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Phase-retrieval stagnation problems and solutions
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The iterative Fourier-transform algorithm has been demonstrated to be a practical method for reconstructing an
object from the modulus of its Fourier transform (i.e., solving the problem of recovering phase from a single intensity
measurement). In some circumstances the algorithm may stagnate. New methods are described that allow the
algorithm to overcome three different modes of stagnation: those characterized by (1) twin images, (2) stripes, and
(3) truncation of the image by the support constraint. Curious properties of Fourier transforms of images are also
described: the zero reversal for the striped images and the relationship between the zero lines of the real and
imaginary parts of the Fourier transform. A detailed description of the reconstruction method is given to aid those
employing the iterative transform algorithm.

1. INTRODUCTION

In a number of different disciplines, including astronomy,
wave-front sensing, x-ray crystallography, and holography,
one encounters- the phase-retrieval problem: Given the
modulus IF(u, v)I of the Fourier transform

F(u, V) = IF(u, v)Iexp[i4,t(u, v)] = [f(x, y)]

= JJ f(x, y)exp[-i27r(ux + vy)]dxdy (1)

of an object f(x, y), reconstruct the object f(x, y) or, equiva-
lently, reconstruct the Fourier phase 4'(u, v). (Here and
throughout this paper functions represented by upper-case
letters are the Fourier transforms of the functions represent-
ed by the corresponding lower-case letters.) Because the
autocorrelation of the object is given by '-1[IF(u, V) 12], this is

equivalent to reconstructing an object from its autocorrela-
tion. Many solutions to this problem have been pro-
posed.- 12 The method of solution that we believe is most
practical from the point of view of minimum computational
complexity and minimum sensitivity to noise and applicabil-
ity under the most general assumptions is the iterative Fou-
rier-transform algorithm. 1-3

The iterative transform algorithm, a descendant of the
Gerchberg-Saxton algorithm,'3 -15 bounces back and forth
between the object domain, where a priori knowledge about
the object such as nonnegativity or its support is applied (the
support is the set of points over which the object is nonzero),
and the Fourier domain, where the measured Fourier modu-
lus data is applied. The algorithm is reviewed in Section 2.
Although the algorithm works well for many cases of inter-
est, there is no guarantee that it will converge to a solution.

For certain types of objects the iterative algorithm can
stagnate on images that are not fully reconstructed. Stag-
nation of the algorithm means that the output image
changes very little after many further iterations while not at
a solution. A solution is any Fourier-transform pair that
satisfies the measured data and constraints in both domains
with an error metric (defined later) no greater than the
expected root-mean-squared (rms) error of the measured
data. This paper will describe three such conditions of

stagnation and algorithms that we have developed to jump
each of these stagnation hurdles, allowing the algorithm to
move on toward a solution. The three modes of stagnation
are those characterized by (1) simultaneous twin images, .(2)
stripes superimposed upon the image, and (3) unintentional
truncation by the support constraint.

The first stagnation problem results from the fact that an
object f(x, y) and its twin f*(-x, -y) (the complex conjugat-
ed object rotated by 180 deg) have the same Fourier modulus
and, for cases in which the support of the object is symmetric
with respect to this rotation, have the same support. If the
iterative algorithm starts from an initial guess of random
numbers, then there is an equal probability that it will re-
construct either of these two objects. The problem arises
when, during the initial stages of reconstruction, features of
both objects are reconstructed simultaneously. If this situa-
tion continues and features of both objects become equally
strong (in the sense that applying the constraints does not
favor one over the other), then the iterative algorithm may
stagnate. Unable to suppress one twin image and converge
to the other, the algorithm tries to reconstruct both together
and goes nowhere.

Because the Fourier transform of the linear combination
tf(x, y) + (1 - t)f*(-x, -y) does not have modulus IF(u, v)I
except for t = 1 or 0 [assuming that f*((-x, -y) #5 f(x, y)], an
image output by the algorithm in this condition is not a
solution that is consistent with the data. This is recognized
by the algorithm from the fact that the error metrics (de-
fined in Section 2) are nonzero (or, in the presence of noise,
greater than the expected rms error of the data) in this
circumstance. This mode of stagnation often occurs if the
support of the object is centrosymmetric. An example of
twin-image stagnation is displayed in Fig. 2(b) of Ref. 16. A
method for overcoming this stagnation problem is described
in Section 3.

The second stagnation problem is characterized by an
output image that looks much like the true object but with a
pattern of stripes superimposed. The pattern of stripes is
approximately sinusoidal in one direction and constant in
the orthogonal direction. The stripes are usually of low
contrast and therefore are not objectionable, but they occa-
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sionally are of sufficiently high contrast to be disturbing.
They are stronger over the support of the object and weaker
outside the support. This problem frequently occurs to
varying degrees. Examples of its occurrence are Figs. 3(f),
3(i), 4(a), and 4(b) of Ref. 1, Figs. 9(a)-9(d) of Ref. 17, and, to

a lesser extent, Fig. 2(b) of Ref. 16. The error metric is
nonzero when the stripes are present since they extend (al-
though with lower contrast) outside the known support of
the object, and so the striped images are not a solution and
do not represent a uniqueness problem. Methods for over-
coming this mode of stagnation are given in Section 4. Dur-
ing the study of the stripes phenomenon, some interesting
properties of the Fourier transforms were discovered and are
described in Section 4.

The third stagnation problem arises when the support
constraint is used in a manner that is inconsistent with the
partially reconstructed image output by the algorithm. If
the partially reconstructed image is in a position that is
translated relative to the position of the mask array defining
the support constraint, then the object-domain step of the
algorithm will inadvertently tend to truncate (cut off spa-
tially) part of the image. This usually results in stagnation
of the algorithm. A previously reported method of reducing
the likelihood of encountering this problem 3 is described in
Section 6. A new method for overcoming this stagnation
problem is introduced in Section 5.

As an aid to the practical implementation of the iterative
transform algorithm, Section 6 discusses a number of helpful
hints that make it converge more reliably. This description
should help those employing the iterative transform algo-
rithm to achieve greater success and to convert some of the
"black art" of the iterative approach into a more automatic
algorithm. Section 7 contains a summary and conclusions.

