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Abstract: State-of-the-art techniques for phase retrieval in propagation

based X-ray phase-contrast imaging are aiming to solve an underdetermined

linear system of equations. They commonly employ Tikhonov regular-

ization − an L2-norm regularized deconvolution scheme − despite some

of its limitations. We present a novel approach to phase retrieval based

on Total Variation (TV) minimization. We incorporated TV minimization

for deconvolution in phase retrieval using a variety of the most common

linear phase-contrast models. The results of our TV minimization was

compared with Tikhonov regularized deconvolution on simulated as well as

experimental data. The presented method was shown to deliver improved

accuracy in reconstructions based on a single distance as well as multiple

distance phase-contrast images corrupted by noise and hampered by errors

due to nonlinear imaging effects.
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1. Introduction

Recently, the field of X-ray phase-contrast imaging (PCI) has been growing rapidly. X-ray

PCI found applications in materials science, ranging from investigating the microstructure of

carbon-based materials [1, 2] to in-situ measurements of dynamic processes taking place in

metal alloys and semiconductors [3–5]. X-ray PCI is also entering the field of pre-clinical bio-

medical research, namely, small animal imaging and various ex-vivo/in-vitro studies [6–11].

The increasing availability of the X-ray PCI techniques over the last years was stimulated by

advances in instrumentation and phase retrieval algorithms.

The scope of our current investigation lays within phase retrieval for propagation-based X-

ray PCI. For more than a decade various algorithms were developed to permit accurate recon-

struction of the specimen’s phase and attenuation images from phase-contrast data acquired us-

ing the propagation-based approach [12]. A major effort was aimed at the development of linear

approximations to the image formation of PCI that would permit a stable solution of the result-

ing inverse problem [12–16]. Using these approximations, the phase and attenuation images

of the specimen can be calculated from a series of phase-contrast images acquired at different

propagation distances. To allow phase retrieval from a single phase-contrast image, methods

based on prior information about the specimen’s composition were developed [17–19]. They

are referred to as the so called phase-attenuation duality models.

In all linear phase retrieval models the accuracy of the reconstruction is a function of spatial

frequency. Depending on the acquisition conditions, the signal-to-noise ratio (SNR), and the

fitness of the linear approximation, the phase image of the specimen will be irrecoverable within

a particular set of spatial frequencies [20, 21]. In the case of multi-distance phase retrieval

[16] this can lead to large errors at low spatial frequencies while in single-distance approaches

[17–19] artifacts are produced at middle and high spatial frequencies. In order to avoid large

errors in the reconstructed images, most of the phase retrieval approaches rely on a so called

L2-norm based regularization also known as Tikhonov regularization. When L2 regularization

is used, the solution that has the minimum L2-norm (i.e. Euclidean norm) is promoted. This

leads to a suppression of spatial frequencies that are ill-determined by the phase retrieval model

or heavily corrupted by noise. Such a solution may not be optimal, especially when it results in

a strong suppression of a large band of low frequencies in multi-distance retrieval methods.

Another regularization approach that is currently used in an increasing number of image

reconstruction applications is called Total Variation (TV) minimization. It was initially de-

veloped for image denoising [22] and recently been introduced in such fields as deblurring,

super-resolution, inpainting and tomography [23–26]. The idea underlying TV minimization is

to promote a solution that has the sparsest gradient. It was theoretically proven [27] that under

certain conditions TV minimization allows exact reconstruction of signals with a sparse gradi-

ent from highly incomplete sets of observations. In cases where the gradient of the reconstructed

image is not exactly sparse, TV minimization is nevertheless preferred to L2 regularization in

many applications [28].

In this paper we introduce a TV minimization approach for solving the inverse problem

of phase retrieval in propagation-based X-ray PCI based on various linear models. Any im-

plementation of TV minimization can be chosen from a wide range of algorithms [25]. Here

we will present only results acquired with an algorithm based on the so called Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA) [29]. The original implementation of the algo-

rithm was modified to include frequency weighting into the minimization scheme. Frequency

weighting permits to account for the frequency-dependent nature of the signal-to-noise ratio

and is shown to have a significant influence on the accuracy of the phase retrieval.
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2. Materials and methods

In the following subsections we will describe how the phase retrieval problem of phase retrieval

can be solved using iterative least-squares minimization and TV-minimization. In order to do

so, we will introduce a matrix formalism which is uncommon in the field of phase retrieval. To

keep our description compact we will refer the reader to the paper of M. Langer [16] for details

regarding the theoretical background of X-ray phase retrieval algorithms.

