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ABSTRACT

The theory of partial coherence has a long and storied history in classical statistical optics. The vast majority
of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have
phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear
interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing
quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons,
i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence
tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been
mimicked with classical-state light, questioning wherein lies the classical-quantum boundary. We have shown,
for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive
partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial
coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically
and experimentally, that classical phase-sensitive light produces ghost images most closely mimicking those
obtained with biphotons, and we derive the spatial resolution, image contrast, and signal-to-noise ratio of a
standoff-sensing ghost imager, taking into account target-induced speckle.

Keywords: optical imaging, quantum imaging, coherence theory, ghost imaging, phase-sensitive coherence

1. INTRODUCTION

Central to modern-optics theory is the concept of optical coherence. Optical fields that have finite spatial extent
and finite radiation bandwidth around a center frequency are superpositions of monochromatic plane waves. The
degree of correlation between these plane-wave components defines the field’s spatial and temporal coherence
properties. As an example, consider a paraxially-propagating optical field. Its transverse coherence length is
the minimum spatial separation between two observation points on a transverse plane that yields uncorrelated
fluctuations. A spatially coherent beam is one whose transverse coherence length equals its cross-section diameter.
At the opposite extreme, we have a spatially incoherent beam, whose transverse coherence length is only a fraction
of the center wavelength. Similar classifications exist for the other dimensions of an optical field as well, such
as its coherence in time and polarization. Often times, however, optical fields generated by real-world sources
do not exhibit the two extremes of perfect coherence or incoherence, but rather have an intermediate degree of
coherence. These fields are said to be partially coherent, and the study of their statistical properties constitutes
the theory of partial coherence.

Although a detailed account of the history of partial-coherence theory is beyond the scope of this paper,
we would be remiss to not recount some of the pioneering efforts in this field. The earliest observation and
characterization efforts for spatial and temporal coherence date to the mid-19th century.1 However, Van Cittert
and independently Zernike are credited with the earliest quantitative treatments of correlations between optical
fields observed at two observation points separated either in space or time.1 The well-known Van Cittert-Zernike
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theorem—which we make use of in this paper—for the propagation of partial coherence through free space is
named in reference to these pioneering early results. Nonetheless, it is not an exaggeration to say that the rigorous
theory of partial coherence is founded in large part by seminal researchers such as M. Born, E. Wolf, L. Mandel,
and J. W. Goodman.1–3 Statistical optics, which is a classical theory of light that models the fluctuations in
optical fields as random and studies their—second-order and higher—moments, is utilized across virtually all
optics disciplines, including optical imaging, spectroscopy, metrology, remote-sensing, and ranging etc.3, 4

In this paper we will limit our scope to the complex baseband envelope of a quasimonochromatic and
paraxially-propagating partially-coherent field. The complex baseband envelope has two types of second-order
correlation functions, referred to as the phase-insensitive correlation function and the phase-sensitive correla-
tion function.5 In order to fully describe the second-order coherence behavior of the optical field, both of these
correlations must be specified. Yet, traditional optical coherence theory—for both classical and quantum fields—
has been developed almost exclusively for the phase-insensitive correlation function. This is because commonly
encountered sources (e.g, sunlight, light-emitting diodes, lasers) do not have phase-sensitive correlations.2, 3 How-
ever, with advances in nonlinear and quantum optics, we are presently able to generate optical fields that have
nonzero phase-sensitive correlations. The best known example for such fields are the squeezed states of light.6

In addition, the biphoton state,7 which has received a great deal of recent attention owing to its entanglement
properties, is the low-brightness and low-flux limit of the signal and idler fields generated by spontaneous para-
metric downconversion.8 Each of these fields possesses a nonzero phase-insensitive autocorrelation, but, more
importantly, they have a phase-sensitive cross correlation that is stronger than that permitted by classical sta-
tistical optics. Note that classical fields can also have non-zero phase-sensitive correlation. Thus, understanding
phase-sensitive coherence and its properties is central to developing a unified view of second-order coherence
for classical and quantum fields. Here we will build on our earlier development of this theory,9 and study the
paraxial propagation of phase-sensitive coherence, contrasting it to that of the well-known propagation behavior
of phase-insensitive coherence.

The phase-sensitive coherence theory we present here will then be utilized in studying ghost imaging, a
transverse imaging modality that has been receiving considerable and increasing attention of late owing to its
novel physical characteristics and its potential applications to remote sensing. Ghost imaging exploits the cross
correlation between the photocurrents obtained from illumination of two spatially-separated photodetectors by a
pair of highly-correlated, partially-coherent optical beams. One beam interrogates a target (or sample) and then
illuminates a single-pixel (bucket) detector that provides no spatial resolution. The other beam does not interact
with the target, but it impinges on a scanning pinhole detector or a high-resolution camera, hence affording a
multi-pixel output. The term “ghost imaging” refers to the fact that neither photocurrent alone yields a target
image, but cross-correlating the two photocurrents does produce an image.

Although phase-sensitive coherence has thus far been demonstrated in nonclassical sources (e.g., squeezed
states and the biphoton state), classical beams too can possess this correlation. The final section of our paper
is devoted to presenting a recent experimental demonstration of ghost imaging using classical phase-sensitive
Gaussian-state light. This experiment validates the key predictions of phase-sensitive coherence theory in ghost
imaging: (1) that Gaussian-state sources with phase-sensitive coherence yield an inverted ghost image in the far
field; and (2) that its spatial resolution equals that of the ghost image formed using a phase-insensitive Gaussian-
state source whose autocorrelation function matches that of the phase-sensitive source. This experiment also
identifies some practical issues with utilizing phase-sensitive coherence that were not included in our theoretical
treatment.

Throughout this paper we shall use quantum-mechanical notation. It is important to keep in mind, however,
that when the quantum field operators are in coherent states or statistical mixtures thereof, the quantitative
predictions derived using this theory coincide precisely with those derived using classical statistical optics and
the semiclassical—shot-noise—theory of photodetection.5, 10 Therefore, we refer to observations that have a
quantitative explanation using the latter theory as classical outcomes. If, on the other hand, the observation
can only be explained with the quantum theory of light, we refer to it as a quantum or nonclassical outcome.

Our paper is organized as follows. In Section 2 we begin with the fundamentals of quasimonochromatic,
paraxial propagation of optical beams having phase-sensitive and phase-insensitive partial coherence. We utilize
Gaussian-Schell model second-order correlation functions to delineate the differences between the free-space
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propagation of these two types of coherence. In Section 3, we then apply this theory to study ghost imaging
in a standoff-sensing scenario, emphasizing the role of target-induced speckle. In Section 4 we present a ghost
imaging experiment using classical phase-sensitive light, obtained by imposing complex-conjugate modulations
in the signal- and reference-arm beams of ghost imaging. In Section 5, we conclude by revisiting some of the key
points that we have made.