2. REVIEW OF THE ITERATIVE TRANSFORM
ALGORITHM

When working with sampled data on a digital computer, one
employs the discrete Fourier transform (DFT)

N-1

F(u) = E f(x)exp(-i2-rux/N) (2)
x=O

and its inverse

N-1

f(x) = N` F(u)exp(i2irux/N), (3)
u=O

which can be computed by using the fast-Fourier-transform
(FFT) method. Here we employ u and x as two-dimensional
vectors, x = (xi, x2), u = (ul, u2), where ul, U2, xi, and x2 = 0,
1, 2, .. , N - 1 (square arrays are assumed for simplicity).
In order to avoid aliasing in the computation of IF(u)12, we
restrict f(x) to be zero for xl > N/2 and for X2 > N/2.
Therefore we are considering only problems for which the
object has finite support. For problems in astronomy f(x) is
a real, nonnegative function, but for other problems f(x) may
be complex valued. This paper assumes the case of real,
nonnegative objects (particularly in the discussion of
stripes), although much of the discussion can also be applied
to the more general case of complex-valued images.

The simplest version of the iterative transform algorithm,
known as the error-reduction algorithm,' follows the philos-

ophy of the Gerchberg-Saxton algorithm. It can be viewed
in a number of different ways: in terms of the method of
successive approximations,' 5 as a form of steepest-descent
gradient search,3 or as a projection onto sets in a Hilbert
space (the Fourier modulus constraint being onto a noncon-
vex set, however, so convergence is not assured).' 9

For the most general problem, the error-reduction algo-
rithm consists of the following four steps (for the kth itera-
tion): (1)Fouriertransformgk(x),anestimateoff(x),yield-
ing Gke(u); (2) make the minimum changes in Gk(u) that
allow it to satisfy the Fourier-domain constraints to form
Gk'(u), an estimate of F(u); (3) inverse Fourier transform
Gk'(u), yielding gk'(X), the corresponding image; and (4)
make the minimum changes in gk'(x) that allow it to satisfy
the object-domain constraints to form gk+l(x), a new esti-
mate of the object. For phase retrieval from a single intensi-
ty measurement, in which the Fourier modulus IF(u)I is the
square root of the intensity, these four steps are

Gk(u) = Gk(u)Iexp[itk(u)] = 9[gk(x)]J

Gh'(u) = F(u)Jexp[i4kk(u)],

gk'(X) = 5(-'[Gk'(U)I,

gk+l(X) = ' , ' x -Y
g0,x) { a/x x y

(4)

(5)

(6)

(7)

where y is the set of points at which gk'(X) violates the object-
domain constraints and where gk, Gk', and ok are estimates of
f, F, and the phase ip of F, respectively. The algorithm is
typically started by using an array of random numbers for
go(x) or for qo(u). Figure 1 shows a block diagram of the
iterative transform algorithm.

For the astronomy problem, the object-domain con-
straints are the object's nonnegativity and a (usually loose)
support constraint. The diameter of the object can be com-
puted since it is just half the diameter of the autocorrelation;
however, the exact support of the object in general cannot be
determined uniquely from the support of the autocorrela-
tion,2 0 and so the support constraint cannot be applied tight-
ly. For other problems, one may not have a nonnegativity
constraint but have a priori knowledge of a tighter support
constraint."

For the problem of phase retrieval from two intensity
measurements, gk'(x) = Igk'(x)Iexp[iOk'(x)] is complex val-
ued, and Step (4) becomes

g9kl(x) = If(x)1exp[i6k+1l(x)] = If(x)Jexp[iOk'(x)], (8)

Measured F
Modulus

Ig, GG = F e i

Fig. 1. Block diagram of the iterative transform algorithm.
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where f(x)l is the known modulus of the complex-valued
object and ok is an estimate of the phase of the object. With
this modulus constraint in the object domain, the error-
reduction algorithm is precisely the Gerchberg-Saxton algo-
rithm. In this paper we consider only the problem of phase
retrieval from a single intensity measurement.

A measure of the convergence of the algorithm to a solu-
tion (a Fourier-transform pair satisfying all the constraints
in both domains) is the squared-error metric in the Fourier
domain,

EF = N2 [IG(u)I - IF(u)I]2 , (9)

U

or in the object domain,

E2= Igk(x)1
2
, (10)

xe y

where y is defined as in Eq. (7). Values of the error metrics
mentioned later are the square roots of these expressions
divided by Xx gh/(x)12, i.e., normalized root-mean-squared

(nrms) errors. It can be shown that the error-reduction
algorithm converges in the sense that the squared error can-
not increase with an increasing number of iterations.3

Although it works well for the problem of phase retrieval
from two intensity measurements, the error-reduction algo-
rithm usually converges slowly for the problem of phase
retrieval from a single intensity measurement being consid-
ered here.3 Several modifications of the iterative transform
algorithm were made and tested, and most of them con-
verged faster than the error-reduction algorithm.3 To date,
the most successful version is the hybrid input-output algo-
rithm, which replaces Step (4) of the algorithm byl 3

= gWx, X it11)
gk+l(X) gk(X) - flgk(x), X E Y

where # is a constant feedback parameter. Values of (
between 0.5 and 1.0 work well. When the hybrid input-
output algorithm is used, gk(x) is no longer an estimate of
f(x); it is, instead, the input function used to drive the output
gk'(x) [which is an estimate of f(x)] to satisfy the constraints.
Hence only the object-domain error E0 is meaningful. 3

When the hybrid input-output algorithm is used, even Eo
does not always correlate with image quality as well as one
would like. For this reason one may prefer to perform a
number of cycles of iterations, in which one cycle consists of,
say, 20 to 50 iterations of the hybrid input-output algorithm
followed by 5 to 10 iterations of the error-reduction algo-
rithm, and note E0 only at the end of a cycle.3

See Ref. 3 for a more complete description of the iterative
algorithm. Additional details concerning the implementa-
tion of the algorithm are given in Section 6. A description of
the algorithm as it applies to a number of different problems
is given in Ref. 18.