2.1. Matrix formalism for phase propagation model

It is essential for the purpose of this paper that the convolution integral can be expressed us-

ing matrix formalism. Let us, for instance, define the propagated X-ray wavefront as a matrix

product. Let A denote the set of square integrable functions R
2 → C with bounded support.

Within the paraxial approximation, the X-ray field HD ∈ A propagated to a distance D from

the object can be expressed as the convolution (⋆) of the unpropagated field T ∈ A with the

Fresnel propagator PD ∈ A :

HD = PD ⋆T. (1)

If we denote the Fourier domain representations of T , PD, and HD by T̃ , P̃D, and H̃D, respec-

tively, we find that

H̃D( f ) = P̃D( f ) · T̃ ( f ), (2)

where f denotes the spatial frequency. We now discretize the Fourier domain, representing a

spectrum by its values in a discrete set { f1, . . . , fk} of basis elements

t̃ =







T̃ ( f1)
...

T̃ ( fk)






and P̃D =











P̃D( f1) /0

P̃D( f2)
. . .

/0 P̃D( fk)











. (3)

where P̃D is a diagonal matrix containing a discrete representation of the propagator P̃D( fk)
and t̃ is a vector that contains a discrete representation of T̃ ( fk). Consequently, a discretized

representation h̃D of the propagated field H̃D can be defined in frequency domain:

h̃D = P̃D · t̃, (4)

where the symbol (·) denotes the matrix-vector product. If we introduce a vector t correspond-

ing to the discrete representation of the unpropagated field T , it is possible to construct a

Toeplitz matrix PD such that the discretized propagated field hD can be expressed in the spatial

domain:

hD = PD · t (5)

As matrix PD is dense, it is hard to compute Eq. (5) directly or solve the inverse problem for

a large vector t in the spatial domain. However, the fact that matrix PD has a complimentary

frequency space representation P̃D, both play an important role in computing the explicit de-

convolution and iterative least-squares inversion. Since P̃D is a diagonal matrix, its eigenvalues

correspond to the discrete representation of the propagator PD( fk). That property allows us

to construct the well-known explicit deconvolution Eq. (8) in Section 2.2 and to analyse the

properties of iterative least-squares inversion in Section 2.3.
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2.2. Linear phase retrieval algorithms: L2-norm regularization

The standard approach to phase retrieval in in-line x-ray PCI relies on the fact that the observed

phase-contrast image can be approximated by a linear transformation acting on some unknown

image (or a combination of a phase and an attenuation image). This problem can be viewed as

a system of linear equations:

b = A ·x (6)

where A is a matrix that represents one of the linear phase models, b a vector containing the

observed phase-contrast images, and x a vector containing the unknown images. Since the

observed images are corrupted by noise and inversion of A is usually ill-posed, Eq. (6) is often

replaced by an L2-norm regularized least-squares problem (a.k.a. a Tikhonov regularization

problem):

argmin
x

: ‖A ·x−b‖2
2 + εL2 ‖x‖2

2 , (7)

where ‖...‖2
2 denotes the L2-norm and ε the regularization weight. The minimization of the first

term guarantees the best fit of the linear phase-contrast model to the observed images, while

the second term promotes solutions with the smallest L2-norm thereby suppressing noise and

outliers. Given that matrix A has a diagonal representation in frequency domain Ã, Eq. (7) has

an analytical solution according to which each jth frequency component x̃ j can be calculated

using the following expression:

x̃ j =
Ã∗

j, jb̃ j

|Ã j, j|2 + εL2

, (8)

where Ã∗
j, j and |Ã j, j|

2 are respectively the conjugate and the squared magnitude of the diagonal

matrix Ã . When in underdetermined or ill-conditioned system |Ã j, j| −→ 0, the corresponding

frequency component of x̃ will be suppressed by L2 regularization:

x̃ j ≈
Ã∗

j, jb̃ j

εL2
. (9)