2. PHASE-SENSITIVE COHERENCE THEORY

Let Êz(ρ, t)e
−iω0t denote a +z-propagating, scalar, positive-frequency, electric-field operator with center fre-

quency ω0, where ρ denotes the transverse spatial coordinate on the z plane, and t denotes time. Here, Êz is the
√

photons/m2s-units baseband field operator with commutators [Êz(ρ1, t1), Ê
†
z(ρ2, t2)] = δ(ρ1 − ρ2)δ(t1 − t2)

and [Êz(ρ1, t1), Êz(ρ2, t2)] = 0. Throughout this paper we shall assume that Êz(ρ, t) is is in a zero-mean Gaus-
sian state, such that it is fully specified by its phase-insensitive and phase-sensitive autocorrelation functions,
〈Ê†

z(ρ1, t1)Êz(ρ2, t2)〉 and 〈Êz(ρ1, t1)Êz(ρ2, t2)〉 respectively. Note that a nonzero phase-sensitive correlation
function implies that the Hermitian passband field operator Ê(ρ, t) ≡ Êz(ρ, t)e

−iω0t + Ê†
z(ρ, t)e

iω0t, associated
with Êz(ρ, t), has a nonstationary phase-sensitive correlation function.∗ Because most natural-occurring optical
fields are stationary, they do not exhibit phase-sensitive coherence. However, a broad class of nonstationary
optical fields has been generated. The prototypical example of phase-sensitive light is the squeezed state, whose
passband, Ê , properties are nonstationary even when its complex-envelope, Êz , behavior is stationary.

5

In order to highlight the distinctions between phase-insensitive and phase-sensitive coherence, we shall adopt
the simplification that the correlation functions are cross-spectrally pure and have Gaussian-Schell form.2, 3 First,
let the phase-insensitive correlation function be given by

〈Ê†(ρ1, t1)Ê(ρ2, t2)〉 =
2P

πa20
e−(|ρ1|

2+|ρ2|
2)/a2

0
−|ρ2−ρ1|

2/2ρ2

0e−(t2−t1)
2/2T 2

0 , (1)

where P denotes the mean photon flux, a0 is the beam radius defined as the radius at which the photon
irradiance profile is attenuated by e−2 relative to the peak beam irradiance, ρ0 is the coherence radius, and
T0 is the coherence time. We assume that the field has low spatial coherence, i.e., ρ0 ≪ a0. So, the phase-
insensitive fluctuations observed at the space-time coordinates (ρ1, t1) and (ρ2, t2) are correlated when ρ1 and
ρ2 are separated by a distance smaller than the coherence length ρ0, while both are within the beam radius a0,
and when t1 and t2 are separated by less than the coherence time T0. If we write the baseband field operator in
terms of its monochromatic plane-wave components,

Ê(ρ, t) =

∫

R2

dk

2π

∫ ∞

−∞

dΩ√
2π

Â(k,Ω)eik·ρ−iΩt. (2)

where k is transverse spatial-frequency vector and Ω is the temporal frequency, we obtain

〈Â†(k1,Ω1)Â(k2,Ω2)〉 =
PT0ρ

2
0√

2π
e−a2

0
|kd|

2/8−ρ2

0
|ks|

2/2e−T 2

0
Ω2

2
/2δ(Ω2 − Ω1) , (3)

where ks ≡ (k1 +k2)/2 and kd ≡ k2 −k1, and we have used the low-coherence condition to write 1/a20+1/ρ20 ≈
1/ρ20. As shown in Fig. 1(a), this correlation function implies that the angular extent of the source radiation
(found by setting kd = 0) is 2λ0/πρ0, and that the angular extent of the source coherence (found by setting
ks = 0), is 2λ0/πa0, where λ0 ≡ 2πc/ω0 is the source’s center wavelength. Furthermore, the source bandwidth is
given by 2/T0 and distinct-frequency plane-wave components within this bandwidth are uncorrelated. In words,
phase-insensitive coherence is both monochromatic and quasimonoplanatic. The former feature is evident from
the delta-function temporal-frequency term in Eq. (3). To better understand the latter, consider the plane-wave
components at a given detuning, Ω. They only have significant excitation within the source’s radiation cone,
which has full cone angle 2λ0/πρ0. More importantly, these plane-wave components are only correlated with

∗A phase-insensitive or phase-sensitive correlation function is stationary if it depends solely on the time difference
t2 − t1. Otherwise it is nonstationary.
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Figure 1. The coherence behavior and the angular spectrum of the source-plane (z = 0) baseband field operator Ê(ρ, t)
with phase-insensitive correlation function given by Eq. (1). (a) The average z = L plane irradiance is only appreciable
within a region of diameter 2λ0L/πρ0 (red) around the optical axis. The phase-insensitive fluctuations seen at two
transverse points that are symmetrically displaced from the optical axis are correlated only when their separation is less
than 2λ0L/πa0 (blue). (b) Three plane-wave components are shown as arrows with different colors (and line styles). The
plane waves (of the same frequency) with which they have phase-insensitive correlation lie within the shaded cones of the
same color (and same line-style borders). Because phase-insensitive coherence is quasimonoplanatic, the coherence cone
for each plane wave is centered on its own propagation direction.

neighboring frequency-Ω plane-wave components that lie within the source’s coherence cone, whose cone angle,
2λ0/πa0, is much smaller than that of the radiation cone. This spatial-coherence behavior of the phase-insensitive
correlation is illustrated in Fig. 1(b).

The phase-insensitive coherence behavior that we have just reviewed is well known,2, 3 but it will help us de-
velop an analogous interpretation for phase-sensitive coherence behavior, which has received much less attention.
Suppose that the phase-sensitive correlation function is given by the same Gaussian-Schell model,

〈Ê(ρ1, t1)Ê(ρ2, t2)〉 =
2Ps

πa20
e−(|ρ1|

2+|ρ2|
2)/a2

0
−|ρ2−ρ1|

2/2ρ2

0e−(t2−t1)
2/2T 2

0 , (4)

where Ps ≡
∫

R2 dρ 〈Ê2(ρ, t)〉 is the mean-squared phase-sensitive flux, and a0, ρ0 ≪ a0, and T0 are now,
respectively, the radius of mean-squared phase-sensitive excitation, the coherence length, and the coherence time
of that excitation. Consequently, Ê(ρ1, t1) and Ê(ρ2, t2) have appreciable phase-sensitive correlation when ρ1

and ρ2 are both within the phase-sensitive excitation radius a0, have spatial separation less than the coherence
length ρ0, and temporal separation less than the coherence time T0. Except for this source-plane description
involving phase-sensitive correlation, rather than phase-insensitive correlation, it is unchanged from what we
saw in conjunction with Eq. (1). The angular spectrum associated with the phase-sensitive correlation, however,
reveals a rather different and quite interesting picture, as we will now show.