3. METHOD FOR OVERCOMING
SIMULTANEOUS TWIN IMAGES

Figure 2(A) shows a real, nonnegative object, f(x), which has
centrosymmetric (square) support, and Fig. 2(B) shows the
conjugate or twin image, f* (-x), which has the same Fourier
modulus, IF(u)I. Since the object is real valued, f*(-x) =

f(-x). Figure 2(C) shows the output image of the iterative
transform algorithm after a few hundred iterations using
both a nonnegativity constraint and a support constraint
consisting of the actual (assumed to be known a priori)
square support of the object. On close inspection of Fig.
2(C), it is seen that features of both f(x) and f*(-x) are
present (to see it, it helps to turn the page upside down).
Often a few additional cycles of iterations are all that is
needed to converge to one or the other of the twin images.
An example of this is the sequence of output images shown in
Figs. 6(c)-6(f) of Ref. 2. However, in the case of Fig. 2(C)
(although with a very large number of further iterations it
may be possible to move away from this output having both
twin images), this output image represents a fairly stable
condition of stagnation. Like the fabled donkey that
starved to death standing between two bales of hay because
it was unable to decide which of the two to eat, the algorithm
is not readily able to move farther from the features of either
of the twin images, and so it is also prevented from moving
closer to one rather than the other.

We have devised a method for getting beyond this condi-
tion: the reduced-area support constraint method, which
consists of the following steps:

(1) Replace the current correct mask defining the sup-
port constraint with a temporary one that (a) covers only a
subset of the correct support including at least one of its
edges and (b) has no 1800 rotational symmetry (is not cen-
trosymmetric).

(2) Perform a few iterations with the temporary mask.
(3) Replace the temporary mask with the correct one

and continue with the iterations.

The reduced-area support constraint method is illustrat-
ed by the example shown in Fig. 3. Figure 3(A) shows the
stagnated output image of Fig. 2(C) used as the input image
to the algorithm. It had an error metric E0 = 0.027. The
correct support is a square. Figure 3(B) shows the reduced-
area temporary support mask used for 10 error-reduction
iterations. Figure 3(C) shows the output image after the 10
iterations. The correct square support constraint was then
reinstated. Figure 3(D) shows the output image after 10
more iterations of the error-reduction algorithm (E =
0.060); Fig. 3(E) shows the output after an additional 60
iterations of the hybrid input-output algorithm plus five
iterations of error reduction (E = 0.027); and Fig. 3(F)
shows the output after an additional three cycles of 40 hy-
brid input-output plus five error-reduction iterations each
(Eo = 0.018).

Fig. 2. Simultaneous twin-images problem. (A) Object f(x). (B)
Twin image f*(-x). (C) Output image from the iterative transform
algorithm that has stagnated with features of both.
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Fig. 3. Reduced-area support constraint method for overcoming
the problem of simultaneous twin images. (A) Stagnated output
image. (B) Mask defining the temporary reduced-area support
constraint. (C) Output image after 10 iterations using temporary
support. (D)-(F) Output image after further iterations using the
correct support.

The reduced-area support constraint tends to favor some
of the features of either f(x) or f* (-x) over the other. Since
it employs an incorrect support constraint, it cannot con-
verge to a solution. However, when the correct support
constraint is reinstated, one of the two twin images may have
a sufficiently large advantage over the other that the algo-
rithm can then converge toward that image.

In the small number of trials in which it was tested, the
reduced-area support constraint method worked in the ma-
jority of the cases tried, but it is by no means guaranteed to
work. If an application of the method does not relieve the
problem of stagnation with both twin images present, then
one might try another application of the method, using a
different reduced-area temporary support constraint mask.
The method as it stands has not yet been optimized as to the
form of the temporary mask or the number or type of itera-
tions that should be performed with the temporary mask.
Nevertheless, the method has been shown to be promising as
a solution to the problem of stagnation with features of both
twin images present.

For the example shown, knowledge that the simultaneous
twin-image mode of stagnation was present was obtained by
visual inspection of the output image. The decision could
also be automated by measuring the degree of symmetry of
the image. An example of such a measure would be the ratio
of the peak of the cross correlation of g'(x) with g'* (-x) to
the peak of the autocorrelation of g'(x).

4. METHODS OF OVERCOMING STRIPES

Several methods of overcoming the problem of stagnation
associated with stripes across the image were attempted
before successful methods were developed. Before we de-
scribe the successful ones we will mention two of the unsuc-
cessful methods because they illustrate features of the prob-
lem.

A. Some Features of Stripes

The error metric, E0 or EF, can be considered as a function of
an N2 -dimensional parameter space spanned by the values

of g(x) or of k(u). Stagnation with stripes can be thought of
as being stuck at a local minimum of the error metric. This
local minimum is not very far from the global [E0 = EF = 0
for g(x) = f(x)] minimum, since the output image usually
closely resembles the original object except for the presence
of the stripes. It was thought that if the input image g(x)
were sufficiently perturbed, then the estimate g'(x) would be
moved out the that local minimum and perhaps fall into the
sought-after global minimum. Experimental tests were
made in which increasing amounts of random noise were
added tog(x), and from these starting points more iterations
were performed. It was found that even with large amounts
of added noise, in very few iterations the output image re-
verted back to the same point of stagnation having the same
stripes as before. These experiments are an indication that
the local minima characterized by stripes are very strong
local minima.

A second unsuccessful method utilized the fact that since
g(x) is real valued, and so 0(-u) = -(u), the sinusoidal
stripes must come from a conjugate pair of localized areas in
the Fourier domain. In addition, because the iterative algo-
rithm forces the output image to have the correct Fourier
modulus at the sampled points, the error must also be a
pure-phase error at the sampled points (see Subsection 4.D
for a discussion of the values between the samples). The
spatial frequency of the stripes was measured to determine
what area of the Fourier domain was in error. Constant
phase terms were added to the Fourier transforms of the
striped images in these areas in a conjugate-symmetric way,
but the stripes remained in the image despite the use of a
variety of constant phases and a variety of sizes of such
areas. This was true despite the fact that, when similar
constant phase errors were added to the Fourier transform
of the object itself, the corresponding image had stripes that
looked very much like the type of stripe that was produced
by the mode of stagnation of the iterative algorithm; these
stripes went away after only one or two iterations, whereas
the stripes produced by the stagnating iterative algorithm
were stable. This experience pointed out the spatial com-
plexity of the phase error that caused the stripes.

