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Abstract

This work is concerned with the topic of phase-sensitive imaging techniques suitable for the inves-

tigation of structures in the micron range, and shows the potential for quantitative analysis result-

ing from an appropriate image processing for the investigated specimens. The probed samples are

mostly of technical nature, but the methods are in general not restricted to technical applications.

Moreover, several imaging aspects have originated from biological applications, being recently

transfered to technical material sciences.

Concerning imaging technique, we focus on optical coherence tomography (OCT) and in par-

ticular on its phase-sensitive modifications: Polarization-sensitive OCT (PS-OCT) and differen-

tial phase contrast OCT (DPC-OCT). The comparison to quantitative imaging in phase contrast

microscopy techniques (classical phase contrast microscopy, differential interference contrast mi-

croscopy, and advanced versions of phase microscopy) has been done to illustrate the similarities,

differences, and limitations of both techniques.

We propose two procedures comprehending the measurement, the enhancement and the quan-

titative analysis of phase-related quantities: In case of PS-OCT we consider the reconstruction of

retardation and birefringence distributions, and in case of DPC-OCT imaging, the extraction of

the phase gradient fields and the reconstruction of the optical path length maps therefrom.

From the point of view of physics we demonstrate how existing phase-sensitive OCT tech-

niques can be modified in their imaging setup to allow an advanced data acquisition. Es-

pecially, we consider how one-dimensional measurement schemes in DPC-OCT can be ex-

tended to allow a two-dimensional solution of the phase reconstruction problem.

From the point of view of signal processing we illustrate the potential given by extending

also the analysis of PS-OCT retardation images from one-dimensional signal processing to

two-dimensional image analysis. We include demodulation schemes, based on generalized

analytic signal theory and originally developed for two-dimensional fringe pattern analysis

of conventional interferometry, in PS-OCT imaging applications.

From the point of view of mathematics we show how the existing image processing schemes

can be adapted and improved to become suitable for the measured PS-OCT and DPC-OCT

images. Especially the necessity of an appropriate pre-processing (as image denoising and

decomposition), tailored to the features of phase-based OCT imaging, is illustrated.

We have demonstrated the performance of the described methods to obtain spatially-resolved and

quantitative information about internal material states, as birefringence and stress, or about the

topography of embedded phase structures. Suggestions for further improvements of the recon-

struction scheme are discussed. We have exemplified the proposed procedures for different test

samples in real-world applications and situations being relevant in the field of material testing.

The thesis is written deliberately in the field spanned between physics, in particular optics, and

mathematics, in particular image processing. The work should illustrate the potential, which can

be obtained by the interdisciplinary consideration of optical measurement techniques, mathemati-

cal data analysis, and aspects of material sciences.





Kurzfassung:

Die Dissertation widmet sich der Thematik von phasensensitiver Bildgebungstechniken und Bild-

verarbeitung, die speziell zur Untersuchung von Strukturen im Mikrometer-Bereich verwendet

werden können. Sie demonstriert das Potential, das sich unter Einbeziehung von Bildverarbeitungs-

methoden für eine quantitative Analyse der untersuchten Materialien ergibt. Die verwendeten Pro-

ben sind meist technische Materialien. Aber die betrachteten Methoden sind im allgemeinen nicht

nur auf technische Anwendungen beschränkt. Verschiedene Aspekte der Bildgebung entstammen

ursprünglich biologischen Aufgabenstellungen und sind erst vor einiger Zeit in das Gebiet der

Materialwissenschaft übertragen worden.

Hinsichtlich der optischen Untersuchungsmethoden wird der Schwerpunkt in dieser Arbeit auf

die optische Kohärenztomographie (OCT) gesetzt, insbesondere auf deren phasensensitiven Re-

alisierungen: Polarisationssensitive OCT Technik (PS-OCT) und (Differentielle) Phasenkontrast

OCT Technik (DPC-OCT). Um Gemeinsamkeiten, Unterschiede und Einschränkungen von beiden

Techniken zu analysieren wird ebenso auch Phasenkontrastmikroskopie im Vergleich betrachtet.

Wir schlagen zwei getrennte Methoden vor, die sowohl die Messung, die Verbesserung und

die quantitative Auswertung der gemessenen Daten umfassen: Zum einen werden sogenannte

Verzögerungsbilder, die mittels PS-OCT aufgenommen wurden, analysiert und daraus Material-

grössen, wie Anisotropie oder Doppelbrechung, ermittelt. Zum anderen, wird die Messung von

Phasen-Gradientenfeldern durch das DPC-OCT Bildgebungsverfahren und die mathematische Re-

konstruktion des daraus resultierenden optischen Weglängen-Profiles gezeigt.

Vom Standpunkt der Physik demonstrieren wir, wie existierende phasensensitive OCT Tech-

niken in ihrem optischen Aufbau modifiziert werden können, um eine verbesserte Bildauf-

nahme zu erreichen. Insbesondere betrachten wir, wie eindimensionale Methoden in DPC-

OCT zu einem Verfahren erweitert werden, das letztendlich eine zweidimensionale Rekon-

struktion von gemessenen Phasenstrukturen ermöglicht.

Vom Standpunkt der Signalverarbeitung, erläutern wir die Möglichkeiten, die sich für die

Auswertung von PS-OCT Verzögerungsbildern ergeben, wenn von eindimensionaler Be-

trachtungsweise der OCT Signale auf eine zweidimensional Bildanalyse übergegangen wird.

Wir zeigen, wie Demodulationsverfahren, beruhend auf verallgemeinerter analytischer Sig-

naltheorie und ursprünglich für interferometrische Anwendungen entwickelt, auch für PS-

OCT Anwendungen erfolgreich verwendet werden können.

Vom Standpunkt der Mathematik zeigen wir, wie existierende Bildverarbeitungsverfahren

an die spezifischen Characteristika von PS-OCT Bildern angepasst werden können. Wir

demonstrieren insbesondere die Notwendigkeit einer geeigneten Vorverarbeitung (d.h. Bild-

verbesserung und Bildkorrektion) für die aufgezeichneten PS-OCT und DPC-OCT Daten.

Die Leistungsfähigkeit der beschriebenen Methoden zur Gewinnung von örtlich aufgelösten

und quantitativen Informationen über lokale Doppelbrechung in Materialien, interne Spannungs-

verläufe oder Topographie von eingebetteten Phasenstrukturen konnte gezeigt werden. Verbesse-

rungsmöglichkeiten der Mess- und Rekonstruktionsmethoden werden von uns ebenso diskutiert.



Die entwickelten Verfahren sind an verschiedenen Testobjekten in technisch-relevanten Situatio-

nen erprobt worden.

Die Dissertation ist bewusst fächerübergreifend zwischen Physik (Optik), und Mathematik

(Bildauswertung), angefertigt worden. Sie soll das Potential demonstrieren, das sich aus einer

interdisziplinaren Betrachtungsweise von optischer Messtechnik, mathematischer Datenauswer-

tung und Fragestellungen der Materialwissenschaft ergibt.
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Symbols

α attenuation parameter

αD divergence angle

αCh chirp parameter

β orientation/direction

βπ orientation

β2 π direction

βR regularization parameter

γ step size

γA exponential decay factor

γ(z) coherence function

δ offset

δx lateral resolution

δz axial resolution

δR angular shift

δ() delta function

ε strain

εA approximation error

εφ phase error

ι intensity

ιAC alternating intensity signal

ιr reflectivity (intensity)

φ phase

φw wrapped phase

φc continuous phase

φr phase retardation

φrw wrapped phase retardation

φrc continuous phase retardation

φx differential phase in x

φy differential phase in y

∆φ phase difference

φO f f phase modified by offset

Φ. Fourier transform of φ.