Applying the inverse transform associated with Eq. (2) to Eq. (4) we obtain

〈Â(k1,Ω1)Â(k2,Ω2)〉 =
PsT0ρ

2
0√

2π
e−a2

0
|ks|

2/2e−ρ2

0
|kd|

2/8e−T 2

0
Ω2

2
/2δ(Ω2 +Ω1) , (5)

where ks ≡ (k1+k2)/2 and kd ≡ k2−k1 as before, and we have again used the low-coherence 1/a20+1/ρ20 ≈ 1/ρ20
approximation. Thus, as illustrated in Fig. 2(a), the angular extent of phase-sensitive excitation (found by setting
kd = 0) is 2λ0/πa0, and the angular extent of the phase-sensitive correlation (found by setting ks = 0), is given
by 2λ0/πρ0. The source bandwidth is 2/T0 and plane-wave pairs with antipodal detunings within this bandwidth
have nonzero phase-sensitive cross correlation, but all other frequency pairs are uncorrelated. It follows that
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Figure 2. The coherence behavior and the angular spectrum of the source-plane (z = 0) baseband field operator Ê(ρ, t)
with the phase-sensitive correlation function given in Eq. (4). (a) The mean-square phase-sensitive fluctuations on the
z = L plane are appreciable within the diameter 2λ0L/πa0 (red). The phase-sensitive fluctuations seen at two transverse
points displaced in the opposite direction by an equal amount are correlated as long as the distance between the two
points is less than 2λ0L/πρ0 (blue). (b) Three plane-wave components are shown as three arrows with different colors
(and line styles). The plane waves with which they have phase-sensitive correlation are shown as shaded cones having
the same color (and same line-style borders). Because phase-sensitive coherence is quasibiplanatic, the coherence cone for
each plane-wave component is centered around its mirror image about the optical axis.

phase-sensitive light is bichromatic and quasibiplanatic. The former feature is due to the delta-function temporal-
frequency term in Eq. (5). To better appreciate the latter, consider the plane-wave components at ±(k,Ω). Each
has appreciable phase-sensitive flux only when θ ≡ λ0|k|/2π lies within the source phase-sensitive radiation cone,
which has full cone angle 2λ0/πρ0. More importantly, the (k,Ω) plane-wave component only has phase-sensitive
cross correlation with the frequency −Ω plane-wave components whose spatial frequencies lie within its coherence
cone, which is centered at −θ in angle (−k in spatial frequency) and has cone angle 2λ0/πa0. This spatial
coherence structure of phase-sensitive correlation is illustrated in Fig. 2(b). Thus, although we have started with
identical correlation functions for the two coherence classes, we have found that the physics implied by the two
classes of coherence is notably different.

Bichromatic and biplanatic light-wave behavior is observed in signal and idler beams generated by continuous-
wave (cw), frequency-degenerate spontaneous parametric downconversion (SPDC), which is the predominant non-
classical source for ghost-imaging experiments. SPDC with an iz-propagating, plane-wave, cw pump is a photon-
fission process in which a single pump photon at frequency ωP and with wave-vector kpiz (where iz · iz = 1) splits
into a signal-idler pair whose frequencies, ωS and ωI , obey ωS +ωI = ωP due to energy conservation, and whose
wave vectors, kS and kI , satisfy kS +kI = kP iz as a result of momentum conservation. Consequently, the signal
and idler photon pairs have bichromatic frequencies about ωP /2 and their transverse wave vectors are antipodal,
resulting in biplanatic propagation. This is why the perturbative derivation of the output state of SPDC results
in a biphoton wave function with the same propagation characteristics as the phase-sensitive correlation func-
tion.11 A field-operator derivation of the signal and idler outputs from frequency-degenerate SPDC is obtained
by quantizing the coupled-mode equations for the signal and idler as they propagate through the χ(2) nonlinear
crystal pumped with a nondepleting cw plane-wave pump.12, 13 This yields a Bogoliubov-type transformation of
the signal and idler field operators at the input facet of the crystal to those at the output facet.10 When the
signal and idler inputs are in their vacuum states, the output field operators are in a zero-mean Gaussian state,
with equal phase-insensitive autocorrelation functions, zero phase-insensitive cross correlation, and a nonzero
phase-sensitive cross correlation that is stronger than what is attainable with any classical two-field Gaussian
state having the same phase-insensitive autocorrelation functions.14 When the Gaussian-Schell model in Eq. (1)

is assumed for the phase-insensitive autocorrelation functions 〈Ê†
S(ρ1, t1)ÊS(ρ2, t2)〉 and 〈Ê†

I (ρ1, t1)ÊI(ρ2, t2)〉,
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this stronger-than-classical phase-sensitive cross correlation is equal to10

〈ÊS(ρ1, t1)ÊI(ρ2, t2)〉

=
2P

πa20
e−(|ρ1|

2+|ρ2|
2)/a2

0

[

i e−|ρ2−ρ1|
2/2ρ2

0e−(t2−t1)
2/2T 2

0 + (2/π)1/4

√

a20
PT0ρ20

e−|ρ2−ρ1|
2/ρ2

0e−(t2−t1)
2/T 2

0

]

. (6)

When the source brightness is high, i.e., I ≡ PT0ρ
2
0/a

2
0 ≫ 1, the first term in the square brackets dominates the

latter term, and the maximum quantum-mechanically permissible phase-sensitive cross-correlation magnitude
approaches the limit set by classical physics. However, when I ≪ 1, the second term is much larger than the
first, resulting in a much stronger phase-sensitive cross correlation than permitted in a classical state. If the flux is
then low enough that there is on average much less than one photon-pair emitted during a measurement interval,
then the state of these SPDC outputs is well approximated by a dominant vacuum component plus a weak pair
of entangled photons, viz., the biphoton state.12, 14 Therefore, as we shall show shortly, those characteristics
of SPDC ghost imaging that are a consequence of the phase-sensitive nature of the cross correlation between
the two beams are precisely those that can be mimicked by classical-state phase-sensitive light, whereas, the
characteristics that stem from the stronger-than-classical nature of this cross correlation are intrinsically quantum
effects.10

We conclude our treatment of coherence theory by describing the far-field, quasimonochromatic, paraxial
propagation of the phase-insensitive and phase-sensitive correlation functions. The far-field, phase-insensitive
correlation function is readily obtained from the source’s phase-insensitive angular spectrum with the simple
substitution of 2πρ/λ0L for k. We find that the far-field phase-insensitive correlation function, stemming from
the Gaussian-Schell near-field correlation function of Eq. (1), results in the far-field intensity radius being aL =
λ0L/πρ0 and the coherence radius being ρL = λ0L/πa0. This behavior is well known from the Van Cittert-
Zernike theorem for far-field phase-insensitive coherence propagation.3 Phase-sensitive coherence propagates
in a distinctly different manner. In this case we find that λ0L/πa0 is the far-field mean-square radius and
λ0L/πρ0 is the far-field coherence radius for the phase-sensitive correlation. Unlike the far-field phase-insensitive
case, whose correlation peaks for two points with equal transverse-plane coordinates, the far-field phase-sensitive
correlation is highest for two points that are symmetrically disposed about the origin on the transverse plane,9–11

as expected from the quasibiplanatic nature of the phase-sensitive correlation.