2.3. Linear phase retrieval algorithms: TV minimization

Similar to the L2-regularized approach Eq. (6), Eq. (7) can be replaced by a TV-regularized

version:

argmin
x

: ‖A ·x−b‖2
2 + εTV ‖x‖TV , (10)

where the second term ‖x‖TV denotes the so called Total Variation norm of x which is defined

by the gradient magnitude of the image x

‖x‖TV = ∑
√

(∇ hx)2 +(∇ vx)2, (11)

where ∇ h and ∇ v are the horizontal and vertical finite difference operators. It has to be noted that

the TV norm defined by Eq. (11) has the dimension of 1/length (assuming x dimensionless),

so εTV has the dimension of length unlike the dimensionless εL2. Therefore the ratio between

the optimal εTV and εL2 will in general depend on the choice of the pixel size. All values of εTV

given in this article implicitly have the dimension of the pixel size that is used in the calculation.

In contrast with the L2-regularized Eq. (7) the second term of Eq. (10) promotes solutions

with sparse gradient magnitude. Expression (10) represents a non-smooth convex minimiza-

tion problem and can be calculated numerically using one of the iterative TV minimization

algorithms [25]. During this study we used an implementation of TV minimization based on

FISTA [29] which was introduced by Beck and Teboulle in [30].
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The Beck and Teboulle algorithm can be viewed as an extension of dual gradient minimiza-

tion [28]. Minimizing Eq. (10) is achieved by splitting each iteration into two sub-problems (or

steps), the so called gradient step and denoising step:

1. Gradient step: finding an image x0 by reducing the unregularized L2 residual term

‖A ·x−b‖2
2 in the beginning of each iteration,

2. Denoising step: followed by regularizing this intermediate image x0 by minimizing:

argmin
x

: ‖x0 −x‖2
2 + εTV ‖x‖TV . (12)

Alternating gradient and denoising steps has been shown previously to speed up the conver-

gence without sacrificing accuracy [31].

The gradient step is based on FISTA where, in order to reach a high rate of convergence, the

current guess is updated using information from two previous iterations:

1 : yn−1 = xn−1 +
(

tn−1−1

tn

)

(

xn−1 −xn−2
)

;

2 : yn = yn−1 − 2
L

AT ·
(

A ·yn−1 −b
)

;

3 : xn = DL,ε (yn) .

(13)

Here an intermediate vector y is introduced to take into account solution updates from two pre-

vious iterations, tn is a scalar that is determined at each iteration as tn =
1+

√

1+4t2
n−1

2
, t0 = 1, and

L denotes a so called Lipschitz constant that can be calculated as the maximum eigenvalue of

the product A∗ ·A (see [29] for a detailed description). Operator DL,ε signifies the denoising

step which can be implemented using Fast Gradient Projection (FGP) [23]. During the denois-

ing step, the TV norm of the current guess is minimized depending on the regularization weight

εTV and the Lipschitz constant L.

If matrix Ã is diagonal, all frequency components of the solution ỹn
j can be updated during

the gradient step (13) independently from each other:

ỹn
j = ỹn−1

j −
2ωj

L
Ã∗

j, j

(

Ã j, jỹ
n−1
j − b̃ j

)

. (14)

A frequency weighting vector ωj ≤ 1 is introduced to control the convergence of the algorithm.

In general, convergence properties might vary among different minimization algorithms.

However, the following observation is likely to be correct for algorithms similar to the one

described above: frequency components of the solution x̃ j that correspond to small matrix ele-

ments |Ã j, j| −→ 0 will only be modified in the denoising step. Hence, its final value is determined

solely by the TV-term of Eq. (10). The latter ensures a significant difference between how TV

minimization and L2 regularization (see Section 2.4) are computing the frequency components

of the solution that can not be retrieved from the observations.

2.4. Linear phase retrieval algorithms: models

As was explained in the previous section, TV minimization can be used for phase retrieval as

long as the phase-contrast model can be expressed as a linear system Eq. (6).

Let us introduce matrices CD and SD that represent the convolution with the real and imag-

inary parts of the Fresnel propagator PD respectively. Their frequency domain representations

have the following form:
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C̃D =







cos(α1) /0

. . .