B. Voting Method

The key to solving the problem with the stripes is the fact
that if the iterative algorithm is applied multiple times, each
time with a different random starting guess, then the stripes
of the various reconstructions will usually have different
orientations and frequencies. This behavior was noted in
Fig. 9 of Ref. 17. This implies that the errors will occur in
different areas of the Fourier domain. Because the sinusoi-
dal patterns usually become well defined, the areas of the
phase errors are localized reasonably well. These features of
the phase errors suggested a voting method. The idea is
that if two of three Fourier phases are similar but a third is
different, then the dissimilar phase is usually incorrect and
should be discarded.

The voting method consists of the following steps:

(1) Generate three output images with different stripes
by running the iterative transform algorithm three times,
each with different random numbers for the initial input (if
one of the output images is without stripes, then the problem
is, of course, solved).

(2) Cross correlate the second and third images and their
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Fig. 4. Voting method for eliminating stripes in the output image.
(A) The object. (B)-(D) Output images from the iterative trans-
form algorithm, each with different stripes. (E) Output of voting
method. (F) Output image after further iterations.

twins (the images rotated 1800) with the first image to deter-
mine their relative translations (to within a small fraction of
a pixel, which can be accomplished by oversampling the
cross-correlation peak) and orientations.

(3) Fourier transform all three images.
(4) Subtract appropriate linear phase terms from the

phases of the Fourier transforms of the second and third
images and conjugate if the orientation is opposite, to give
the translations and orientations in the image domain that
would cause the three images to be in registration. This
removes unwanted relative linear phase terms in the Fourier
transforms (which could have been accomplished by trans-
lating the second and third images before Fourier transfor-
mation, but fractional-pixel translation is more easily ac-
complished in the Fourier domain).

(5) At each point u in the Fourier domain, compute the
modulus of the difference between each pair of complex
transforms. Average the two complex numbers that are the
closest (discarding the third) and replace the complex value
at that point with this average. Optionally: replace the
modulus of the average with the measured modulus. Alter-
natively, one can take the phase midway between the two
closest phases of the three, if proper attention is paid to
modulo-2ir questions.

(6) Inverse Fourier transform to yield the corresponding
image.

The output of the voting method is used as the input to
further iterations of the iterative transform algorithm. If
the method fails because two of the Fourier transforms have
errors in the same location, then it should be repeated using
different random numbers for the initial inputs to the itera-
tive transform algorithm.

An example of the use of the voting method is shown in
Fig. 4. Figure 4(A) shows a diffraction-limited image of a
satellite that is our object. It was formed from a digitized
picture of a satellite within a 64 X 64 array embedded in a
128 X 128 array. The digitized picture was low-pass filtered
using the incoherent transfer function of a circular aperture
of diameter 62 pixels (the Fourier transform of the object
was multiplied by the autocorrelation of the circular aper-
ture) to produce the object (a diffraction-limited image)
shown in Fig. 4(A). The sidelobes of the impulse response

due to the circular aperture cause the diffraction-limited
image to have a small amount of energy well outside the
support of the object, making the error metric E0 = 0.0026
for this object. Because of this inherent slight inconsistency
between the Fourier modulus data (which corresponds to the
diffraction-limited image) and the support constraint, E0
can never be driven to zero. Figures 4(B), 4(C), and 4(D)
show three output images from the iterative transform algo-
rithm, each generated by using different random numbers
for the starting input. The support constraint used was the
64 X 64 square support. Stripes of different spatial frequen-
cies are clearly seen in each of the images. E for the three
output images is 0.0155, 0.0316, and 0.0038, respectively.
For the output image shown in Fig. 4(D), detection of the
existence of the stripes is more difficult because of the low
value of E0 , but inspection of an overexposed version of it
clearly reveals stripes in the area outside the support of the
object. Figure 4(E) shows the output of the voting method,
for which E0 = 0.0680, and Fig. 4(F) shows the result of
further iterations of the iterative transform algorithm, for
which E0 = 0.0035 and the stripes are successfully removed.

An advantage of the voting method is that one need not
understand the nature of the phase error except that it is
localized in different areas of the Fourier domain for differ-
ent output images. The voting method may therefore be
useful for other types of phase errors in addition to those
characterized by stripes in the image.

C. Patching Method

The patching method, like the voting method, utilizes the
fact that output images coming from different starting in-
puts usually have phase errors localized in different areas of
the Fourier domain. The patching method uses an addi-
tional piece of information: Since the stripes extend beyond
the known support of the object (although they are dimmer
there), they can be isolated and analyzed to determine ap-
proximately what area in the Fourier domain contains the
localized phase errors. With this information one can patch
together a Fourier transform having fewer errors from two
Fourier transforms that have these localized phase errors.

The patching method consists of the following steps:

(1)-(4) Perform Steps (1)-(4) of the voting algorithm
but use only two output images rather than three (if one of
the output images is without stripes, then the problem is, of
course, solved).

(5) For each of the two images, zero out the image in its
support region. This isolates the stripes. Use a smooth
apodization to avoid sidelobe problems in the Fourier do-
main.

(6) Fourier transform the isolated stripes from each im-
age.

(7) Smooth and threshold the Fourier modulus (after
zeroing out a region about the origin to eliminate an unde-
sired dc component) to generate a Fourier mask for each of
the two images. These masks define the areas in the Fourier
domain that have the phase errors.

(8) If the two masks overlap, repeat Step (7) using a
larger threshold value or a smaller smoothing kernel, or redo
Steps (1)-(7) using another random input to start the itera-
tive transform algorithm.