ϑ optical path length

λ wavelength

κ coherence

µ mean value
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σS stress

σ2 variance

σ scaling parameter (Gaussian kernel bandwidth)

σ2
Sp Speckle variance

τ beam shear

ξ scale

ω angular frequency

∆ (discrete) difference

∆x,∆y beam shear (in x- and y-scanning direction)

k spatial frequencies related to optics

u spatial frequencies related to mathematics, k = 2
π u

k wave number in material

k0 wave number in vacuum (air)

nM refractive index in medium

n0 refractive index in air/vacuum

∆nB birefringence

n noise (index)

nιSp intensity-related speckle noise

n noise in complex representation (retardation related)

RSp real component of the speckle noise

ISp imaginary component of the speckle noise

f focus length

dH height, thickness

γ noise parameter

G(ω) power spectral function

E spatial and temporal EM-field

u (time-independent) transmission function

a EM-field in context of OCT

a,A amplitude (modulation)

A magnitude of complex value

I intensity

IAC alternating intensity

I0 constant intensity offset

R reflectance

MD modulation depth, visibility

fP(x), IP(x,y) in-phase signal

fQ(x), IQ(x,y) quadrature signal

fq(x) (true) quadrature signal

S detector signal (representing photocurrent or voltage)

b(x),B(x,y) offset, background,

P topological charge

K Gaussian kernel
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x,y,z spatial coordinates

υ,ν,ϖ spectral coordinates

r,θ polar coordinates in spatial domain

R,Θ polar coordinates in spectral domain

I,R imaginary and real component (as indices)

η,ζ spatial coordinates in complex representation

z depth, (penetration depth)

t time

T time domain

Ω spatial domain

Γ boundary of domain

W wrapping operator

WD orientational unwrapping operator

M general smoothing operator

h(x,y) point spread function (PSF)

hZ(x,y) complex point spread function (cPSF) in Zernike PCM

hDIC(x,y) complex point spread function (cPSF) in DIC microscopy

hSPF(x,y) complex point spread function (cPSF) in spiral phase microscopy

H(υ,ν) optical transfer function (OTF), filter function

H Hilbert transform operator

F Fourier transform operator

HR Radial Hilbert transform operator (Spiral phase operator)

R Riesz transform operator

E Energy operator

Eθ Energy operator computed by spiral filter

T Teager-Kaiser operator

H matrix representation of difference operator

HR spiral filter transfer function

J structure tensor

c. eigenvalues

D diffusivity

N (µ,σ2) Normal distribution

eτ shear direction

en normal direction

f (x,y) general 2D signal

fA(x) analytic signal (1D)

fR(x,y) Radial Hilbert (spiral phase) transformed signal part

fRI(x,y) Riesz transformed signal part

fM(x,y) monogenic signal (2D)

fMU(x,y) multi-component signal

fm(x,y) mono-component signal
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Mathematical operations:

(. .) inner product

⊙ outer product

× cross product

⊗ convolution

〈〉T time average

(̄) spatial average

‖()‖2 Euclidean norm

|()| absolute value

∠() argument value

≺ m x n matrix to m∗n x 1 vector

Cn complex space

Rn real space

Q quaternionic space
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Abbreviations:

PCM Phase contrast microscopy

DIC Differential interference contrast

QPM Quantitative phase microscopy

OCM Optical coherence microscopy

CPM Coherence probe microscopy

DHM Digital holographic microscopy

FPF Fourier plane filtering

FPf Fourier plane filter

SLM Spatial light modulator

SPM Spiral phase microscopy

SPF Spiral phase filter

CPI Common path interferometry

LCI Low coherence interferometry

OCT Optical coherence tomography

PS Polarization-sensitive

DPC Differential phase contrast

FF Full-field

PE Photo elasticity

SAR Synthetic aperture radar

HT Hilbert transform

RHT Radial Hilbert transform

RT Riesz transform

TF Transfer function

OTF Optical transfer function

cTF Complex transfer function

PSF Point spread function

SNR Signal-to-noise ratio

OPL Optical path length

CED Coherence enhancing diffusion

NLM Non local mean

EM Electromagnetic

AM Amplitude modulated

FM Frequency modulated

1D One-dimensional

2D Two-dimensional

1d One-directional

tri Triangular wave shape

rect Rectangular wave shape

i1D Intrinsic one-dimensional
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Preliminaries

Spatial Coordinate System Notations

• Generalized Cartesian spatial coordinate system x = (x1, ..,xn) with special case of 3D

(resp. 2D) spatial coordinates representation (x,y,z) (resp. (x,y)).

• Generalized Cartesian spectral coordinate system u = (u1, ...,un) with special case of

3D (resp. 2D) spectral coordinate system (υ,ν,ϖ) (resp. (υ,ν)).

• Generalized Cartesian spectral coordinate system k = (k1, ...,kn) related to wave num-

ber k = 2π
λ u with special case of 3D (resp. 2D) k-space coordinate system (kx,ky,kz)

(resp. (kx,ky)).

Signal and image domain

• Considering in general functions f : Rn → R in the domain Ω = (−∞,∞) × ... ×
(−∞,∞), and in case of temporal varying functions f : (0,∞)→ R in the time domain

T = (0,∞); different use is otherwise indicated in the text.

• Considering finite data sets the spatial domain Ω is given by:

Ω = (0,a1) × ... × (0,an) ⊂ Rn, especially Ω = (0,n) × (0,m) ⊂ R2 in case of

f : Ω → R representing an 2D image.

• Boundary of spatial domain: Γ = ∂Ω ⊂ Rn.

In our paper we assume complex-valued signals f (x) ∈ Cn or as special case real-valued

signals f (x) ∈ Rn (in general n = 1 for the considered signals) with the properties:

• continuously differentiable function: f ∈C

• band-limited function with finite-energy:
∫ ∞
−∞ | f (x)|2 dx < M

• Fourier representation:

F { f (x)}= F(u) =
1

2π

∫ π

−π
f (x)exp(−i2πux)dx. (1)

In Chapter (3) we will also shortly consider quaternionic signals f (x) ∈ Q, where Q de-

scribes the quaternionic space with the corresponding algebra.

Mathematical definition: Phase and amplitude

Considering complex-valued signals f (x) = A(x)exp(iφ(x)), the argument of the complex

function describes the phase by φ(x) = ∠( f (x)) mathematically, and the amplitude A rep-

resents the magnitude of the quantity by A(x) = | f (x)|. Whereas the strength of signals is

11
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expressed by its amplitude, the phase characterizes its temporal or spatial propagation in

space or time and moreover, the displacement or delay of the signal find their expression in

phase difference terms.

In the following chapters the phrase phase is used in slightly different contexts, and it should

be carefully distinguished between the different meanings of the word. In particular, ex-

pressing e.g. instantaneous phase, initial phase and global phase. Considering e.g. a pure

harmonic signal f (x) = cos(ωx+ φ0) with the frequency ω, the term φ(x) = ω x+ φ0 ex-

presses the instantaneous phase or local phase φ(x) of the signal at position x. The initial

condition of the signal at x = 0 is given by the initial phase term φ0. Taking the Fourier

transform F(u) = F { f (x)}, the argument arg(F(υ)) describes the global phase (or Fourier

phase) φF(υ) of the signal over all frequency components υ. A phase shift in space or time

represented by a change of the initial phase yields the well-known shift theorem

F { f (x− x0)}= F { f (x)} exp(−i 2π x0 υ) (2)

The phase is often represented by using the arctan-function for the angle of the signal,

causing a mapping of the phase to the interval [−π/2,π/2) (resp. [−π,π) (depending on the

definition) and yielding the wrapped phase φw(x). Reconstructing the original phase term

by phase unwrapping methods delivers the unwrapped phase φuw(x) with φ(x) = φuw(x) in

case of continuous phase functions.

Furthermore, it should be mentioned that in the chapters related to optical phase measure-

ments (i.e. Chapter (2) and Chapter (6)) the phase is directly related to the phase of the

electro-magnetic (EM) field or to the phase change introduced by the specimen. In chapters

concerning image processing (i.e. Chapter (3) and Chapter (5)) this quantity corresponds to

the local (1D or 2D) phase φ(x,z) or φ(x,y) of the image structures (e.g. fringes). On the

other hand the fringes are encoding and representing the spatial shape of the wave and are

therefore a measure for the phase of the EM-field.

Orientation:

For image processing besides amplitude and phase also the orientation β(x,y) of a structure

f (x,y) represents a relevant quantity for description. The orientation can be interpreted

[1], closely related to the gradient of f (x,y), as the direction of the gradient. Hence, the

orientation of a structure in a 2D domain is given as

β(x,y) = arctan((
∂ f (x,y)

∂y
)/(

∂ f (x,y)

∂x
)), (3)

in every point (x,y), where f (x,y) is differentiable. In this representation the orientation

β represents an unoriented direction mapped into a interval of the length of π. In contrast,

the term direction expresses an oriented direction mapped into a the interval of the length

of 2 π. Where it is necessary to indicate this difference, which is question of the sign, we

denote orientation with βπ and direction with β2 π.