/0 cos(αk)






, S̃D =







sin(α1) /0

. . .

/0 sin(αk)






(15)

where α j = πλD| f j|
2, λ stands for the X-ray wavelength and D is the effective propagation

distance. Using matrices CD and SD we can construct matrix A and the corresponding update

rule for the gradient step for the following linear phase retrieval models:

CTF model. The CTF model is widely used for phase retrieval in cases when the specimen

yields negligible attenuation and slowly varying phase [12]. The Fourier transform of the phase-

contrast image ĨD( f ) is approximated by the Fourier transforms µ̃( f ) and ϕ̃ ( f ) of the projected

attenuation and projected phase images of the specimen:

ĨD( f ) = δ( f )−2cos(α )µ̃( f )+2sin(α )ϕ̃ ( f ). (16)

Linear systems that are formed by combining Eqs. (16) for a set of m phase-contrast images

{ID(1), ..., ID(m)} can easily be represented in matrix form Eq. (6) (in frequency domain for

| f j| > 0) by construction of Ã, x̃ and b̃:

Ã =





−2C̃D(1) 2S̃D(1)

...
−2C̃D(m) 2S̃D(m)



 , x̃ =

(

µ̃
ϕ̃

)

, b̃ =





ĨD(1)

...
ĨD(m)



 . (17)

Here the unknown vectors µ̃ and ϕ̃ are concatenated into a single vector x̃, vector b̃ contains

all observed images ĨD(i) and matrix Ã is obtained by concatenating pairs of matrices C̃D(i)

and S̃D(i), where each pair corresponds to a particular propagation distance D(i). Using this

representation we can find an update rule similar to Eq. (14) for each jth frequency component

of the unknown vector x̃. We will separate it into the update rules for µ̃ and ϕ̃ as follows:

µ̃n
j = µ̃n−1

j +
4ωj

Lm

m

∑
i=1

C̃
( j, j)
D(i)

(

−2C̃
( j, j)
D(i)

µ̃n−1
j +2S̃

( j, j)
D(i)

ϕ̃ n−1
j − Ĩ

j

D(i)

)

,

ϕ̃ n
j = ϕ̃ n−1

j −
4ωj

Lm

m

∑
i=1

S̃
( j, j)
D(i)

(

−2C̃
( j, j)
D(i)

µ̃n−1
j +2S̃

( j, j)
D(i)

ϕ̃ n−1
j − Ĩ

j

D(i)

)

.

(18)

Calculation of Eq. (18) has to be carried out at each iteration of the gradient and denoising

steps. Since the denoising step must be computed in the spatial domain, two inverse Fourier

transforms (for µ̃ and ϕ̃ ) must be calculated at each iteration before the denoising step and two

Fourier transforms after the denoising step.

Mixed model. The Mixed model [14] is used for phase retrieval in cases with (significant)

attenuation. In an approximated version of this model (assuming only the first two terms), the

phase-contrast image ĨD( f ) becomes:

ĨD( f ) = cos(α )Ĩ0( f )+2sin(α ) ˜(I0ϕ )( f ). (19)

Here Ĩ0( f ) denotes the Fourier transform of the intensity image at zero distance. Ĩ0( f ) is fully

determined by the attenuation image of the specimen and can be expressed in the spatial domain

as I0 = e−2µ . The linear system that describes a set of phase-contrast images {ĨD(1), ..., ĨD(m)}

based on Eq. (19) can be expressed through the following Ã, x̃ and b̃:
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b.a. f.

g.c.

d.

e

Fig. 1. Phase reconstructions based on the simulated data of the ’flat’ phantom for TV

and L2 regularization with and without frequency weighting (see Sec. 3.1 for simulation

parameters). (a) Ground truth. (b) Intensity image at zero distance with Gaussian noise.

(c) Propagated phase-contrast image at 1m with Gaussian noise. (d) L2-regularized solu-

tion, no frequency weighting. (e) TV-regularized solution, no frequency weighting. (f) L2-

regularized solution, with frequency weighting. (g) TV-regularized solution with frequency

weighting.