(9) Form a new Fourier transform having the phase of
the Fourier transform of the first image except within its
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Fig. 5. Patching method for eliminating stripes in the output im-
age. (A) The object. (B), (C) Output images from the iterative
transform algorithm, each with different stripes. (D) Output of
patching method.

Fourier mask, where the phase of the Fourier transform of
the second image is substituted.

(10) Inverse Fourier transform to yield the correspond-
ing image.

The output of the patching method is used as the input to
further iterations of the iterative transform algorithm.

An example of the use of the patching method is shown in

Figs. 5-7. Figure 5(A) shows the object, a diffraction-limit-
ed image of a satellite (Eo = 0.0024), and Figs. 5(B) (Eo =
0.0268) and 5(C) (Eo = 0.0503) show two output images from

the iterative transform algorithm, each generated by using
different random numbers for the starting input. Upon
close inspection, stripes of different spatial frequencies can
be seen in each of the output images. Figure 6 shows the

same thing as Fig. 5, only heavily overexposed so that the

stripes over the object and beyond the support of the object
can be seen more readily. Figure 7(A) shows the apodized

mask used in the image domain that, when multiplied with
the striped image, isolates the stripes. The resulting isolat-
ed stripes are shown in Fig. 7(B). (A bias was added in the

display of this result, making the most negative value black,
zero value gray, and the largest value white.) Figure 7(C)

shows the modulus of the Fourier transform of the isolated
stripes, and Fig. 7(D) shows the Fourier mask obtained by
thresholding that Fourier modulus at a value 0.9 times the
peak and smoothing with a 16 X 16 kernel. Figures 7(E)-
7(G) show the same things as Figs. 7(B)-7(D) but for the

second striped image. The output of the patching method is
shown in Figs. 5(D) and 6(D)-the stripes in the two images

were eliminated. Its error metric is Eo = 0.00576, which is

much lower than that for the striped images.
The voting and patching methods are both completely

automated once it is decided that the iterative transform
algorithm is stagnating on an image that has stripes. For
the examples shown, knowledge that the striped-image
mode of stagnation is present was obtained by visual inspec-

tion of the output image, from which it is quite obvious.

This decision could also be automated, for example, by per-

forming for a given single output image Steps (5) and (6) of

the patching method and detecting the presence of especial-
ly bright areas in the Fourier domain.

D. Zero Reversal of the Fourier Transform

Comparison of the Fourier phase of the striped image with
that of the original object yielded interesting insights into
the properties of Fourier transforms.

Figure 8(A) shows the phase of the Fourier transform of
the original object [shown in Fig. 4(A)], and Fig. 8(B) shows

the upsampled phase of the area in Fig. 8(A) outlined by the
white square. Figures 8(C) and 8(D) show the same thing
for the striped image [shown in Fig. 4(B)]. To reduce the

linear phase component, the centroid of the object was
translated to the origin before Fourier transformation and
the striped image was translated to be in register with the
object. The large circular pattern in Fig. 8(A) is due to the

simulation of the effects of diffraction by the circular aper-
ture mentioned earlier. Outside the circle the Fourier
transform has small nonzero values due to round-off error in
the computer. Note that to upsample the phase, one must
compute the phase of an upsampled complex Fourier trans-
form that can in turn be computed by Fourier transforma-
tion of the object (or image) embedded in a larger array
padded with zeros.

Of particular interest is the phase within the four small
squares drawn on Figs. 8(B) and 8(D). In Fig. 8(B), the

phase within the upper-right square "wraps around" one
point, uo, in the Fourier domain. That is, if one starts at a
point u near u0 , as one progresses full circle around uo the
phase slips by 27r rad. It is easily shown that this branch cut
in the phase indicates that the Fourier modulus goes through
a zero at u0.22 Second-order zeros [where F(uo) = 0 has zero

first partial derivatives as well] might not exhibit phase
wraparound, but they are rare compared with first-order
zeros. The existence of zeros in F(u) implies an inherent
2irn (where n is an integer) ambiguity in the phase. Self-

consistent phase unwrapping cannot logically be performed

Fig. 6. Same as Fig. 5 but overexposed to emphasize the stripes,
and full 128 X 128 arrays are shown.
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Fig. 7. Details of the patching method. (A) Mask used to isolate
the stripes of the output images. (B) Stripes isolated from the first
image. (C) Modulus of the Fourier transform of the isolated stripes
from the first image. (D) Fourier mask obtained by thresholding
and smoothing (C). (E)-(G) Same as (B)-(D) but for the second
image.

in such cases. This is the usual case for Fourier transforms
of images. From the presence or absence of phase wrap-
around, it is evident that the Fourier transform goes through
first-order zeros both within the upper-right and lower-left
squares but not within the two squares in the middle of Fig.
8(B). On the other hand, for the case of the striped image
the presence or absence of first-order zeros is just the oppo-
site, as can be seen in Fig. 8(D). Where there are two first-
order zeros for the original object there are not any for the
striped image, and vice versa. That is, the zeros are
''reversed." (This zero reversal should not be confused with
the flipping of complex zeros that is encountered in the
analysis of uniqueness.) Also, by inspecting upsampled ver-
sions of the Fourier transforms we found that the first-order
zeros did not become higher-order zeros (which could cause
the disappearance of the phase wraparound) but truly be-
came nonzero. The difference between having and not hav-
ing first-order zeros is extremely important: with a first-
order zero the phase wraps around and varies very rapidly,
whereas otherwise the phase is relatively smooth. Note that
the transitions from white (7r phase) to dark (-7r phase) in
Fig. 8 are not jumps in phase per se; they are just an artifact
of our ability to compute and display phase only modulo 27r.

If one draws a quadrilateral having vertices at the four
points at which the zeros are reversed, one finds that the
Fourier phase of the striped image differs from that of the
object only (approximately) within the quadrilateral. Note
that the phases outside the quadrilateral are practically the
same in Fig. 8(D) as in Fig. 8(B). That is, the Fourier phase
error for the striped image is localized in the area between
the reversed zeros.

It is not accidental that the reversed zeros come in pairs.
In order for the phase to be consistent in the surrounding
area, a continuous path around the entire area of the local-
ized phase error for the striped image must contain the same
number of first-order zeros as for the Fourier transform of
the object.