Note: In practice an orientation estimation by means of the gradient is mostly impracticable,

but a more robust estimation, based on statistical approaches or least-square methods, has

to be chosen.



13

Amplitude and phase objects:

Considering an object in the propagation path we can characterize this object by its complex-

valued transmission function

u(x,y) = a(x,y)exp(iφ(x,y)). (4)

The amplitude a expresses the attenuation of the wave by absorption, and the argument φ

describes the phase shift of the wave field caused by the object. Objects with 0 < a < 1 and

φ = 0 are denoted as amplitude objects, whereas objects introducing no absorption (a = 1)

and only changing the phase of light according to its phase function φ represent phase-only

objects. Real phase objects exhibit a small absorption compared to the introduced phase

shift.

In a general context the total phase change ∆φ(x,y) = φ(x,y,z)− φ0(x,y,z0) caused by the

specimen can be seen as a measure for its geometrical thickness (geometrical path length)

profile ∆dH(x,y) relative to the reference position (z = z0) and for its distribution of the

refractive index difference ∆n(x,y) related to the refractive index n0 of the surrounding

medium, both expressed by the optical path length (OPL) map ϑ(x,y) with

∆φ(x,y) = k0 ϑ(x,y) =
2π

λ0

∫ dH

z0

∆n(x,y,z)dz, (5)

with the wave number k0 =
2π
λ0

, and the vacuum wavelength λ0.

As the refractive index depends on the sample structure itself, but also on internal state quan-

tities as temperature, pressure, concentration, these parameters can be visualized indirectly

by phase-sensitive imaging techniques.
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Thesis Structure

This thesis is structured as follows:

Chapter 1:

Our motivation for the topic of phase-based imaging and phase reconstruction in microscopy

and interferometry illustrating the broad range of options is provided for the reader.

Chapter 2:

A survey about current phase contrast microscopy techniques is given. Their physical prin-

ciples and their relation to Fourier plane filtering and interferometric microscopy are briefly

explained, and their potential and limitations for quantitative phase measurements and anal-

ysis are regarded. Furthermore, elements comparable to our realized phase-sensitive optical

coherence tomography (OCT) setups are highlighted.

Chapter 3:

The mathematical fundamentals for 1D and 2D demodulation based on analytic signal the-

ory are described. Additionally, a comparison of different generalizations of Hilbert trans-

form in higher dimensions is drawn. The single fringe analysis and demodulation methods,

which have already been established for conventional interferometry, are tested by us for dif-

ferent types of wave shapes extending the usual way of consideration about harmonic wave

shape signals. The influence of non-perfect wave shapes and background on the demod-

ulation results is demonstrated by simulations, which are related to measuring artifacts of

real-world applications. Improvements in decreasing the resulting erroneous nonlinearities

in phase are discussed shortly.

Chapter 4:

Intensity-based optical coherence tomography (OCT) imaging, the imaging principles, and

the signal generation in OCT as low-coherence interferometric technique are discussed.

Imaging parameters describing the resolution of OCT imaging setup are shortly considered.

Chapter 5 and 6:

Phase-sensitive OCT techniques, in particular, polarization-sensitive OCT (PS-OCT) and

differential phase contrast OCT (DPC-OCT) are regarded. Two optical phase-sensitive OCT

setups are demonstrated that have been developed or modified, and their phase-sensitive

measurement principles are explained. The potential and limitations of DPC-OCT for quan-

titative phase evaluation and the potential and limitations of PS-OCT for the analysis of

15
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derived quantities as birefringence and stress in a spatially resolved way are considered for

different investigated test samples.

Furthermore, a signal and noise model based on complex speckle noise for PS-OCT is de-

rived, which is used in combination with an inherent stress model as a basis for PS-OCT

image simulations. These simulations and measured PS-OCT data are used to demonstrate

the reconstruction approach based on 2D demodulation techniques in combination with im-

age preprocessing methods.

With respect to DPC-OCT the similarities and differences in imaging and reconstruction to

(conventional) DIC microscopy are regarded and exemplified with the measured and inves-

tigated samples.

Chapter 7:

In conclusion to our measurements and reconstruction results we give a summary about the

impact, advantages and limitations of the realized phase-sensitive OCT imaging and recon-

struction methods. An outlook onto newly upcoming phase-sensitive or phase-modulating

imaging techniques applicable for sophisticated 3D microstructure investigation and ma-

terial research, their potential extensions of coherent imaging techniques and the expected

potential for a combination of coherent imaging techniques with modern mathematical tech-

niques in the field of signal processing are finally presented.



Chapter 1

Introduction

Although we are living in the age of nano-structures, in daily life and for several technical ap-

plications the size range of the structures of interest is still at the micron scale. The increasing

demand of industry for new functional materials requires appropriate methods for material char-

acterization and inspection. Imaging methods working in the mesoscopic size range of a few

micrometers provide a valuable extension of nanoscopic investigation methods for material and

tissue characterization.

In the past the needs in the field of medicine and biology have undoubtedly influenced the

development of appropriate imaging techniques for microobjects, e.g. cellular structures or tissue

sections. Nowadays the driving forces behind the development and enhancement of appropriate

micro-imaging techniques may also be found outside the field of medical application. Often the

requirements are closely related to visualization tasks in the field of material sciences. To obtain

a better understanding of modern materials, they have to be inspected in several ways for evalua-

tion of their structural composition, their functional behavior or for recognition of possible defects

and damage assessment. Especially optical methods, which are non-destructive techniques – en-

abling contactless measurements, providing information and allowing conclusions about expected

functionality – are preferred techniques in various fields of material inspection.

Over the years the imaging modalities for biological or technical microstructures have reached

a huge variety, therefore allowing different classification schemes. In particular, as possible clas-

sification criteria should be mentioned here:

Spectral range:

With respect to the exploited spectral range the methods can be divided into visible (VIS),

near infrared (NIR), X-ray or Terahertz (THz) imaging techniques, and the broad optical

bandwidth of light can be used for imaging of the different materials and composites.

Dimensionality of data:

With respect to the number of dimensionality of recorded data (channels) the methods can

be grouped e.g. into grayscale, color, multispectral or hyperspectral imaging techniques.

17
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Optical sectioning ability and scanning scheme:

The imaging can be realized by wide-field or confocal techniques, dependent on the re-

garded probing volume, or as rastering (’flying point’) or full-field methods with respect to

the corresponding scanning scheme.

Contrast mechanism:

A widespread classification of microscopic imaging techniques is given by the type of the

exploited contrast. Due to the electromagnetic (EM) wave nature of light it can be absorbed,

reflected, scattered, diffracted, retarded or furthermore, light can itself cause emission or

nonlinear interactions inside the sample leading to e.g. fluorescence or higher harmon-

ics generation. Hence, different resulting contrast mechanisms, e.g. linear and nonlinear

amplitude, phase, differential phase, structural or chemical contrast, can be exploited for

microscopic imaging [2].

Concerning the applied contrast mechanisms, we consider image contrast determined by phase

and phase-related properties of the specimen later in the thesis. In microscopic imaging the first

choice for imaging of structures is mainly influenced by their absorption or transmission behav-

ior. Conventional transmission microscopy exploits the absorption contrast in general. However,

several microbiological specimens, e.g. cells, lipid droplets, but also technical structures, e.g. in-

homogeneities in glasses or polymers, organic surface protection coatings, oil films, etc. are often

nearly transparent or translucent in the visible spectral range. This optical transparency limits

the use of transmission microscopy as phase variations introduced by the specimen can not be

recognized directly.

Fluorescence microscopy has become an established method for providing meaningful im-

ages of specimens. Although staining of objects with natural markers, pigments in conventional

microscopy and with fluorescent dyes in fluorescence microscopy can provide a solution for visu-

alization of transparent specimen, these techniques can not always be applied. Imaging of highly

sensitive cellular samples (e.g. living sub-cellular structures) without simultaneously influencing

them by chemical substances requires label-free imaging techniques. Therefore phase-sensitive

and also spectral imaging techniques have never lost their importance. A continuous interest and

a further development of these methods are guaranteed even nowadays.