A =





C̃D(1) 2S̃D(1)

...
C̃D(m) 2S̃D(m)



 , x̃ =

(

Ĩ0

( ˜I0ϕ )

)

, b̃ =





ĨD(1)

...
ĨD(m)



 . (20)

Here we treat the element-wise product of the intensity image and the phase image (I0ϕ ) as an

unknown image independent from the unknown intensity image I0. Using this representation

we can write down the update rule Eq. (14) for the gradient step as:

Ĩn
0, j = Ĩn−1

0, j −
2ωj

Lm

m

∑
i=1

C̃
( j, j)
D(i)

(

C̃
( j, j)
D(i)

Ĩn−1
0, j +2S̃

( j, j)
D(i)

˜(I0ϕ )
n−1

j − Ĩ
j

D(i)

)

˜(I0ϕ )
n

j = ˜(I0ϕ )
n−1

j −
4ωj

Lm

m

∑
i=1

S̃
( j, j)
D(i)

(

C̃
( j, j)
D(i)

In−1
0, j +2S̃

( j, j)
D(i)

˜(I0ϕ )
n−1

j − Ĩ
j

D(i)

)

.

(21)

Phase-attenuation duality models. These models can be used when the specimen has a

homogeneous composition or, in the limited range of X-ray energies, when the specimen is

composed of light elements [17, 19]. In duality models the phase and attenuation images of a

specimen are assumed to be proportional to each other, i.e. σ = ϕ
µ , permitting to reduce the

number of unknown variables. In this study we consider two duality models:

ĨD( f ) = 2(σ sin(α )− cos(α )) µ̃( f ), (22)

which was derived from the CTF model [18] and :

ĨD( f ) = (cos(α )+(α −σ)sin(α )) Ĩ0( f ), (23)
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Fig. 2. The radial frequency spectrum (angular averaged) of the reconstruction. Dotted

line shows |Ã j, j| on both graphs. Left: normalized difference between the solutions with

and without TV-regularization, i.e. (εTV = 0.02) vs. (εTV = 0). Right: normalized error-

magnitude of the TV-regularized solution (solid line) and the L2-regularized solution

(dashed line). The graphs are normalized against the radial frequency spectrum of the

ground truth image.

which was derived from the Mixed model [19]. Both models can be used to retrieve the pro-

jected attenuation image of the specimen based on a single phase contrast image ĨD( f ) acquired

at a suitable distance D > 0 as well as using a set of m phase-contrast images {ĨD(1), ..., ĨD(m)}
recorded at different distances. The update rule for the gradient step based on Eq. (22) is then

simplified into:

µ̃n
j = µ̃n−1

j −
4ωj

Lm

m

∑
i=1

B̃i

(

2B̃iµ̃n−1
j − Ĩ

j

D(i)

)

, (24)

where B̃i = (σ S̃
( j, j)
D(i)

− C̃
( j, j)
D(i)

). The update rule for the gradient step based on Eq. (23) has the

following form:

Ĩn
0, j = Ĩn−1

0, j −
2ωj

Lm

m

∑
i=1

B̃i

(

B̃iĨ
n−1
0, j − Ĩ

j

D(i)

)

, (25)

where B̃i = (C̃
( j, j)
D(i)

+(α −σ)S̃
( j, j)
D(i)

).

3. Simulations

As indicated before, TV minimization permit an accurate solution for a class of inverse prob-

lems based on severely incomplete sets of observations. The underlying assumption of all TV

minimization approaches is that the unknown signal must have a sparse gradient magnitude. In

the field of image reconstruction such assumption is fulfilled when the reconstructed image is

piecewise constant, i.e. the intensity only changes in a step-like manner.

3.1. Phantom image with sparse gradient magnitude

Our first demonstration of phase retrieval based on TV minimization uses a ’flat’ piece-wise

constant phantom. Here TV minimization is expected to yield high accuracy. However, in the

following subsections we will abandon this restriction and use a ’spheres’ phantom to demon-

strate the performance of TV minimization in more realistic cases.