Initially it seems contradictory that the zeros of the Fouri-
er transform of the striped output image could be different
from those of the object's Fourier transform since the
stripped image and the object have exactly the same Fourier

modulus at the sampled points. However, this possibility
arises because we are dealing with sampled data in the com-
puter. The zeros only rarely fall on the sampling lattice:
they usually fall some distance between the samples. In the
presence of even the slightest error, including round-off er-
ror due to the finite word length used by the computer, it
becomes difficult to see, even from a heavily oversampled
Fourier modulus, whether it goes through zero or merely
comes close to it. More important, though, is that since the
striped image has energy throughout image space, rather
than being confined to the support of the object, its Fourier
modulus is aliased and differs from the Fourier modulus of
the object for points off the sampling lattice. Hence its
Fourier transform can truly have zeros where the object's
Fourier transform does not, and vice versa, despite their
having the same Fourier modulus at the sampled points.

E. Lines of Real and Imaginary Zeros

Figure 9 shows the lines where the real and imaginary parts
of the Fourier transform of the object (in this case translated
to be in one quadrant of the array) are zero, for the same area
of the Fourier domain shown in Fig. 8(B). We will refer to
these lines as the lines of real zeros and lines of imaginary
zeros. (Note that we are referring here to the zeros in the
two-dimensional real plane, not to the zeros in the complex
plane, which are frequently discussed in regard to the
uniqueness of phase retrieval.) The lines of real zeros were
computed by scanning across each line and each column of
an oversampled version of the real part of the Fourier trans-
form and noting where it changed sign. The lines of imagi-
nary zeros were found in a similar manner. In Fig. 9 the real
zeros are denoted by dark lines and the imaginary zeros by
light lines on a gray background. The complex Fourier
transform goes through a zero wherever both the real part

Fig. 8. Fourier phases. (A) Fourier phase of the object. (B) Up-
samples phase from the area in (A) outlined by the square. (C)
Fourier phase of the striped output image. (D) Upsampled phase
from the area in (C) outlined by the square. The (u, v) zeros of the
complex Fourier transforms are reversed in the areas enclosed in
squares in (B) and (D).
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Fig. 9. Locations of the zeros of the real part (dark lines) and the
imaginary part (white lines) of the Fourier transform of the object.
The object was translated to be causal, and the area of its Fourier
transform shown here is that shown in Fig. 8(B).

and the imaginary part are zero, that is, where the dark lines
and light lines intersect. The entire discussion regarding
the zeros of the Fourier transform of the striped image ver-
sus those of the object can be explained in terms of Fig. 9 and
a similar picture for the striped image case as well as by using
Fig. 8. i

Except for special cases, in Fig. 9 the lines of real zeros and
imaginary zeros cross at single points rather than being tan-
gent to one another over extended intervals; hence the zeros
tend to occur at discrete points.

In addition, notice that the lines of imaginary zeros have a
strong tendency to be halfway between two lines of real
zeros, and vice versa. This can be understood as follows.
Halfway between two neighboring lines of real zeros (think
of them as a single-level topographic map of the real part),
one would expect to find a line of local maxima or minima,
like ridges or gullies, respectively. These ridges (or gullies)
have the property that they are local maxima (minima)
along all directions except along the length of the ridge
(gully). Because the object f(x, y) was translated to the
upper-left quadrant of the plane [i.e., f(x, y) = 0 for x < 0 and
for y <0, making it causal], then F(u, v) satisfies the Hilbert
transform relationships (see Appendix A)

1 f FR(U, v'
F 1(u, v) = -P | R dv' (12)

7r V -v

1 P FR(uV) du', (13)
r u - u

where F = FR + iF1, FR, and F 1 are real valued and where P
denotes the Cauchy principal value. For clarity in this dis-
cussion and in Appendix A, we use (x, y) as the two-dimen-
sional coordinates in object space and (u, v) in Fourier space
rather than the vector notation used elsewhere in this paper.
Because 1/(v' - v) is much larger near v' = v than elsewhere,

one would expect the integrand near v' = v to dominate the

integral of Eq. (12). If the point (u0, vo) is at a ridge (or a
gully) of FR(U, v), then one would expect FR(uo, v') to have a
local maximum (minimum) at v' = vo and be closely approxi-
mated by a quadratic in a small region of v' centered about
vo, since FR(uo, v') is a band-limited function of v' (it is the
Fourier transform of a function of finite extent). Therefore,
since the numerator FR(uo, v') is even about v' = v0 and the
denominator (v' - v) is odd about v' = vo, the integrand is
odd about v' = v and the contribution to the integral from
the neighborhood about vo is near zero. Since that neigh-
borhood is the part of the integral that usually dominates, it
is easily seen why F1 (u, v) tends to be zero near the ridges and
gullies of FR(U, v). The same can be seen from Eq. (13).
The same argument can be used to show why FR(U, v) tends
to be zero near the ridges and gullies of FJ(u, v).

5. METHOD FOR OVERCOMING
TRANSLATED SUPPORT

Because f(x - xo) has the same Fourier modulus as f(x), the
location of the object's support is arbitrary. Frequently the
image partially reconstructed by the algorithm will not be in
perfect registration with the support constraint. Then en-
forcing the support constraint causes an inadvertent trunca-
tion of part of the desired image, causing the algorithm to
stagnate. In addition to the enlarging support method de-
scribed in Section 6, a method of combating this stagnation
problem is to translate dynamically either the support con-
straint or the image.

The amount of translation to be used can be determined as
follows. Compute the total energy of the output image,
gk'(x), (i.e., square and sum) over the area of support con-
straint for the current position of the support constraint and
for the support constraint translated by one or two pixels in
every direction. The support constraint should be translat-
ed to the position for which the energy is maximized. This
can be done occasionally or at every iteration. Alternative-
ly, compute the cross correlation of the support mask with
gk'(x) or with Igk,(x)12 and translate according to the peak of
the cross correlation. This method would be particularly
effective if, just before it were performed, a support con-
straint larger than the usual support were used for a few
iterations; this would give the truncated part of the image a
chance to establish itself.