3. STANDOFF GHOST IMAGING

Ghost imaging is a transverse imaging modality that has been receiving significant attention of late, owing to
its novel physics and its potential use in remote sensing. Because the success of standoff ghost imaging hinges
on reproducing the target’s image from the diffusely back-scattered illumination that is sensed by the bucket
detector, we will concentrate on the reflective ghost-imaging geometry shown in Fig. 3, in which the propagation
distance L is well into the far field with respect to the source’s coherence statistics.3, 9 Here, an image is formed by
empirically evaluating the cross correlation between the photocurrents generated by the two spatially-separated
photodetectors, which are illuminated by two highly-correlated, partially-coherent, and quasimonochromatic
optical beams, both having center frequency ω0. The signal (S) beam, whose baseband envelope we denote as
ÊS(ρ, t), propagates Lm from the source to the target through clear-air atmospheric turbulence, diffusely scatters
from the surface, then propagates Lm back before impinging on the single-pixel (i.e., bucket) photodetector.
On the other hand, the reference (R) beam, whose baseband field operator is ÊR(ρ, t), propagates through
Lm of atmospheric turbulence in a different direction than the signal beam and illuminates the multi-pixel
reference detector. The photocurrents from these photodetectors are cross correlated—by time averaging their
product over a measurement interval spanning many source-field coherence times—to determine the target’s
average irradiance-reflection profile. Fundamentally, the physics that enables the formation of this image is the
correlation between the far-field speckle patterns cast by the signal and reference beams. The reference arm’s
speckle pattern is resolved by the multi-pixel camera, and each measured speckle is utilized—via the cross-
correlation operation—to estimate the fraction of the energy that has scattered back from the corresponding
speckle that illuminated the target.
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Figure 3. Configuration for lensless ghost imaging with quantum and classical sources. In both cases the optical source
emits spatially-incoherent light that is separated into signal and reference beams by a beam splitter. For the quantum
case, the source is a type-II phase-matched, frequency-degenerate, continuous-wave, parametric downconverter, and a
polarizing beam splitter is used. For the classical case, the source is pseudothermal, i.e., laser light passed through a
rotating ground-glass diffuser, and the beam splitter is 50-50 and nonpolarizing. The reference field travels Lm to the
CCD camera, while the signal field travels Lm to the target, and the reflected light travels Lm to the bucket detector.
The image is then constructed in a continuous-time correlator.

In this section we consider two sources—one quantum and one classical—that have been previously utilized
in ghost imaging experiments. For the quantum case, we investigate the image obtained using an SPDC source,
whose orthogonally-polarized signal and idler output fields are split into the two arms of the ghost imager via a
polarizing beam splitter. As we have shown in the previous section, this results in signal and reference fields that
are in a zero-mean Gaussian state with the maximum phase-sensitive cross correlation permitted by quantum
mechanics. In the low-brightness, low-flux operating regime, the SPDC source’s output over a measurement
interval can be taken to be a predominant vacuum component plus a biphoton. At high brightness, however, the
SPDC source has a phase-sensitive cross correlation that approaches the limit set by classical physics. For the
classical case, we consider a pseudothermal source realized by passing a cw laser beam through a rotating ground-
glass diffuser, to render it spatially incoherent, followed by a 50-50 beam splitter to produce signal and reference
fields with the maximum phase-insensitive cross correlation permitted by classical (and quantum) physics at any
source brightness.

3.1 Propagation and Image Formation

There are three length-L optical propagation paths in Fig. 3: the reference path (R) from the source to the
reference detector, the signal path (S) from the source to the target, and the target-return path (T ) from the
target to the bucket detector. We assume that clear-air atmospheric turbulence is present along all three paths,
that they are statistically independent,† and that the paths are near-horizontal such that the refractive-index
structure constant profiles, C2

n,m for m ∈ {R,S, T }, are constant.

We model the propagation along path m ∈ {R,S, T } with the extended Huygens-Fresnel principle

Ê′
m(ρ′, t) =

∫

dρ Êm(ρ, t)eψm(ρ′,ρ) k0e
ik0(L+|ρ′−ρ|2/2L)

i2πL
, (7)

where k0 ≡ ω0/c, and we have suppressed the time delays.‡ The turbulence-induced log-amplitude and phase

†The signal and the reference beams propagate through independent turbulence if their angular separation is greater
than the isoplanatic angle.15 The turbulence along the signal and target-return paths will be statistically independent
if the one-way propagation duration exceeds the turbulence coherence time, or if the source and detector have angular
separation relative to the target that exceeds the isoplanatic angle.

‡That no additional noise operator is needed to ensure that proper field commutators are preserved follows from the
normal-mode decomposition of propagation through turbulence.16
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fluctuations that are incurred along path m, from ρ to ρ′, are encapsulated in the complex-valued ψm(ρ′,ρ).
For Kolmogorov-spectrum turbulence the correlation function of eψm(ρ′,ρ) is

〈eψ∗

m
(ρ′

1
,ρ1)eψm(ρ′

2
,ρ2)〉 = exp

(

−1.45k20C
2
n,mL

∫ 1

0

ds |(ρ′
1 − ρ′

2)s+ (ρ1 − ρ2)(1 − s)|5/3
)

, (8)

which does not lend itself to closed-form evaluation of the spatial resolution. Thus we will use the square-law
approximation for this correlation function,15

〈eψ∗

m
(ρ′

1
,ρ1)eψm(ρ′

2
,ρ2)〉 = e−(|ρ′

1
−ρ′

2
|2+(ρ′

1
−ρ′

2
)·(ρ1−ρ2)+|ρ1−ρ2|

2)/2ρ2

m , (9)

where ρm = (1.09k20C
2
n,mL)−3/5 is the transverse coherence length of the turbulence on path m.§ Finally,

because we are interested in standoff sensing, we will only consider targets in the far field of the source, i.e.,
we will assume k0a0ρ0/2L ≪ 1 for the (phase-insensitive) pseudothermal source, and k0a

2
0/2L ≪ 1 for the

(phase-sensitive) SPDC source.9, 10

Targets of interest in standoff sensing often have surfaces that are very rough on the order of a wavelength,
which diffusely reflect the incoming light into the hemisphere. Such objects are often quasi-Lambertian scatterers,
i.e., they can be represented as an average amplitude reflection coefficient

√

T (ρ), where ρ is the transverse
spatial coordinate on the target surface, times a spatially-varying random phase term that is due to height
variations on the surface. Because this random phase is uncorrelated for transverse distances much greater than
the wavelength of the illumination, the field reflection coefficient is modeled as a zero-mean complex Gaussian
random process with a phase-insensitive autocorrelation