Figure 1 shows the comparison between L2-regularized and TV-regularized phase retrieval

for the CTF model. The ground truth projected attenuation and phase images (256× 256 pix-

els) were computed for a randomly generated composition of overlapping polyethylene disks

immersed in a layer of water with a total thickness d = 0.1 mm (Fig. 1(a)). Subsequently phase-

contrast images ID1
and ID2

are generated using Fresnel propagation for a monochromatic X-

ray energy of 20KeV and a pixel size of 1 µm (Fig. 1(b, c)). In the current simulation we used
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Fig. 3. Radial frequency spectrum (angular averaged) of the retrieval results using the fre-

quency dependent regularization weights (i.e. frequency weighting). Dotted line shows

|Ã j, j| on both graphs. Left: estimated frequency spectrum of the specimen (solid line).

Right: normalized error-magnitude of the TV-regularized solution (solid line) and L2-

regularized solution (dashed line) with frequency weighting.

propagation distances {0 m, 1 m}. Gaussian noise with standard deviation of 0.02 was added

to both images mimicking acquisition with poor SNR. The optimal regularization parameters

εL2 and εTV were chosen such that the overall Root Mean Square Error (RMSE) is minimal

for the listed conditions (see Section 3.3). In practice, they must be derived from an estimate

of the SNR of the measured images. No stopping criteria was used in the gradient step of the

TV minimization, instead all reconstructions were computed using 1000 iterations in order to

guarantee convergence.

The resulting solutions are shown in Fig. 1(d, e). The frequency spectrum (we will use this

term for the angular average of the magnitude of 2D Fourier transform of the image) of the error

magnitude of the solutions can be seen on Fig. 2 (right). The frequency spectrum of the error

was normalized against the frequency spectrum of the ground truth image. It is evident from this

graph that when the optimal regularization weights are used, TV regularization is significantly

more accurate then L2 regularization at all frequencies where the direct phase retrieval problem

is undetermined (for frequencies components with |Ã j, j| −→ 0). Note that TV minimization can

yield higher error within particular bands of frequencies to promote a sparse gradient. We have

already pointed out in Section 2.2 and Section 2.3 that there are major differences in how TV

minimization treats frequency components of the solution that correspond to |Ã j, j| −→ 0. In

order to confirm this, we compared the results of the TV method with εTV = 0.02 and εTV = 0

(no TV minimization) when applied to noise-free data. Figure 2(left) shows that the frequency

spectrum of the normalized difference between the regularized and non-regularized solutions.

It is evident that the regularization strength depends heavily on |Ã j, j|.
So far we used scalar regularization weights εL2 and εTV in both regularization approaches.

One can achieve a significantly improved accuracy by using a frequency dependent regulariza-

tion weighting instead. In L2 regularization, the scalar εL2 can be replaced by the frequency

dependent factor εL2, j ∼ SNR−1( f j) (i.e. Wiener deconvolution). In our investigation we as-

sumed the SNR of the reconstructed image to be proportional to its frequency spectrum. The

latter can be estimated from a preliminary reconstruction based on a scalar regularization weight

using either L2 or TV regularization. Such estimation is demonstrated in Fig. 3(left). The es-

timate of the image SNR was introduced into TV minimization approach using the frequency

weighting vector ωj ∼ SNR( f j) in Eq. (14). Resulting L2- and TV-regularized solutions are

depicted in Fig. 1(f) and Fig. 1(g) respectively. It can be seen in Fig. 3(right) that the error

of TV-regularized solution is significantly lower than the error of L2-regularized solution in a

wide frequency range.
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Fig. 4. Reconstructions based on the simulated data of the ’spheres’ phantom for different

propagation models. All results are obtained using frequency weighting. Top row of images

(a, c, e, g) show L2-regularized solutions. The bottom row of images (b, d, f, h) show TV-

regularized solutions. Solutions (a, b) are based on the CTF model, (c, d) on the Mixed

model, (e, f) on the dual-CTF model and (g, h) on the dual-Mixed model.