The importance of phase for imaging is combined with the complex nature of light and the hu-

man perception system. Light, regarded as electro-magnetic wave can be described by its complex

wave field E at the spatial position r= (x,y,z) and time t, propagating in a direction k. Considering

a plane harmonic wave

E(r, t) = E0 exp(iφ(r, t)) = E0 exp(−i(ω t − (k r+φ0))), (1.1)

and assuming a wave propagation in z-direction through a homogeneous medium, by decoupling

the temporal and spatial varying term, the harmonic wave field can be described by its complex

exponential form as

E(z, t) = E0 exp(iφ(z))exp(−iω t) (1.2)

with the (spatial) phase term φ(z) = n k0 z+φ0.

When light propagates through a stained or turbid sample some amount of the light is absorbed

or scattered, resulting in a modulation of the wave amplitude relative to the background. The
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Figure 1.1: Phase-to-intensity mapping. a) Interferometric image showing typical fringe patterns,

b) phase contrast image of cellular specimens, [185].

amplitude of the wave field directly determines the intensity I, the time average of the squared

magnitude of the wave field with I ∝ 〈E E∗〉T . The phase (difference) is an expression of the

position or of the delay of the wave field related to an initial or reference state.

As the human perception system is sensitive to amplitude changes, amplitude contrast is easy

to visualize by a direct amplitude-to-intensity transform. However, humans are not able to di-

rectly recognize phase changes. In imaging, light waves traversing unstained, transparent objects

cause only a faint amplitude contrast and weakly discernible structures, due to scattering and

diffraction at the object edges. Even though the amplitude is mainly unchanged, the phase of the

light propagating the sample is delayed with respect to the undisturbed phase of the surrounding

medium. These phase changes, in the following called phase shifts or phase retardations (with

respect to OCT), have to be visualized indirectly and analyzed by different phase-to-amplitude

or phase-to-intensity mapping techniques. The mapping can be realized by different microscopic

and interferometric phase imaging techniques. In interferometric images the phase of the wave

field is expressed as fringe pattern (i.e. alternating lines of high and low intensity), as depicted

in Figure 1.1 a). For phase microscopy mainly phase contrast mechanisms are exploited for the

visualization of transparent objects, as shown in Figure 1.1 b).

Various phase contrast microscopy (PCM) techniques, e.g. Zernike PCM [3], Hoffmann mod-

ulation PCM [4], generalized PCM [5] have been developed over the years. Differential interfer-

ence contrast (DIC) microscopy [6], imaging the phase gradient, can be considered as a modifica-

tion of PCM techniques. Also Schlieren imaging can be associated to phase contrast techniques

even though it is normally utilized for visualization of larger sized phase structures as appearing

e.g. in thermal flow fields or ultrasonic pressure fields [7, 8].

Besides phase contrast microscopy, the extensively exploited field of (micro-)interferometric

techniques for testing of transparent objects and determining their refractive index and thickness

variations should be mentioned. In interferometric techniques the phase measurement is based on

the superposition of a known reference wave with a sample wave having a defined phase relation

to each other [9]. By recording multiple phase shifted images or applying single fringe analy-

sis methods the imaged phase distribution can be determined. Combining interferometric prin-

ciples with digital holographic reconstructions, several digital holographic microscopy (DHM)

techniques [10] for the quantitative phase reconstruction of nearly transparent microobjects [11]

have been realized in recent years.
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Figure 1.2: Phase-sensitive OCT imaging. a) PS-OCT phase retardation image, b) DPC-OCT

differential phase image.

Arising from white light interferometry (WLI) [12] optical coherence tomography (OCT) as a

low coherence interferometry (LCI) technique was invented in 1991 [13]. Starting first in medical

diagnostic fields [14] and applied at the beginning for biological tissue characterization, recently,

OCT techniques have been extended and complemented by functional imaging methodologies.

Nowadays, OCT is utilized also for various applications in the field of material science. The

capability of OCT techniques to recognize embedded microstructure and to investigate stratified

specimens in sub-surface regions of the sample can be exploited for various technical material

inspection tasks [15]. This potential extension of the exploitable probing range from surface to

sub-surface regions gives rise to different imaging applications suitable for the characterization of

structures in the size range of some microns.

Similar to microscopy, different contrast mechanism can also be utilized for OCT. Whereas in

turbid, highly scattering media imaging is achieved by multiple scattering at randomly distributed

point scatterers or layers, in the case of transparent samples phase contrast or differential phase

principles can be included. Thereby, additional information about the internal homogeneity or

anisotropic composition of the sample can be extracted by the modification of standard OCT to

phase- or frequency-sensitive versions. These functional OCT setups, exploiting e.g. polariza-

tion dependence, second harmonic generation, or frequency shifts as a probing feature, deliver

additional information about the specimens.

In case of polarization-sensitive OCT (PS-OCT) [17] the phase retardation or phase difference

allows conclusions about anisotropies, e.g. resulting birefringence, or about stress distribution

within the sample. In PS-OCT imaging the anisotropic material behavior causes typical fringe

pattern, so-called phase retardation fringe patterns, as can be seen in Figure 1.2 a).

In case of differential phase contrast-OCT (DPC-OCT) the optical path length gradient due

to thickness or refractive index variations can be extracted [18], as shown for the example in

Figure 1.2 b). Furthermore, elastic properties of materials can be determined by means of optical

coherence elastography [16].

Over the years a huge variety of different combinations and modifications of phase contrast,

conventional interferometric and OCT techniques, partly extended by other contrast mechanisms,

have been established leading to e.g. optical coherence microscopy (OCM) [19], nonlinear OCT

[20], or molecular OCT [21] techniques.

In the following the regarded phase-sensitive techniques can be distinguished by the specifici-
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ties of the their optical setups: The applied spectral bandwidth and coherence of the illumination

source, the light path (common-path as in case of PCM and SPM; sheared-path as in case of DIC

and DPC-OCT; amplitude-divided versions as realized in conventional and low coherence inter-

ferometry). They can be classified according to the recorded phase-related quantity in total phase,

differential phase or phase retardation measuring techniques, differing in their resolution, their op-

tical sectioning properties and measurable phase range. They all represent techniques for imaging

phase structures in the micro- and submicrometer range exploiting the various characteristics of

interference.

In addition to the demand for sophisticated qualitative visualization techniques for the in-

vestigated transparent objects or their derived properties, the need for appropriate mathematical

reconstruction approaches has gained importance for an improved qualitative or even quantita-

tive interpretation of the recorded images. Recognizable efforts have been performed recently in

the mathematical field of phase recoveries and reconstruction for quantitative phase microscopy

(QPM) [23] based on non-interferometric imaging and reconstruction methods. For interfero-

metric techniques, especially for phase-sensitive transient or dynamic process monitoring, often

performed by single shot measurements, some progress has been made in combination with single

fringe pattern analysis in recent years [22]. Besides conventional interferometric fringe patterns,

as shown in Figure 1.3 a), fringe patterns are also typical image structures for PS-OCT imaging,

as depicted in Figure 1.3 b). But generally, fringes can also be found in other fields, as in Moiré

and electronic speckle interferometry (ESPI), or in the field of biology (e.g. as finger prints, as

shown in Figure 1.3 c), and also in a wider sense as natural ’fringe’ patterns, e.g. as tree-rings in

dendrochronology).

Figure 1.3: Fringe pattern images in different fields of application. a) Fringe pattern recorded

by conventional interferometry, b) fringe pattern (retardation fringes) recorded by PS-OCT, c) a

finger print as natural ’fringe’ pattern.

PS-OCT retardation fringe patterns are challenging and differ from conventional interferomet-

ric fringes in some interesting points (e.g. their wave shape, their high amount of speckle noise

or their strongly material dependent signal-to-noise ratio (SNR)). Dependent on the material scat-

tering and attenuation properties retardation fringes can be clearly visible or almost be vanishing.

Due to these characteristic features a higher complexity for signal analysis results and conventional

interferometric analysis methods can not be directly applied for PS-OCT imaging.