〈T ∗(ρ1)T (ρ2)〉 = λ2
0T (ρ1)δ(ρ1 − ρ2) (10)

insofar as propagation of the reflected light to the bucket detector is concerned. It is important to note that
the target might absorb or transmit a portion of the light that illuminates it. The reflected field has thus
suffered loss, and vacuum-state quantum noise must be injected to preserve the commutator relations, i.e., the
field operator for the reflected light obeys ÊT (ρ, t) = Ê′

S(ρ, t)
√

T (ρ)+ Êvac,S(ρ, t)
√

1− |T (ρ)|2, where the field

operator Êvac,S(ρ, t) is in its vacuum state. This formalization requires that |T (ρ)| ≤ 1 for all ρ, which violates
our previous assumption of a complex Gaussian distribution. In standoff sensing, however, the very small angular
subtense of the bucket detector, relative to the 2π-SR hemisphere, implies that the average target-return flux
collected by that detector will be so small a fraction of the flux illuminating the target that we can safely ignore
this issue.¶

The photodetectors in both arms are assumed to have quantum efficiency η < 1 and finite bandwidth
determined by a common impulse response hB(t), which is narrowband with respect to the field coherence time
T0.

10, 17 The bucket detector produces the photocurrent îb(t), while the reference detector’s pixel centered at ρ1

produces a photocurrent îp(t). The image is constructed as a pixelwise time-average cross correlation, so that
the image at ρ1 is obtained from

Ĉ(ρ1) ≡
1

TI

∫ TI/2

−TI/2

dt îp(t)̂ib(t), (11)

where TI is the correlator’s integration time.

3.2 Spatial Resolution and Image Contrast

To derive the spatial resolution and image contrast of ghost images obtained in reflection, we look at the
ensemble average of the cross-correlation function 〈Ĉ(ρ1)〉. We start by writing the cross correlation in terms of

§It is worth noting that this result does not assume that ψm is Gaussian distributed, and hence is neither restricted
to the weak-perturbation propagation regime for turbulence, nor does it imply that the turbulence-induced fluctuations
are purely phase tilt.

¶For a 10-cm-diameter bucket detector and a 10 km standoff range, the target-return flux is ∼10−10
× the flux diffusely

reflected from the target.
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the photon flux impinging on the detectors, and then use Eq. (7) and the target-interaction beam-splitter relation
to propagate the field at the bucket detector surface, Ê′

T (ρ, t), back to the propagated signal field Ê′
S(ρ, t). We

then back-propagate along the signal and reference arms to the source, again with Eq. (7). Recognizing the
independence of the source-, turbulence- and target-induced fluctuations, the mean image can be written as
an integral expression involving the product of a fourth-order moment of the source fields, three second-order
moments of the turbulence, and a second-order moment of the target’s field-reflection coefficient. The turbulence
and target moments are evaluated with Eqs. (9) and (10), and the fourth-order field moment is decomposed, via
the moment-factoring theorem for Gaussian states,2 as

〈Ê†
R(ρ

′
1, τ1)Ê

†
S(ρ

′
2, τ2)ÊR(ρ

′′
1 , τ1)ÊS(ρ

′′
2 , τ2)〉 = 〈Ê†

R(ρ
′
1, τ1)Ê

†
S(ρ

′
2, τ2)〉〈ÊR(ρ

′′
1 , τ1)ÊS(ρ

′′
2 , τ2)〉

+ 〈Ê†
R(ρ

′
1, τ1)ÊR(ρ

′′
1 , τ1)〉〈Ê†

S(ρ
′
2, τ2)ÊS(ρ

′′
2 , τ2)〉+ 〈Ê†

R(ρ
′
1, τ1)ÊS(ρ

′′
2 , τ2)〉〈Ê†

S(ρ
′
2, τ2)ÊR(ρ

′′
1 , τ1)〉. (12)

This expansion of the fourth-order moment for Gaussian states identifies the crux of the coherence behavior
that yields a ghost image. For general Gaussian-state sources, both the phase-sensitive cross correlation and the
phase-insensitive cross correlation contribute to the image signature, and the phase-insensitive autocorrelation
term yields a featureless background.10 For a pseudothermal source, the phase-sensitive cross correlation is zero,
thus ghost-image formation is governed by the phase-insensitive cross correlation alone. For an SPDC source,
however, the phase-insensitive cross-correlation vanishes and the ghost image is due to the phase-sensitive cross
correlation between the two beams.

Using the Gaussian-Schell model correlation function from Eq. (1) for the pseudothermal source and the
square-law approximation for the turbulence moments, we find that the ensemble-average image is given by

〈Ĉ(ρ1)〉C =
q2η2ApAb

L2

(

2P

πa2L

)2 ∫

dρ2 T (ρ2)

[

1 +
e−|ρ2−ρ1|

2/αρ2

L

α

]

, (13)

where ρL and aL, defined in the previous section, are the transverse coherence length and the beam radius after
Lm vacuum propagation, respectively. On the other hand, using the phase-sensitive cross correlation in Eq. (6)
for the SPDC source, we find

〈Ĉ(ρ1)〉Q =
q2η2ApAb

L2

(

2P

πa2L

)2 ∫

dρ2T (ρ2)

[

1 +
e−|ρ2+ρ1|

2/αρ2

L

α

(

1 +
1√
8πI

)

]

, (14)

as the image signature. Here we have used the subscript C to refer to the classical-state results, and Q to refer
to quantum-state results. The parameter α, which quantifies the turbulence-induced loss of spatial resolution,
satisfies

α =
2ρ2Rρ

2
S + a20(ρ

2
R + ρ2S)

2ρ2Rρ
2
S

≥ 1, (15)

and I = PT0ρ
2
0/a

2
0 is again the source brightness in photons per spatiotemporal mode.

Both the classical and quantum ensemble-average cross correlations are sums of the same featureless back-
ground term plus an image-bearing term that is T (ρ) blurred by a Gaussian point-spread function of e−1 width
ρL

√
α. Thus, regardless of which correlation—phase insensitive or phase sensitive—is responsible for the image

term, the far-field spatial resolution is identical. The SPDC image term differs from the pseudothermal’s only
by inversion of the image coordinates, and by the scaling 1+1/

√
8πI. The coordinate inversion results from the

phase-sensitive nature of the correlation, while the scaling is a signature of the stronger-than-classical correlation.