3.2. Realistic phantom

In order to demonstrate the performance of the TV-minimization in realistic cases we tested

L2-regularization and TV-minimization phase retrieval approaches for phantoms with a non-

sparse gradient. Figure 4 shows reconstructions of the projected phase image of a composition

of randomly sized and positioned polyethylene spheres immersed in water (the rest of simula-

tion parameters match those from Section 3.1). Reconstructed images are obtained using both

L2- and TV-regularization based on the CTF model, the Mixed model as well as their phase-

attenuation duality modifications. In phase retrieval based on duality models we have used a

single simulated phase-contrast image with propagation distance 1 m. The corresponding nor-

malized frequency spectra of the error-magnitude are depicted in Fig. 5. It is evident that the

TV-regularized solutions yield lower error in comparison with the L2-regularized ones in a

broad range of frequencies. It is also apparent that given the parameters used in the current sim-

ulation (low attenuation and moderate phase changes), reconstructions obtained with the CTF

model and the Mixed model are virtually indistinguishable, while there is some discrepancy

with the models that are based on phase-attenuation duality assumption.

3.3. Optimal regularization weights

The accuracy of both regularization methods considered in this paper strongly depend on the

choice of the regularization weights εL2 and εTV . In practice, these parameters are estimated

from the measured data or chosen in some heuristic manner. In order to investigate how the

choice of the regularization weight affects the accuracy of phase retrieval, we measured the total

RMSE of the reconstructed phase images varying two parameters: standard deviation (STD) of

the Gaussian noise and the regularization weight of the phase retrieval algorithm. The phase-

contrast images were simulated using the polyethylene spheres phantom using the simulation

parameters described in Section 3.1 and 3.2. Fig. 6(left) shows the values of RMSE for phase

retrieval based on the CTF model. Curves L2-1, L2-2, L2-3 and L2-4 represent the RMSE of the
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Fig. 5. The radial frequency spectrum (angular averaged) of the reconstructions for different

propagation models. Dotted line shows |Ã j, j| on all graphs. Normalized error magnitude

of the TV-regularized solution (solid line) and L2-regularized solution (dashed line).

L2-regularized solutions with noise STD = 0.01,0.02,0.05 and 0.1 respectively. Curves TV-1,

TV-2, TV-3 and TV-4 represent the RMSE of the TV-regularized solutions with corresponding

noise STD. It can be seen that TV-regularization yields solutions with a 4-7 times lower total

RMSE in comparison to those obtained with L2 regularization. It is also evident that estimation

of the optimal regularization parameter is more important for TV-regularization then for L2

regularization as it affects the RMSE to a larger extent.

Along with various types of additive noise, non-linear effects that are not taken into account

by the phase retrieval models can become an important source of errors. The fraction of signal

to error due to non-linearity of the CTF model is, in a certain range of conditions, proportional

to |sin(α )| [20]. That property allows to treat the non-linearity error as another form of noise.

Figure 6(right) demonstrates the values of RMSE of the phase retrieval based on the CTF model

applied to noise-free phase-contrast images simulated for phantoms of different thicknesses.

Curves L2-1, L2-2, L2-3 and L2-4 show the RMSE of the L2-regularized phase retrieval for

phantoms with a total thickness = 0.1 mm, 0.25 mm, 0.5 mm and 1 mm respectively. Curves TV-

1, TV-2, TV-3 and TV-4 represent the RMSE of the corresponding TV-regularized solutions.

The thickness of the phantom has a dramatic effect on the accuracy of the phase retrieval based

on the CTF model since it introduces larger variations in projected attenuation and phase images

which leads to greater non-linearity of the observed phase-contrast image. It is evident that TV-

regularized phase retrieval yields similar accuracy with the L2-regularized solution in the case

of thin phantom. However the advantage of TV regularization becomes significant for thicker

phantoms.

4. Experiment

To test the TV-regularized phase retrieval on experimental data we have used X-ray phasecon-

trast images of a test pattern designed to assess the resolution of the X-ray imaging system.

The pattern consisted of 700 nm high lithographic gold structures on top of a Si substrate.

Phase-contrast data was acquired at the beamline ID22NI of the European Synchrotron Radi-

ation Facility (Grenoble, France). The incoming x-rays were focused using Kirkpatrick-Baez

mirror system, which gave a point focus with sub 100 nm with and height (FWHM) [32]. The

mean energy of the x-rays was 17.5 KeV (∼ 1.5% bandwidth) with 1012 photons/s in the focus.
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Fig. 6. Influence of the regularization weight on samples with increasing noise levels and

on samples of increasing thickness. RMSE of the solution is shown against the magnitude

of regularization parameter for L2 regularization (crosses) against TV regularization (plus

signs). Left: each curve shows errors for different noise levels, STD = 0.01, 0.02, 0.05, 0.1.