In this thesis we present an extended procedure of how approaches of phase contrast mi-

croscopy (Chapter (2)) – from the point of view of physics – and of 2D signal analysis and demod-

ulation techniques (Chapter (3)) – from the point of view of mathematics and signal processing –

can be combined for phase-sensitive OCT imaging and image reconstruction (Chapters (4) – (6)).
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We focus on two phase-sensitive techniques: PS-OCT and DPC-OCT to increase the performance

of these techniques towards a spatially resolved quantitative analysis method. For DPC-OCT

imaging techniques optical components otherwise applied in phase contrast microscopy (e.g. el-

ements of DIC microscopy) are included in the realized measurement setup. At the same time

we demonstrate mathematical approaches suitable for spatially resolved 2D phase reconstruction

from measured DPC-OCT images. For PS-OCT imaging the performed signal analysis combines

a 2D demodulation scheme with mathematical image enhancing methods. The combination of

phase-sensitive imaging with the possibilities of advanced image processing provides the basis for

an improved interpretability of the measured data and finally for obtaining quantitative information

about the recorded phase-related quantities.



Chapter 2

Phase Contrast Microscopy Imaging:

State of the Art

In this chapter, first, we want to consider established phase contrast microscopy techniques to ex-

plain the basic principles and capabilities for a quantitative phase measurement and reconstruction.

Second, we demonstrate the connection of PCM to the applied phase-sensitive OCT techniques

described in Chapter (4). And third, we highlight the similarities of methods (especially of filter-

ing techniques) applied in optics and in mathematics, in particular, in image processing. But, we

also mention their differences thereby.

In the explanation of imaging principles we will focus on (Zernike) phase contrast microscopy

(PCM), the first introduced version of phase contrast microscopy, on differential interference con-

trast microscopy (DIC), a derivative of the original PCM technique and partially comparative to

the realized DPC-OCT setup, and on spiral phase microscopy (SPM). The interesting correspon-

dence between spiral phase microscopy in optics and spiral phase filtering in signal processing

give rise to this choice.

On one hand PCM and interferometric techniques (as conventional or white light interferom-

etry and OCT) often cover different application fields with either biological or technical back-

ground. On the other hand they can be considered under the unifying approach of (partially or

low) coherent imaging techniques exploiting phase-related quantities for the visualization of the

specimen. In Figure 2.1, an imaging example for the three further considered versions of phase

contrast microscopy is given.

2.1 Conventional phase contrast microscopy

2.1.1 Imaging principle in PCM

For classical phase contrast microscopy, developed by Zernike in the 1930’s for imaging of al-

most transparent biological structures [24], it is assumed that the spatial phase changes ∆φ(x,y)
introduced by the specimen are small and significantly less than π/3 [25]. This basic assumption,

denoted as small-scale phase approximation (SSPA), and supposing a specimen being without ab-

sorption, allow to expand the complex object function u(x,y) by Taylor series of the first order

23
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Figure 2.1: Phase contrast imaging examples of almost transparent cellular structures, recorded

by a) (conventional) phase contrast microscopy, b) differential interference contrast microscopy,

c) spiral phase microscopy, [185].

to

u(x,y) = exp(i∆φ(x,y))≈ 1+ i∆φ(x,y). (2.1)

A light field passing through a phase object is partly diffracted at the phase structures. The un-

diffracted part of the illumination wave is propagating through the sample without any interaction,

the diffracted part is influenced according to the inherent phase distribution of the sample. In

(2.1) the first term represents the undiffracted wave component, the so-called zero-order wave,

whereas the second term models the diffracted wave component. Zernike has shown that phase

contrast can be achieved by differently shifting the diffracted and undiffracted parts, usually by

π/2 to each other in PCM, with the help of a phase filter in the back-focal plane of the microscope

objective.

This imaging principle can be regarded from two points of view: as a common-path interfer-

ometry or as a Fourier plane filtering technique.

When interpreting PCM as a common-path interferometer (CPI) [26, 27], the imaging is per-

formed comparable to a conventional interferometer (e.g. to a Michelson interferometer which

has been chosen also for the OCT setup). The difference consists in the realized imaging paths:

In CPI techniques both wave components, the object wave, carrying the phase information of the

sample, and the reference wave, representing the undiffracted component, pass the sample and in-

terfere in the image plane. PCM regarded as CPI technique therefore represents a self-interference

method, in contrast to (conventional) OCT techniques where both imaging paths are split. Still

both techniques have an interferometric imaging principle in common and are exploiting encoded

phase information.

When interpreting PCM using the Fourier plane filtering (FPF) approach the diffraction pattern

U(k) in the back focal plane

F {u(r)}=U(k) = (2π)2δ(k)+ i∆Φ(k), (2.2)

represents the 2D spectral distribution over all spatial frequencies k = (kx,ky) of the investigated

phase object, which is modified by a so-called Fourier plane filter in this Fourier plane.

The Fourier plane filter (FPf) can be defined by its (generally complex-valued) filter function

(or transmission function (TF)) H(k)

H(k) = b(k)exp(i θ(k)). (2.3)
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The factor b(k) ∈ [0,1] represents the attenuation of the amplitude of the spatial frequencies, and

the parameter θ(k) ∈ [0,π) introduces a phase shift between the spatial frequencies.

In the observation plane (x′,y′) the phase contrast image I(x′,y′) is produced and can be de-

scribed by

I(x′,y′) ∝ u(x′,y′)u∗(x′,y′), with

u(x′,y′) = F −1(H(kx,ky) F (u(x,y))) or (2.4)

u(x′,y′) = h(x,y)⊗u(x,y),

with the impulse response function (or point spread function (PSF)) h(x,y) = F −1 {H(kx,ky)},

based on the correspondence between convolution (⊗) in spatial- and multiplication in Fourier

domain.

Although different realizations for phase filtering and illumination schemes can be exploited

in PCM, in principle they all can be described by the scheme of (2.4) differing only in the applied

filter function. Microscopic imaging techniques as dark field microscopy, spiral phase microscopy

or DIC-like phase microscopy imaging [175] may be regarded as modifications of the classical

PCM. Their realization by FPF is discussed in the following.

For dark field (index DF) microscopy the undiffracted light component is set to zero in the

Fourier plane within a small central region of the FPf (for a given aperture radius ka).

HDF(k) =

{
0 for |k| ≤ ka

1 for |k|> ka,
(2.5)

In case of Zernike-PCM (index Z) the undiffracted on-axis component is phase shifted by a certain

phase amount (usually by π/2). The corresponding filter function HZ can be described [29] by

HZ(k) =

{
exp(±iπ/2) for |k| ≤ ka

1 for |k|> ka,
(2.6)

resulting in a filtered diffraction image

UZ(k) = HZ(k)U(k) =

{
±i(2π)2δ(k)∓∆Φ(0) for |k| ≤ ka

i∆Φ(k) for |k|> ka
(2.7)

as derived in detail in [30].

The back-transformed wave field at image plane (x′,y′) can be written as

uZ(x
′,y′) =±i+ i ∆φ(x′,y′). (2.8)

The intensity of the resulting interference image under the assumption of the small-scale phase

approximation can be noted as

IZ(x
′,y′) ∝ uZ(x

′,y′)u∗Z(x
′,y′)≈ 1±2∆φ(x′,y′), (2.9)

realizing a linear mapping from phase to intensity for small phase shifts. Limited by this approxi-

mation PCM can be exploited in a quantitative way only for very small phase shifts. Working still

in the described linear regime quantitative PCM imaging for technical application fields has been

demonstrated recently in [31].
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Figure 2.2: Scheme of a 4f-configuration for Fourier plane filtering.

Furthermore phase contrast images often suffer from imaging artifacts, in particular, halo-

and shade-off effects, and a quantitative evaluation is complicated. To overcome the limitations

given by the conventional PCM different approaches have been developed to increase the ex-

ploitable phase range for PCM [5]. Recently, a mathematical generalized approach to PCM has

been demonstrated in [25] taking into account a higher order expansion of the Taylor series of the

object wave field, which allows an extended quantitative imaging.

2.1.2 Imaging setup for Fourier plane filtering

The above described Fourier plane filtering can optically be realized by means of a so-called 4f-

imaging configuration, as sketched in Figure 2.2. The Fourier plane filter (FPf) is used to modify

the on-axis part of the undiffracted wave, focused in the central region of the FPf, relatively to the

off-axis diffracted wave. The phase object is placed at the object plane x = (x,y) and illuminated

by the incident plane wave. The object plane is located in the front focal plane of lens L1 with

focal length f . The lens L1 performs the Fourier transform F of the imaging wave field. The

Fourier plane filter is inserted in the common focal plane (Fourier plane) of both lenses modifying

the projected spatial frequency distribution of the phase objects. After optically performing the

inverse Fourier transform F −1 with the second lens L2 the filtered image, showing a modified

contrast, can be recorded. The specific design of the apertures (central, angular, point pattern) in

PCM will not be considered here, but it should be noticed that the illumination aperture has to

correspond to the chosen phase masks of the Fourier plane filter.