We define the image contrast to be the difference between the brightest and darkest pixels in the image,
normalized by the featureless background level.14 Assuming that the target’s features are fully resolved in the
image, so that we can approximate the point-spread functions in Eqs. (13) and (14) as delta functions with
respect to T (ρ), we arrive at

CC =
πρ2L
AT

(16)

CQ =
πρ2L
AT

(

1√
8πI

+ 1

)

, (17)
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where AT ≡
∫

dρ T (ρ) is the target’s average cross-section for reflection. In the high-brightness, I ≫ 1, regime we
see that CQ converges to CC , as expected. In the low-brightness regime, however, the SPDC ghost image exhibits
very nonclassical high-image-contrast behavior, which is due to its being formed from a stream of biphotons. We
should note, in this regard, that our contrast evaluation has presumed dc-coupled operation of our correlator.
Were we to use an ac-coupled correlator, then both the pseudothermal and SPDC ghost images would have high
contrast.

3.3 Signal-to-Noise Ratio

We define the signal-to-noise ratio (SNR) to be the ratio of the squared mean of the cross-correlation function
to its variance, i.e.,

SNR =
〈Ĉ(ρ1)〉2
Var[Ĉ(ρ1)]

=
〈Ĉ(ρ1)〉2

〈Ĉ2(ρ1)〉 − 〈Ĉ(ρ1)〉2
. (18)

The primary complication in evaluating the SNR is in the second-order moment

〈Ĉ2(ρ1)〉 =
1

T 2
I

∫ TI/2

−TI/2

dt

∫ TI/2

−TI/2

du 〈̂ip(t)̂ib(t)̂ip(u)̂ib(u)〉, (19)

which, after back-propagating to the source, requires that we evaluate an eighth-order moment of the source
fields, two sixth-order moments of the source fields, a fourth-order moment of the source fields, a fourth-order
moment of the target, and three fourth-order moments of the turbulence.

We are mainly concerned with the SNR behavior obtained with pseudothermal and SPDC sources, as a
result of their different coherence properties. Moreover, as there is no simple way to evaluate the fourth-order
turbulence moments, we will evaluate the SNR for these two sources under the assumption of turbulence-free
propagation. We also assume that the photodetectors are ac-coupled, and that the imager can fully resolve
the target’s spatial features. All remaining higher-order moments are written as the sum of the product of
second-order moments through application of the Gaussian moment-factoring theorem. To simplify the final
expressions we define two new terms, A′

T ≡
∫

dρ T 2(ρ), and Γ ≡
∫

dν e−|ν|2/2O(ν, 4
√
β)/(4πβ)2, where O(ζ, D)

is the two-circle overlap function for circles of diameter D,

O(ζ, D) =

⎧

⎨

⎩

(D2/2)

[

cos−1
(

|ζ|
D

)

− |ζ|
D

√

1− |ζ|2

D2

]

, for |ζ| ≤ D

0, else,
(20)

with ν = ρLk0(ρ
′−ρ′′)/L for ρ′ and ρ′′ being transverse coordinate vectors on the bucket detector’s photosensi-

tive surface. We also introduce β ≡ Ab/πa
2
0 as the ratio of the bucket detector’s receiving area to the transmitter

beam’s area. We have that Γ is a monotonically decreasing function of increasing β, something that will be
important in understanding the ghost image’s speckle-limited saturation SNR.

Both A′
T and Γ have significant physical interpretations. A′

T is a measure of the target’s reflection cross-
section. As such it is directly related to the number of on-target resolution cells and, therefore, the time it takes
to form an image. Γ is a measure of the spatial averaging of target-induced speckle that occurs at the bucket
detector. Because the signal field causes speckles on the target that are, in the absence of turbulence, of an
average extent ρL, we can regard the illumination field as a collection of uncorrelated patches of this size. The
rough surface randomizes the reflected field produced by each illumination speckle, so that when propagated
into the far field it will have an intensity radius that is much larger than the bucket detector’s area, Ab, with a
coherence radius of ∼ 2L/k0ρL ≈ a0. The amount of aperture averaging of the returns from different illumination
speckles, encapsulated in Γ, is then purely a function of β.

Even under the preceding assumptions, the ghost-image SNR is given by a complicated expression that in-
volves noise from three different sources—the randomness of the source, the randomness from scattering from the
rough surface, and detection noise—as well as their cross terms.18 Here we highlight three limiting cases. First,
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we consider ghost images formed with very long integration times, so TI/T0 ≫ 1. For both the pseudothermal
and the SPDC sources the ghost-image SNR approaches a maximum value, the saturation SNR, given by

lim
TI/T0→∞

SNR = SNRsat ≡ 1/Γ. (21)

SNRsat corresponds to performance limited by the target-induced speckle: because the target is motionless so
too is that speckle, and its randomness is not averaged out by a long integration time. The image fluctuations
contributed by source randomness and detection noise, however, are reduced by the time integration, because they
have finite coherence times. In order to increase SNRsat, we must increase β, which demonstrates a fundamental
trade-off between spatial resolution and SNR in that once Ab has been increased to its maximum feasible size,
the only way to further increase β is to decrease a0. However, the spatial resolution ρL is inversely proportional
to a0, so increasing SNRsat this way will degrade resolution.

Next, let us consider what happens with a high-brightness source (I ≫ 1) when the integration time is too
short for the SNR to approach its target-speckle-limited maximum value. For both the pseudothermal and the
SPDC sources we then have that

SNR ≈ SNRH ≡ TI

T0

√
2πρ2L

A′
T (1 + 1/β)

T 2(ρ1). (22)

This limit is dominated by the need to resolve different resolution cells on the target by way of correlation. Thus,
it is directly proportional to the normalized integration time, TI/T0: we need to see many different realizations
of the source fields to determine the reflection coefficient from the correlations. This term is also inversely
proportional to the number of on-target resolution cells, A′

T /ρ
2
L; the more resolution cells there are, the longer

it takes to deduce the spatial pattern of the target.

Finally, let us look at the low-brightness regime (I ≪ 1), once again keeping the detector integration time
short enough to avoid target-speckle-limited performance. Here we find that

SNR ≈ SNRL,C ≡ 16
√
2√

π

TI

T0

Apη
2I2

ΩBT0ρ2L
T (ρ1)

Ab

L2
(23)

for the pseudothermal source, and

SNR ≈ SNRL,Q ≡ 8

π

TI

T0

Apη
2I

ΩBT0ρ2L
T (ρ1)

Ab

L2
, (24)

for the SPDC source where, as before, the subscripts C and Q denote classical and quantum sources, respectively.
Here, Ap and ΩB are the reference detector’s pixel area, and the bandwidth of the photodetector’s impulse
response hB(t). This SNR limit is dominated by detection noise, and, as such, it is significantly different for
the classical and quantum sources, with the latter’s performance being far superior to the former’s. The scaling
factor Ab/L

2 is the solid angle subtended by the bucket detector at the target, hence it is the fraction of the
reflected light that detector collects. Note that classical phase-sensitive light, in the low-brightness regime, leads
to the same SNR expression as given above for the phase-insensitive source.