Right: each curve shows errors for different specimen thickness, 0.1 mm, 0.2 mm, 0.5 mm,

1 mm.

The focus was used as a point source for projection microscopy [33] giving effective pixel size

of 53 nm. Images were acquired at four propagation distances {27.4 mm, 28.3 mm, 31.8 mm,

40.3 mm}.

Figure 7 shows reconstructed phase images of the lines and dots pattern and so called

Siemens star pattern. The L2-regularized solutions are shown in the top row, while the bot-

tom row shows the TV-regularized solutions. Both phase-retrieval approaches were based on

phase-attenuation duality CTF model. The reconstructions depicted in sub-figures (a, b, e and

f) are based on phase-contrast images acquired at four different distances. The reconstructions

from sub-figures (c, d, g and h) are based on a single phase-contrast image acquired at a propa-

gation distance 27.4 mm.

It is evident that TV regularization permits a very high quality reconstruction of lines and dots

pattern based only on a single phase-contrast image. The high frequency ripple-like artifacts are

efficiently suppressed while the pattern is accurately reconstructed. That can be explained by

the fact that the reconstructed image has a sparse gradient magnitude and that spatially local-

ized structures such as dots and lines have a broad footprint in frequency space. The problem

of phase retrieval based on a single phase-contrast image is ill-posed within a set of spatial

frequencies that depends on the acquisition parameters. TV regularization allows to fill-in these

gaps in frequency space by applying the constraint of sparse gradient magnitude. Phase re-

trieval of the Siemens star pattern shows that the structures which are periodic in space are

harder to reconstruct. Their footprint in frequency space is localized and might be completely

irrecoverable from a single phase-contrast image with the given acquisition parameters.

5. Conclusion

Phase retrieval in propagation based X-ray PCI can be improved using iterative TV minimiza-

tion algorithms. Reconstructions based on simulated and experimental data show that phase

retrieval based on TV minimization can significantly outperform the current practice, a decon-

volution approach with L2 regularization. TV minimization can be used with different linear

phase retrieval models including the CTF model, the Mixed model and the phase-attenuation
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Fig. 7. Phase retrieval from experimental data using the dual-CTF model. (a-d) Phase

retrieval of a ’dots and lines’ pattern. (e-h) Phase retrieval of a ’star’ pattern. (a, e) L2-

regularized solution based on 4 images recorded at different propagation distances. (b, f)

TV-regularized solution based on 4 images recorded at different propagation distances. (c,

g) L2-regularized solution based on a single recorded image. (d, h) TV-regularized solution

based on a single recorded image.

duality models. Although the method works best for specimen that adhere to the constraints,

the method also improves the phase reconstruction for specimen that are not exactly sparse in

their gradient magnitude. TV minimization provides an effective regularization instrument for

solving an underdetermined linear systems of equations. Analysis of the Fourier spectrum of

the error of the reconstructed phase images clearly demonstrates that TV minimization allows

partial recovery of the solution within the frequency bands that are undefined by the particular

phase-contrast model or corrupted by noise. That feature of TV minimization allows effective

suppression of the high frequency artifacts in single-distance phase retrieval based on phase-

attenuation duality models and permits more accurate reconstruction of low spatial frequencies

in multi-distance approaches.

TV minimization finds the solution in the form of a TV-regularized least-squares fit and it

does not require the knowledge of the attenuation part of the specimen. A frequency dependent

estimation of the signal-to-noise ratio can be used for each observed image, dramatically im-

proving the accuracy of reconstruction. Simulations show that TV regularization can suppress

errors that occur both due to additive noise and due to non-linearity of the phase propaga-

tion. Experimental data has shown that TV minimization can also significantly improve the

accuracy of phase reconstruction of real specimen that comply with gradient sparsity condition

and imaged under realistic circumstances. These results could allow to decrease the number of

phase-contrast images that are needed for the accurate image reconstruction in some applica-

tions of X-ray PCI. This is particularly important for in situ experiments or to reduce radiation

damage to the specimen.
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