6. ITERATIVE TRANSFORM ALGORITHM
DETAILS

Some researchers have had varying success in applying the
iterative transform algorithm to phase retrieval from a single
intensity measurement. In this section, a number of addi-
tional aspects of making the iterative algorithm work are
given as an aid to the practical implementation of the algo-
rithm.

Recall from Section 2 that the heart of the algorithm
consists of several cycles of iterations, where one cycle con-
sists of K iterations of the hybrid input-output algorithm
[Eqs. (4)-(6) and (11)] followed by K2 iterations of the error-
reduction algorithm [Eqs. (4)-(7)]. Our experience has
shown that values of K from 20 to 100, of K2 from 5 to 10,

and of the feedback parameter ,B from 0.5 to 1.0 (use, say, 0.7)
work well.
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The DFT's are computed by using the FFT algorithm.
The sampling in the Fourier domain should be fine enough
to ensure that the object domain array size be at least twice
the width and height of the object itself, which is equivalent
to achieving the Nyquist sampling rate for F(u)12.

A straightforward method to evaluate Eq. (5) is to com-
pute the phase fiom the real and imaginary parts of Gk(U),

then combine it with IF(u)I to form Gk'(u), and finally com-
pute the real and imaginary parts of Gk'(u) (which are re-
quired by the FFT) from its modulus and phase. Alterna-
tively, one can employ

Gk'(u) = Gk(u)IF(u)I/[IGk(u)I + ], (14)

where is a very small number used to prevent overflow
problems in the rare event that Gk(M) = 0. (For some com-
puters one can use = 0 with no ill effects.)

The datum that one must have available is an estimate,
|P(u)I, of the modulus, IF(u);, of the Fourier transform of the
object. Although the iterative transform reconstruction al-
gorithm is not hypersensitive to noise, care must be taken to
obtain the best possible estimate of the Fourier modulus,
which may involve considerable compensation of the raw
data,23 depending on how it is collected. In many circum-

stances one can estimate the expected value of the nrms
errors of the data:

[IP(u)I - IF(u)I]2 12

u
Elpl (15)

This is useful for deciding when one is close enough to a
solution.

For the astronomy problem one has a nonnegativity con-
straint in the object domain. Furthermore, one can com-
pute upper bounds on the support of the object in any of
several ways.20 The simplest way is to use a rectangle that is
half the size, in each dimension, of the smallest rectangle
that encloses the autocorrelation, which is given by the in-
verse Fourier transform of IF(u)12. If the actual support of
the object is known a priori, then that should of course be
used. Any other types of a priori information should be
used during the iterations if available. The support con-
straint can in general be defined by a mask that is unity
within the support and zero outside. If the support con-
straint and the set of points are defined as binary mask
arrays, then the computations of Eqs. (7), (10), and (11) can
be performed arithmetically without the use of logic, which
is advantageous when using array processors.

There are many ways to pick an initial input to the algo-
rithm. Although claims have been made that a certain
crude estimation of the phase offers a superior starting
point,24 others have found that random numbers do as well
or better.2 5 Having an initial input close to the true solution
reduces the number of iterations required and might help to
avoid some of the stagnation problems. If another recon-
struction method (Knox-Thompson2 6 for astronomical
speckle interferometry, for example) has yielded an image,
then that image would be the appropriate starting input.
One can either view the other reconstruction method as a
means of supplying starting inputs for the iterative trans-

form algorithm or view the iterative transform algorithm as
a means of "cleaning up" images reconstructed by the other
method. If no other initial estimate for the object is avail-
able, then one should use random numbers in the object
domain or for the Fourier phase, giving an unbiased start to
the algorithm. In the object domain, a convenient starting
guess, go(x), can be formed by filling the support mask with
random numbers. Another method3 is to threshold the au-
tocorrelation (at, say, 0.005 its maximum value), demagnify
that by a factor of 2 in each dimension by discarding every
other row and every other column, and finally fill the result-
ing shape with random numbers. (Note that this shape does
not necessarily contain the support of the object.20 )

The algorithm can be made to converge faster and avoid a
stagnation problem (see Section 5) if the support mask is
chosen to be somewhat smaller than the correct support for
the first cycle or two of iterations. Since it is the incorrect
support, the smaller support mask is inconsistent with Fou-
rier modulus, and stagnation will eventually occur when it is
used. Nevertheless, the smaller support mask helps to force
most the energy of the output, g'(x), into a confined region in
fewer iterations. After this has happened the support mask
should be enlarged to the correct support constraint for the
object. This enlargement of the mask could be done in more
than one step if desired. When the algorithm has nearly
finished reconstructing the object, it is often beneficial to
make the support mask even larger than the correct support
for the object. This helps to ensure that no parts of the
object are being inadvertently truncated by the support con-
straint. The progression from a smaller support mask to a
large one also helps to avoid having edges of the output
image biased toward falling right at the edges of the support
mask. Use of the method described in Section 5 does this as
well and is recommended for use whenever truncation is
suspected (or, to be safe, at the end of each cycle or even after
every iteration).

As the iterations progress, the nrms error in the object
domain,

(16)

[compare with Eq. (10)], should be computed. The nrms
error is a measure of how close the current Fourier transform
pair is to a solution. Note that the denominator of the above
error metric is a constant that need be computed only once.
Note also that at the end of a cycle E0 EF, the nrms error in
the Fourier domain.3 When E0 goes significantly below Elpi
of Eq. (15), one has a solution consistent with the measured
data and constraints to within the limits of the error in the
given data. It is unlikely that E0 will ever go to zero because
noise in IF(U)I almost always results in a Fourier modulus
that is inconsistent with either the nonnegativity constraint
or any reasonable support constraint or both. This can be
seen from the fact that an autocorrelation computed from a
noisy I(u) will ordinarily have negative values at some
points (which could only arise from an object having nega-
tive values) and will ordinarily have (possibly small) nonzero
values far beyond the extent of the true autocorrelation of
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the object. This problem can be alleviated by setting equal
to zero the values of the autocorrelation that are negative or
lie beyond some assumed autocorrelation support; but even
then noise remains and there will be no nonnegative image
that is completely consistent with the Fourier modulus esti-
mate. On the other hand, in the presence of noise there will
ordinarily exist an output image g'(x) that is in better agree-
ment with the noisy data than the true image is. Conse-
quently, for the case of noisy data, a "solution" is not found
until E0 is decreased to a level somewhat less than Elpl. An
exception to this is for the very-low-noise case in which the
dominant error is sidelobe energy that spills outside the
object's support due to diffraction effects, as for the exam-
ples shown in Section 4.