2.2 Differential interference contrast microscopy

2.2.1 Imaging principle in DIC microscopy

DIC microscopy, as a whole-field imaging microscopy technique [32], can be regarded as a deriva-

tive of phase contrast microscopy: Zernike PCM measures the phase difference ∆φ between the

diffracted and the undiffracted propagating waves. In contrast, in DIC microscopy the phase dif-

ference ∆φτ(x,y) between the two adjacent wave fields passing the object under a (shear) distance
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τ, gives a measure for the phase gradient ∇φ projected onto the shear direction eτ. In a transmis-

sion regime the phase gradient also expresses the gradient of the optical path length (OPL) ∇ϑ.

Describing the measured phase difference by the projected OPL gradient as

∆φτ(x,y) =
2π

λ
(∇ϑ(x,y),τeτ)+φ0, (2.10)

and supposing a shear in x-direction with τ = ∆x yields ∆φτ(x,y) =
∂φ(x,y)

∂x
∆x as the measurable

phase-related quantity.

The recorded intensity IDIC(x,y) can be related to the object transmission function u(x,y) and

especially to the total phase difference ∆φ(x,y), which is induced by the sample in the wave propa-

gation direction. Following again the FPF approach the image formation can be written (according

to (2.4)) as a convolution of the object transmission function with the 2D PSF hDIC(x,y) of a DIC

microscope [33],

IDIC(x,y) = I0

∣∣∣∣
∫

Ω
u(x̃, ỹ)hDIC(x− x̃,y− ỹ)dx̃dỹ

∣∣∣∣
2

, (2.11)

assuming a (spatially coherent) incident illumination I0 here. The complex PSF hDIC(x,y) with an

inherent DIC shear eτ = (∆x,∆y) can be expressed by [34]

hDIC(x,y) = (
1

2

[
exp(−i

φ0

2
)hσ(x−∆x/2,y−∆y/2) (2.12)

− exp(i
φ0

2
)hσ(x+∆x/2,y+∆y/2)

]
,

with hσ(x,y) ∝ exp(−(x2 + y2)/2σ2
D), σD > 0,

where the Gaussian kernel function hσ(x,y) with the parameter σD denotes the approximated

PSF of conventional transmission optics and expresses the diffraction limitation in microscopy. In

case of a simplified, purely geometric optics model hσ(x,y) = δ(x,y) may be supposed. Assuming

this geometric optics model for a conventional DIC microscope setup the measured intensity image

IDIC(x,y) can be described with an equation showing the interferometric imaging character of DIC

microscopy

IDIC(x,y) = I0 sin2(∆φτ(x,y)/2+φ0) =
1

2
I0 (1− cos(∆φτ(x,y)+φ0)). (2.13)

Considering phase objects with weak slopes ∆φτ ≪ π, as commonly can be assumed for cells

and flat objects, equation (2.13) can be linearized. For a given bias retardation of φ0 = π/2 and

after removing the DC-component, we obtain a zero-mean DIC intensity image I′DIC

I′DIC(x,y) = IDIC(x,y)−
1

2
I0 ∝ sin(∆φτ(x,y)) ∝ ∆φτ(x,y). (2.14)

A linear mapping from a directional phase derivative (i.e. the phase gradient projected on the shear

direction) to intensity can be realized for small phase derivatives. This quantitative relationship

may be exploited for an approximative reconstruction of the phase map for transparent biological

samples under the assumption of small phase gradients, as demonstrated recently in [165].
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Figure 2.3: Differential interference contrast microscopy. a) Optical DIC microscope setup with

indicated wave propagation and polarization directions, b) and c) DIC image of different cell types

showing typical differential interference contrast in the diagonal direction, [185].

2.2.2 Imaging setup in DIC microscopy

A sketch of the optical DIC microscope setup is depicted in Figure 2.3 a). It contains two Wollaston

prisms as essential optical elements. The first one performs the splitting and shearing of the

incident linear polarized wave field and the second Wollaston prism combines the two wave fields

after having passed the investigated transparent sample. The phase object causes a mutual phase

shift between the two wave fields interfering after the second Wollaston prism. In general, the

phase changes introduced by the specimen result in an elliptic polarization state of the interference

signal. The ellipticity, extracted by the second polarizer, gives a measure for the phase difference

in shear direction.

Hence, the DIC shear direction eτ, which is in general diagonal, parallel or orthogonal to the

scanning movement, determines the direction of the recorded phase derivative. The shear amount

τ determines the lateral resolution of the DIC imaging. Additionally the bias retardation φ0 may

modify the intensity distribution, e.g. a bias φ0 = π/2 results in a pseudo 3D profile as can be seen

in Figure 2.3 b) and c). Hence, the shadow-like appearance of the DIC-imaged specimen is not a

result of illumination, but of interference between the two sheared waves.

2.2.3 Quantitative imaging in DIC

The question about phase reconstruction from the recorded DIC image is discussed in the field

of quantitative DIC microscopy. Two principle ways for phase recovery are followed for quan-

titative DIC imaging: Approaches which are based on sophisticated optical configurations and

mathematically based solution of (at least approximative) reconstruction.

For the general case of arbitrary sized phase objects the approximation of (2.14) is no longer

valid. The nonlinear relation between measured intensity and phase or phase derivative of the

investigated object has to be taken into account for a quantitative reconstruction. Similar to phase

stepping methods in conventional interferometry, an optically modified type of DIC microscope is
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suggested in [36] to obtain a linear dependence between intensity and differential phase. Therein a

geometric phase shifting with optical phase plates (so-called PS-DIC) is demonstrated. Being able

thereby to extract the linear phase gradient (by performing the measurements in two orthogonal

shear directions and with different phase shifts due to the phase plates) the described PS-DIC

technique allows a quantitative reconstruction of the OPL distribution of the specimen. However,

PS-DIC requires a sophisticated optical setup compared to a conventional DIC microscope.

In [35] a rotational-diversity phase reconstruction approach has been suggested for quantita-

tive DIC imaging combining optical and mathematical approaches. The mathematical reconstruc-

tion is based on the solution of a Czesars I-divergence minimization problem in case of having

multiple rotated DIC scans available.

In conventional DIC microscopy usually only a single DIC scan is available. Being aware that

the complete quantitative phase information perpendicular to the shear direction is lost for only

a single DIC image being available, the phase map can not be fully recovered from a single im-

age. But, the phase distribution (or OPL map) can be recovered approximatively in a quantitative

way assuming weak phase objects and including additionally prior information (e.g. smoothness,

positivity,etc.). Simplified reconstruction methods are described in literature, which are based on

(iterative) line-integration and deconvolution approaches [159].

Following the principle of conventional DIC imaging and measuring the directional phase

derivatives we have adapted DIC imaging methodology for the DPC-OCT imaging setup. The

advantage of DPC-OCT imaging over DIC microscopy consists hereby in the linear relationship

between the differential phase (or phase gradient) and the measured intensity, therefore being not

restricted to small phase differences as in the case of PCM. Hence, additional phase stepping

methods or comprehensive numerical reconstruction are not required for quantitative phase recon-

struction in DPC-OCT imaging. Furthermore, DPC-OCT exhibits the ability of a depth-resolved

quantitative phase imaging that can not be realized by means of conventional DIC microscopy, as

will be regarded in detail in Chapter (6).

2.3 Spiral phase microscopy

2.3.1 Imaging principle in spiral phase microscopy

Spiral phase microscopy (SPM), also known as vortex microscopy, and spiral phase filtering (SPF)

have found increased interest in last years. The use of SPF in the field of laser beam shaping

[37] or for contrast enhancement [38] has been demonstrated. In the context of phase contrast

microscopy and interferometry the concept of SPM has been suggested by [39] exploiting the

above described concept of Fourier plane filtering, only with a helical phase filter function. Its

transmission function HSp(k) is described by

HSp(k) = i
k

|k| = i exp(i Θ), (2.15)

with the complex notation for vector k = kx + i ky and polar angle Θ = ∠k.

