of complex-valued objects,

we propose that one can use the positivity constraints on
the imaginary part as internal constraints for phase re-
trieval, thereby supplementing the effectiveness of the ex-
ternal constraints, especially when a loose support is em-
ployed. In the computer phasing experiments, we
successfully reconstructed complex objects from the mag-
nitude of their Fourier transforms with ratio s > 2.6 for
2D and s > 2.57 for 3D reconstruction by using positivity
constraints on the imaginary part and loose supports.
We also reconstructed complex-valued objects with rea-
sonable noise and a central stop by using loose supports
and positivity constraints on the imaginary part.
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