If all goes well, the iterative transform algorithm will con-
verge to a solution after a small number of cycles of itera-

tions. If there are multiple solutions, the iterative trans-
form algorithm is capable of finding any one of them, de-
pending on the starting input.27 28 Confidence that the
solution is the one and only true solution can be increased by

performing two or more trials of the algorithm, each time
using different random numbers for the initial input.

In some cases the iterative transform algorithm will stag-
nate before reaching a solution. The algorithm can be con-

sidered to have stagnated if the error E0 has failed to de-

crease after three additional cycles. While some objects can
be reconstructed very easily, requiring only one or two cy-
cles, other more difficult objects can require many cycles

comprising well over a thousand iterations. Consequently,
one should not jump too readily to the conclusion that the
algorithm has stagnated. It often occurs that very slow
progress is made for many iterations, but then the algorithm
suddenly finds its way and rapid progress is made in just a
few iterations.

If the iterative transform algorithm does stagnate, then
one can start over with a different set of random numbers for
the initial input; alternatively, several methods for getting
out of the stagnated condition are possible. Sometimes
changing the support constraint (enlarging it or translating
it as described in Section 5) is what is required. The need
for doing this can be established by following the steps sug-

gested at the end of Section 5. Altering the feedback param-
eter, A, sometimes helps. Temporarily using a larger value
for A, say, 1.2, causes larger changes to be made and may

move the output away from the condition of stagnation;
however, this should not be carried on for too many itera-
tions because it causes the algorithm to become unstable. If
the support mask is centrosymmetric or nearly so, then the
simultaneous twin images can be present. This condition
can be detected visually (comparing the output image with a
second version of it rotated 180° helps) or by the method
suggested at the end of Section 3. If this condition is sus-
pected, then use the method of overcoming the problem of
simultaneous twin images described in Section 3. Even if
the twin-image problem is not present, the method might
move the output image out of the condition of stagnation.
The mode of stagnation characterized by stripes is easily
detected by looking for stripes outside the support region in
a picture of gk'(x) that is heavily overexposed; alternatively
one could use the method described at the end of Subsection
4.C. If stripes are present, the iterations should be contin-
ued until stagnation occurs, because (1) the stripes may go

away naturally and (2) further iterations cause the stripes to
become more nearly sinusoidal, which is equivalent to the
phase errors' being confined to a smaller, more distinct area
of the Fourier domain, which makes them easier to overcome
by the methods described in Section 4.

Other tricks may be helpful or necessary for certain spe-
cial cases. For example, if the object consists of some inter-
esting details superimposed on a diffuse background, then
the defogging method can make the reconstruction of the
object easier.24

7. SUMMARY AND CONCLUSIONS

In many cases of interest, the problem of phase retrieval
from a single intensity measurement can be solved by a
straightforward application of a few cycles of the iterative
transform algorithm. For some cases, the algorithm stag-
nates before reaching a solution that is consistent with the
data and constraints. Three different modes or conditions
of stagnation have been identified: simultaneous twin im-
ages, stripes superimposed upon the image, and uninten-
tional truncation by the support constraint. Methods for
overcoming each of these modes of stagnation have been
devised and have been demonstrated to be effective for par-
ticular examples. The use of these methods in conjunction
with the iterative transform algorithm greatly enlarges the
class of objects that can be reconstructed successfully. This
has also helped to provide further empirical evidence of the
uniqueness of the solution for two-dimensional objects.
Some previous doubts of uniqueness, tied to an inability of
the algorithm to converge in some instances, have been re-
moved.28 In particular, we have definitively shown that the
striped images represent a local minimum rather than a true
ambiguity.

In the course of investigating the stripes phenomenon,
insight was gained into some of the properties of the Fourier
transform of images. The Fourier transform of a striped
image has a phase that differs from that of the Fourier
transform of the object in a fairly well-defined region that is
determined by the locations of zeros of the Fourier trans-
form that are reversed, i.e., where first-order zeros appear or
disappear. First-order zeros are common in the Fourier
transforms of images. Attempts at phase unwrapping, as
required by the Knox-Thompson method, utilizing multiple
paths of integration will fail unless proper attention is paid
to the branch cuts associated with first-order zeros. If an
image is causal, then the lines of real and imaginary zeros of
its Fourier transform follow along the ridges and gullies of
the imaginary part and the real part, respectively, which can
be understood from the Hilbert transform relationship.

APPENDIX A: HILBERT TRANSFORMS FOR

TWO DIMENSIONS

Let f(x, y) be zero for x < 0 and for y < 0 (let all integrations
be understood to be from -- to +-).

F(u, V) = FR(u, v) + iF(u, v) (Al)

= JJ f(x, y)exp[-i2r(ux + vy)]dxdy
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= [ f(x, y)exp(-i27rux)dx]exp(-i2rvy)dy

= J Au, y)exp(-i27rvy)dy, (A2)

where J(u, y) is zero for y < 0. Fixing u to be a constant for
the moment, F(u, v) is the one-dimensional Fourier trans-
form of f(u, y), which is zero for y < 0 (i.e., it is causal in y), in
which case we have the Hilbert transform relationships 29

F 1(u, v) 1 P FR(U/ dv' (A3)
7r V -V

and

FR(U, V) = P--P. | 1 dv', (A4)

where P denotes the Cauchy principal value. This is true for
all values of (u, v). By a similar argument we have

Fl(u, v) P FRW1 V) du' (A5)
7r U - U

and

FR(U, V) = P-- | u/ du'. (A6)
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