In spatial domain the related PSF hSp(r) of the spiral phase filter (index Sp) is given by

hSp(r) =

{
− r

2πr3 = − exp(i θ)
2πr2 for r 6= 0

0 for r = 0,
(2.16)
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with r = x+ i y, r = |r| and the polar angle θ = ∠r. The PSF contains an isotropic radial (index r)

component hSp,r(r) = − 1
2πr2 , and an angular (index θ) component hSp,θ(θ) = exp(i θ) depending

on the angle θ.

It should be emphasized that the spiral phase filter (SPF) included in the microscopic imaging

system acts as Fourier plane filter on the complex-valued wave field of the propagating light. The

image formation itself can be described again by the FPF scheme: Modifying the image contrast by

applying the spiral phase filter function HSp(k) on the object transmission function. In this optical

context the applied SPF can be used e.g. for edge detection, anisotropic structure enhancement

[41], or for obtaining a visualization of the transparent sample comparable to the appearance of a

phase object imaged by DIC methods [40].

In addition to the pure contrast or edge enhancement ability by (optical) spiral phase filtering,

a method for quantitative phase imaging of a complex specimen is demonstrated in [42] using

three by means of the spiral filter rotationally phase-shifted images for reconstruction.

2.3.2 Properties of the spiral phase filter in optics

Some interesting properties of spiral phase filter acting as an optical device should be mentioned

already here, and they will appear again in the context of mathematics and signal processing in

Chapter (3) by applying spiral phase filtering as a mathematical operation in an analog way.

Phase filtering by applying a SPF mask represents a phase-only filtering (with exception for

the DC component), i.e. the transfer function has a constant unit value of magnitude and

only the angular phase Θ is changing.

Although the problem of designing ”an isotropic odd 2D filter is not possible in the complex

domain” [45], the SPF fulfills a weaker assumption for isotropy and for the required odd-

property: The isotropy is fulfilled with respect to performing a 1D HT along each frequency

line passing the center, and the transfer function is odd with respect to the sign change along

each of these lines.

The SPF has a singularity in its center for r = 0, which is of importance for the appearance

of the filtered image. Using a programmable, pixelated spatial light modulator (SLM) as

phase filter, the central pixel of the SLM can be set at a chosen phase value resulting in

different direction of edge enhancement. In case of setting the central pixel to zero it results

in isotropic edge enhancement [39].

The SPF with a transfer function HSp(k) = exp(i P Θ) with P = 2,3, ... represents a SPF

with higher topological charges P. Recently SPFs with fractional values of P have been

optically demonstrated [41].

The mathematically corresponding analogon to SPF as optical device is represented by the

radial Hilbert transform (RHT), which will be considered in the following chapter in the field of

signal analysis. Also in the field of image processing the RHT may be used for isotropic edge en-

hancement or to extraction of image features as corners and lines [46, 47]. But, applied in image

processing the filter acts on the scalar-valued pixel intensity. This leads to slightly different behav-

ior of the filter in image processing with respect to edge enhancement or orientational information

extraction.
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In Chapter (3) and Chapter (5) we consider the use of vortex filters in the context of monogenic

signal theory and for fringe pattern demodulation.

2.4 Summary

In this chapter, we have shortly reviewed established phase-contrast based microscopic techniques,

their imaging principles based on Fourier plane filtering and their unified representation as inter-

ference based, phase-sensitive imaging techniques. We have shown that they can be applied as

quantitative techniques, but only under additional assumptions about weak phase objects or weak

phase gradients or, as in the case of SPM, in combination with phase shifting techniques.

Fourier phase microscopy [48] or Hilbert phase microscopy [49, 50] could provide alternatives

for quantitative phase imaging and phase-sensitive investigation of microstructures. But, Fourier

phase microscopy as a global phase imaging technique with high performance for dynamical phase

visualization of transient processes extracts only the total phase shift.

In contrast to phase microscopy the applied phase-sensitive OCT techniques allow a depth-

resolved quantitative measuring of phase or phase ratios as demonstrated in the thesis for DPC-

OCT imaging. PS-OCT as phase retardation imaging technique also enables to determine a cu-

mulative phase resp. retardation representation over the depth direction. Both techniques will be

explained in detail in Chapter (5) and Chapter (6).

Finally, it should be mentioned that also non-interferometric quantitative phase microscopy

imaging and reconstruction methods, are existing [51, 52]. As demonstrated in [23] and recently

shown for DIC imaging in [53] the phase reconstruction is performed by solving the so-called

transport of intensity equation. Although this method provides an interesting idea for quantitative

phase recovery we do not follow this approach in the thesis as the described reconstruction can

not been transfered for the intended DPC-OCT setup.
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Chapter 3

Fundamentals of Analytic Signal

Theory

Before phase-sensitive OCT imaging techniques and reconstruction approaches are regarded in

Chapter (5) and Chapter (6) as the main item of this thesis, we will introduce in this chapter the

mathematical fundamentals which are prerequisites for signal analysis and fringe demodulation,

in particular, for PS-OCT imaging. PS-OCT images often exhibit strong fringe patterns, so-called

retardation fringe patterns. This type of fringe patterns expresses material inherent properties as

birefringence, stress or retardation of the investigated specimen and will be regarded in detail in

the following chapter.

Generally, 2D fringes patterns are characterized by their instantaneous phase, instantaneous

frequency, local amplitude and local orientation. The extraction of the information encoded by the

instantaneous phase, frequency or amplitude of the fringe patterns is the aim of different demod-

ulation techniques. Demodulation techniques based on only a single fringe pattern (in contrast

to phase-stepped versions) are called single fringe analysis or demodulation methods. In [43] the

term ’natural demodulation’ is introduced to this type of 2D signal demodulation in the field of

interferometry.

In the mathematical field (i.e. in functional analysis) demodulation techniques are closely

related to the analytic signal (or analytic function) theory, to the Hilbert transform delivering the

complex extension or quadrature component, and to the monogenic signal theory for extending

the analysis to a higher signal dimension.

In this chapter, we want to regard some basic relations valid for analytic and monogenic sig-

nals, different interpretations of the Hilbert transform in various contexts, and relate fringe patterns

to single- and multi-component image structures. Furthermore, the conditions for the applicabil-

ity of the 2D demodulation theory are considered. Additionally simulations are performed to ex-

plain and to estimate expected deviations and errors from the conventional demodulation scheme.

Non-harmonic wave shapes or varying background, being typical effects in real-world PS-OCT

imaging, are taking into account.

33
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3.1 Image structures

3.1.1 Classification of image structures

Considering (grayscale) images represented as 2D functions f (x,y)∈R we can classify the recorded

image structures e.g. into structures at certain scales [54], into deterministic or random structures

describing statistical properties of the observed specimen (e.g. material scattering or noise), or

into structures requiring different degrees of freedom for description. Regarding image structures

in a local neighborhood of (x,y) we can distinguish e.g. between local areas of constant intensity,

edges, lines, junctions of lines or point patterns.

Classifying in general 2D image structures according to the degree of freedom [55], or corre-

spondingly according to their local spectrum and following the definition of [56], the structures

can be schematized into:

Locally intrinsic zero-dimensional (i0D) patterns (with a spectrum concentrated in the ori-

gin), representing a constant intensity value,

Locally intrinsic one-dimensional (i1D) patterns (with a spectrum concentrated in a single

line through the origin), representing lines, edges or sinusoidal waves,

Locally intrinsic two-dimensional (i2D) patterns (with a spectrum not concentrated on a

single line), representing e.g. crossing lines and junctions, corners or spots.

The image structures are called ’simple’ if they can be described in a local neighborhood as a

pattern with one single orientation, e.g. the signal is mainly varying only in one direction. We will

model retardation fringes in Chapter (5) as being simple i1D structures in a local neighborhood.

3.1.2 Characterization of image structures

Images structures may be characterized by different quantities, e.g. by their intensity (ι), scale (ξ),

orientation (β), but they also can be described by their local phase φ or instantaneous frequency.

E.g. edges (step function) and lines are not only a transition of intensity (i.e. they are not only

characterized by e.g. their intensity gradient exceeding a given threshold), but they are also char-

acterized by their local phase, having e.g. at edges the highest phase congruency (i.e. all Fourier

modes are having the same phase state (modulo 2π) according to the definition given in [57]).

These phase-related interpretations of structures and patterns require a different understanding of

the image, what will be explained in the following.