In summary, coherence theory for phase-insensitive and phase-sensitive light reveals that ghost-image for-
mation in reflection originates from the propagation of the cross correlation between the signal and reference
fields. The reference measurement provides knowledge of the on-target irradiance pattern, which allows us to
reconstruct that target’s intensity-reflection profile. For far-field operation, the phase-insensitive source yields
an erect ghost image whereas the phase-sensitive source produces an inverted ghost image. If the phase-sensitive
source is a low-brightness downconverter, i.e., a quantum source, then its dc-coupled image contrast will greatly
exceed the corresponding value obtained with a phase-insensitive source. Moreover, the quantum source’s image
SNR will greatly exceed that of its low-brightness phase-insensitive counterpart.
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Figure 4. Experimental setup. PBS: polarizing beam splitter, HWP: half-wave plate, SLM: spatial light modulator, CCD:
charge-coupled device (camera), HR: high-reflection mirror.

4. EXPERIMENTAL DEMONSTRATION OF GHOST IMAGING WITH A
CLASSICAL PHASE-SENSITIVE SOURCE

Early ghost imaging experiments, such as that of Pittman et al.,19 employed biphotons generated by SPDC and
attributed image formation to quantum entanglement. As shown in Section 3, SPDC-based ghost imaging is a
consequence of the phase-sensitive coherence between the source’s signal and idler beams. Later experiments20–22

demonstrated ghost imaging using classical pseudothermal light. As shown in Section 3, pseudothermal ghost
imaging arises from the phase-insensitive coherence between the signal and reference beams exiting the 50-50
beam splitter in Fig. 3. The unified theory of ghost imaging for Gaussian-state illumination under the um-
brella of (phase-insensitive and phase-sensitive) coherence theory suggests that classical light sources exhibiting
phase-sensitive coherence should also yield ghost images, and furthermore, they should mimic the features of
biphoton-state ghost imaging that are a consequence of the phase-sensitive correlation between the signal and
idler photons.10

In this section we report on an experimental demonstration of ghost imaging with classical phase-sensitive
light. Using a pair of synchronized spatial light modulators (SLMs), which impose programmable phases at
individually addressable pixels, we have constructed a system to demonstrate far-field phase-sensitive ghost
imaging using classical light and standard photodetectors.23 Our experimental setup is shown in Fig. 4. A
10mW, λ0 = 795 nm cw laser beam was first split into signal and reference arms by a 50-50 beam splitter. Each
beam was focused to a waist of w0 ≈ 200µm and modulated by a reflective SLM placed at the waist. The SLMs,
manufactured by Boulder Nonlinear Systems, each had 512 × 512 individually addressable pixels with a pixel
size of 7.68× 7.68µm. Given the size of the beam waist, we chose to modulate only the center 128×128 pixels of
each SLM, driving both arms with uniformly-distributed, computer-generated random phases. We estimate the
phase accuracy of the SLMs to be ≈ 20mrad for most phase values. We were able to program SLM1 and SLM2
shown in Fig. 4 to synchronously apply either identical or complementary random patterns, which corresponded
to the imposition of phase-insensitive or phase-sensitive cross correlations, respectively.

We placed our sample transmission mask in the signal arm at a distance of L = 80 cm from SLM1, which
places us in the far-field regimes of both phase-sensitive and phase-insensitive coherence propagation,10 because
πw2

0/(λ0L) ≈ 0.2. We collected signal-arm light using a lens to focus the light transmitted through the mask
onto a single-pixel Thorlabs PDA55 silicon detector. The reference arm used a Basler Pilot series charge-coupled
device (CCD) camera with 1600×1200 pixels and 12 bits per pixel of dynamic range. Because the physical size of
the CCD was significantly smaller than the transmission mask we placed in the signal arm, we utilized a two-lens
5.7× telescope to minify the speckle pattern in the reference arm, allowing us to ghost image the entire region
of our transmission mask.

We imaged a portion of a 1951 USAF resolution test target—in both phase-insensitive and phase-sensitive
modes of operation—with the covariances computed over 18640 realizations, as shown in Fig. 5. Consistent with
theory for far-field ghost imaging, we found the phase-sensitive ghost image to be inverted, whereas the phase-
insensitive ghost image was erect. We also observed similar spatial resolutions for both modes of operation, as
predicted by their equal far-field coherence radii, ρL = λ0L/(πw0). The measured spatial resolution was roughly
consistent with our observed ∼1mm speckle radius. Note that a bright artifact at the center of the image, caused
primarily by the sub-optimal 83% fill factor of our SLMs, prevented us from imaging effectively near that region.
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Figure 5. (a) Sample single-frame speckle pattern as imaged by the CCD. The artifact is due to the SLMs’ ∼83% pixel
fill factor. (b) Portion of a USAF spatial-resolution transmission mask used as the object. (c) Phase-insensitive and
(d) phase-sensitive far-field ghost images, each averaged over 18640 realizations. Background noise levels are clipped for
improved visibility.
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Figure 6. MIT-logo ghost images after 7000 realizations for (a) phase-insensitive and (b) phase-sensitive light, showing
image inversion in the latter. The images are individually normalized, with the noise levels clipped for improved visibility.
The bright-spot artifact at the center prevented us from obtaining an image in that small region.

Figure 6 shows a similar result of phase-sensitive and phase-insensitive ghost images of an MIT-logo transmission
mask averaged over 7000 realizations, again confirming the inverted image obtained in the phase-sensitive case.

In performing phase-sensitive measurements, we noticed a curious effect in which the ghost images were badly
degraded, for tightly-focused illumination, when the SLMs were not placed close enough to the beam waist. On
the other hand, when the illumination was loosely-focused, we observed that the quality of the ghost images was
far less sensitive to the axial displacement of the SLM from the beam waist. We demonstrate this effect in Fig. 7,
which shows ghost images generated from a single-arm CCD-based setup that simulated the reference arm by
alternating between signal and reference phase patterns as follows. In the odd-numbered frames, we applied the
reference pattern to the SLM and recorded its CCD-camera far-field pattern—without any mask—as in standard
ghost imaging. In even-numbered frames, we applied the corresponding (phase-sensitive or phase-insensitive)
signal pattern to the SLM, recorded its CCD-camera far-field pattern, imposed a transmission mask on that
pattern in software, and computed a simulated bucket-detector value by summing the resulting pixel values. By
employing this single-SLM architecture we avoided discrepancies caused by the use of a two-SLM setup, which
permitted us to study the focusing issue in isolation. Our results show that the quality of the phase-insensitive
ghost image is not affected by the axial displacement of the SLM, whereas the phase-sensitive ghost image suffers
a dramatic degradation when tight focusing is employed and there is axial displacement of the SLM from the
beam waist. The displacement-induced degradation of phase-sensitive imaging that accompanies focus errors
is explained by the phase-front present on a mislocated SLM under tight focusing. Suppose the same non-zero
spherical phase-front is added to both the signal and reference at the SLMs. Phase-insensitive operation is
unaffected by this addition, because it only requires the signal and reference arms to be perfectly correlated, i.e.,
to have equal phase-fronts. In contrast, phase-sensitive operation is degraded, because it requires the phases in
the two arms to be perfectly anti-correlated, i.e., their phase-fronts should be complementary.

The signal-to-noise ratio (SNR) of a single pixel in a ghost image is defined as the ratio of the squared-mean
value of that pixel, computed over multiple independent runs of the experiment, to the variance over those runs.
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(b)(a) (c) (d)
Figure 7. Comparison of far-field phase-sensitive ghost imaging under loose focusing (w0 = 150µm) for (a) and (b), and
tight focusing (w0 = 50µm) for (c) and (d), with the SLM located at a distance of 2.75× the Rayleigh range zR. The
mask is an off-center letter M. Phase-insensitive images in (a) and (c) are not affected, but phase-sensitive measurements
in (b) and (d) show degradation that is severe for tight focusing in (d).

(a) (b)

Figure 8. (a) Mask used for signal-to-noise ratio (SNR) test. (b) SNR, approximated by spatial-averaging, in a simple
beamsplitter-based phase-insensitive ghost imaging experiment of the mask shown in (a). The dotted curve shows the
theoretical prediction. As the number of realizations increases beyond ∼3000, the experimental curve falls short of the
theoretical prediction.

Because repeated running of our experiments would take a long time at the nominal speed of our equipment, we
made an approximation by taking the spatial average over all transmitted parts of our image (noting that our
mask was binary). For the 1951 USAF test target images, we obtain SNR values of ∼7.5 for the phase-insensitive
measurement and ∼7.9 for the phase-sensitive measurement. The theoretical SNR for both cases is given by
the narrowband high-brightness SNR asymptote, i.e., SNR=

√
2π(TI/T0)(ρ

2
L/AT ), where AT is the area of the

mask, ρL is the coherence radius, and TI/T0 is the ratio of the integration time to the source coherence time.
In our experiment AT = 3.5 cm2, and TI/T0 is equal to the number of realizations, 18640, yielding a theoretical
SNR of 133.

While our experiment shows similar SNRs for both phase-sensitive and phase-insensitive modes of operation as
expected, we are still well below the theoretically-achievable limit. We investigated this further in a ghost-imaging
setup with a single SLM followed by a 50-50 beamsplitter and a phase-insensitive measurement, imaging a simple
binary transmission mask consisting of the square outline shown in Fig. 8. Again, we spatially averaged over
all transmitting parts of our image to approximate the true SNR. We observed that our empirically-calculated
SNR agreed with the theoretical linear relationship between SNR and the number of realizations up to ∼3000
realizations, but then saturated. This saturation value, as well as the realization number at which it occurs,
seemed to depend on the part of the image that was used in the spatially-averaged estimation of the SNR.
Hence, the SNR saturation we have observed in experiment may be attributable to defects in the SLM or its
phase calibration, or it may be an artifact of our approximation to the SNR via spatial-averaging, in the high
SNR regime. We plan to continue investigating this issue in further detail.

In implementing our two-SLM system, we encountered several experimental challenges that are not present
in SPDC or pseudothermal ghost imaging. First, and perhaps most obvious, is that the SLMs need to be well-
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calibrated, well-synchronized, and precisely aligned with the beam location in order to impose maximal cross
correlations: a misalignment or calibration error drastically affects the speckle pattern in the far-field, degrading
the quality of the image. Second, for phase-sensitive imaging the SLMs need to be placed exactly at beam waist
for optimal results; phase-insensitive imaging does not have this requirement. Third, low-cost SLMs may have a
sub-unity pixel fill factor, resulting in artifacts in the speckle pattern (including the zeroth-order bright spot at
the image’s center) that affect our ability to image near such regions.

We plan to continue investigating variations of ghost imaging. Compressed sensing, which increases detection
speed for objects having a sparse representation, has already been demonstrated by Katz et al .24 Computational
ghost imaging, proposed by Shapiro,25 has been implemented by Bromberg et al .26 To date we have performed
our own preliminary tests of computational ghost imaging, and hope to improve our SNR through a better
understanding of the caveats in simulating a far-field intensity pattern for our setup. We believe that exploration
of computational ghost imaging may provide useful insights into adaptive imaging, in which the SLM modulation
is driven with patterns constructed to maximize the information acquired about the object in each subsequent
frame. We also plan to move our experiment to the 1550 nm wavelength, at which we may be able to construct
a classical downconversion-based phase-sensitive source operating in the amplified high-flux SPDC regime.27

5. DISCUSSION

Despite the focus in traditional optical coherence theory on phase-insensitive coherence, a complete second-order
characterization of optical fields requires that both phase-sensitive and phase-insensitive coherence properties
be investigated. Furthermore, for Gaussian-state sources, phase-sensitive coherence theory is fundamental to
unambiguously delineating the boundary between classical and quantum behavior. In this paper we have first
reviewed the key propagation characteristics of phase-sensitive correlations and compared them to those of the
well-known phase-insensitive correlations. Then, we have applied this theory to study ghost imaging for standoff
sensing. We have reviewed the image formation process, spatial resolution, image contrast, and SNR attained
with a pseudothermal (phase-insensitive) source, and an SPDC (phase-sensitive) source. We have quantified the
impact of atmospheric turbulence on image resolution, and the impact of target-induced speckle on the SNR.
Finally, we have reported a recent ghost imaging experiment using classical phase-sensitive light, which, to our
knowledge, is the first demonstration of ghost imaging with such a source. Via this experiment we have validated
the key predictions of our theory, e.g., that the image inversion seen in far-field phase-sensitive ghost imaging
is a consequence of phase-sensitive coherence propagation physics, and not entanglement per se. We have also
reviewed some experimental challenges with imaging using classical phase-sensitive light generated via SLMs.

Optical coherence theory has been of immense value to the design, analysis, and performance characterization
of many classical optical engineering applications, including imaging, holography, lithography, spectroscopy,
ranging, etc. The emergence of biphoton-state quantum imaging, in the past decade, has led to improvements in
spatial resolution, image contrast, and in some cases SNR. However, a subset of these improvements have later
been mimicked by classical light sources, raising a debate as to wherein lies the classical-quantum boundary. The
lack of a common theoretical framework that can unify the treatment of these applications, when performed with
either classical or quantum sources, has made it difficult to draw the boundary between classical and quantum
behavior. With the extension of traditional optical coherence theory to include the study of phase-sensitive
coherence, we are now able to bridge the gap between classical statistical optics and Gaussian-state quantum
imaging.

In conclusion, we have presented the paraxial-propagation theory for phase-insensitive and phase-sensitive
second-order correlation functions, applied it to the analysis of standoff ghost imaging, and have reported a
recent ghost-imaging experiment with classical phase-sensitive light. The central theme to our paper has been
the coherence theory for phase-sensitive light, and its utility in unifying classical and quantum Gaussian-state
imaging.
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