Assuming that an arbitrary image may be described as a (real-valued) signal in the form of

f (x) = a(x)cos(φ(x)), in general we can not suppose simultaneously smooth functions for a(x)
and φ(x). Hence, there results an infinite number of possible solutions for decomposing the signal

f (x) into a(x) and φ(x). However, by additional constraints supposing e.g. smoothness of a(x)
and φ(x) and positivity of a(x) we can restrict the number of solutions. But by conditioning

smoothness, a solution need not to exist in the single-component representation. Therefore, an
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arbitrary image has to be be represented as a multi-component (index MU) signal [58]:

fMU,R(x) =
M

∑
m=1

fm(x) =
M

∑
m=1

am(x) cos(φm(x)), (3.1)

with fMU,R : Rn → R, am : Rn → (0,1] ,φm : Rn → R.

The signal fMU,R can be considered as the real part of the in generally complex-valued multi-

component signal

fMU(x) =
M

∑
m=1

fm(x) =
M

∑
m=1

am(x) exp(i φm(x)), (3.2)

with fMU : Rn → C, am : Rn → (0,1] ,φm : Rn → R.

First we want to assume, similar to [58], a complex-valued signal modeled as a multi-component

signal fMU(x) by superposition of (globally) spatially varying, but locally coherent single-component

signals fm(x)
fm(x) = am(x) exp(i φm(x)); x ∈ Rn. (3.3)

The single-component signals are characterized by their smooth instantaneous amplitude function

am(x) = |( fm(x))| , (3.4)

a smooth instantaneous phase function

φm(x) = ∠( fm(x)), (3.5)

and an instantaneous frequency function

wm(x) =
∂(φm(x))

∂x
. (3.6)

Furthermore, it should be remarked that the phase definition of (3.5) assumes a scalar interpre-

tation of the phase. In connection with monogenic signal theory we will introduce a vector-related

definition of the local phase for 2D signals. Furthermore, it has to be mentioned that also a 2D

phase interpretation based on quarternionic signal analysis may be used for description of image

structures [59]. Here, we want to suppose a signal being locally narrowband (i.e. signals with

an amplitude and frequency that do not vary too rapidly) and being coherent (i.e. signals, whose

structure is retaining over several length scales).

For fringes in PS-OCT retardation images it would be almost fulfilled, at least regarding a

small neighborhood region and neglecting the noise. By performing a previous preprocessing for

noise removal and a background correction the number of components may be decreased. Then,

for a local region we can assume approximatively that one spatially frequency is dominant or

can be extracted e.g. after a preceding bandpass filtering exploiting prior knowledge about the

expected signal frequency spectrum.

However, if we consider fringes as 2D spatially varying signals (similar to the 1D case of insta-

tionary signals in case of temporal signals) over a larger image region the filtering would require

a local adaptation, e.g. an adaptive bandpass filtering by windowed Fast Fourier Transform (FFT)

methods. Especially, if the multi-component signal contains a dominant component superposed by

a slowly varying second instationary signal component (as would result e.g. from a local non-zero

mean background) the filtering becomes difficult. A time-frequency analysis for decomposition of

the composed signal into its different signal modes (i.e. dominant signal, background and noise)

would be required to determine interpretable phase values.
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3.1.3 Decomposition and analysis of image structures

3.1.3.1 Fourier and Hilbert spectral analysis methods

Fourier spectral analysis methods as short time FFT (SFFT) or Wigner-Ville distribution methods

[60] are established techniques for signal decomposition and instantaneous frequency estimation.

But, they represent an computationally expensive procedure, which is not followed by us.

As an alternative to usual Fourier spectral analysis methods we consider Hilbert spectral analy-

sis methods. Therein no longer a decomposition of the signal by assuming constant coefficients am

and frequencies wm is applied, but considering am(x) and wm(x) as functions. This concept allows

to find a suitable and interpretable decomposition for instationary or spatially varying signals.

f (x) = ∑
m

am(x)exp(i
∫

wm(x) dx), (3.7)

Based on Hilbert spectral analysis the empirical mode decomposition (EMD) can be derived as a

possibility for an adaptive signal decomposition as recently demonstrated in [61]. The concept of

EMD for instantaneous frequency and phase estimation is briefly regarded in the following.

3.1.3.2 Empirical mode decomposition

Empirical mode decomposition (EMD) techniques may be used for the analysis of multi-component

signals to obtain a meaningful interpretation of their local phase and frequency with respect to

their single components. Suggested by [62] as an adaptive, data driven technique it allows a rep-

resentation of the instationary, multi-component signal as sum of zero-mean instationary single-

component signals (called intrinsic mode functions (IMF)) and a remaining low-frequency resid-

ual function. The IMFs are resulting from the inherent data structures. An IMF can easily be

characterized by its two properties: [63]

The number of extrema and the number of zero crossings must either be equal or differ at

most by one over the whole data set.

The mean value of both envelopes defined by either the local maxima and local minima is

zero at any point.

This original 1D concept (for instationary signals) can be extended to higher dimensional

signals (for spatially varying signals) in an analog way. In particular, it may be realized as bi-

dimensional EMD (BEMD) method [64], which is applicable for decomposition of 2D AM-FM

image structures. For the BEMD a suitable 2D method for the computation of the maxima/minima

envelopes is required. We follow the approach in [64] using a Delaunay triangulation and a cubic

spline interpolation on the resulting triangles for the maximum/minimum-envelope computation.

In case of bandpass filtering being insufficient for preprocessing of fringe patterns we ap-

ply the EMD method for the estimation of the locally varying non-zero mean background. The

background is estimated hereby as the sum of the low-frequency IMFs and the residual of the

decomposition (the degree of decomposition has been tested empirically by us). Finally, a lo-

cal zero-mean signal with a locally dominant frequency can be obtained which is exploitable for

quadrature computation and demodulation, see Section (3.4).
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In the following, after performing a bandpass filtering or EMD as preprocessing, we suppose

the functions f (x) as zero-mean, locally coherent (narrowband) i1D signals, for which analytic or

monogenic signal theory successfully can be used for the extraction of their local phase, frequency

or energy.

3.2 1D Analytic signal

The analytic signal definition of a real-valued 1D signal as complex-valued 1D signal representa-

tion was introduced by Gabor in 1946 [65]. Since that time analytic signal theory has developed

to a well established approach in signal processing for instantaneous phase and frequency estima-

tion. Based on analytic signal theory various demodulation techniques find their wide-spread use

e.g. in communication technology [66, 67], for Laser-Doppler velocimetry [68] or in ultrasound

applications [69].

The analytic signal theory is closely related with the Hilbert transform (HT).

Considering the function f (x) ∈ R of the real-valued variable x a complex-extended signal

fA ∈ C whose imaginary part can be determined by the Hilbert transform of the real signal part

f (x)

fA(x) = f (x)+ i H { f (x)}= f (x)+ i fH(x), (3.8)

is called the analytic signal [70]. H denotes the 1D Hilbert transform operator. The HT is mathe-

matically defined as a linear mapping between two sets of functions H : R→ R with

fH(x) = H { f (x)}=−1

π

∫ ∞

−∞

f (η)

η− x
dη =

1

πx
⊗ f (x). (3.9)

It can be represented in the Fourier domain as

H { f (x)}=−F −1 {isgn(υ) F { f (x)}} , (3.10)

with the transfer function H(υ) =−isgn(υ) = exp(±i π
2
). Hence, the HT acts as a filter function,

shifting the Fourier phase of all spectral components by ±π
2

depending on the sign of the spectral

component.

The 1D Hilbert transform (3.9) as a well-known integral transform is characterized by the

following properties with respect to its transfer function H:

Antisymmetry: H(υ) =−H(−υ)

Unit energy: |H(υ)|= 1, ∀υ 6= 0

Suppression of DC component: H(0) = 0

The analytic signal is characterized by an one-sided spectrum containing only zero-valued com-

ponents on the left side of the Fourier spectrum F(υ), i.e. all Fourier coefficients are vanishing

for υ < 0. fA(x) can be derived by removing all negative frequency components in the Fourier

spectrum of the real signal f (x).
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Extending the analytic signal to the complex analytic function fA(ζ) = fR(ζ)+ i fI(ζ) of the

complex variable ζ= χ+ i ς defined in the upper half plane Ω+
C = {(χ,ς) : χ ≡ x,ς > 0} (including

the real axis as boundary), both components fR(ζ) and fI(ζ) have to satisfy the Cauchy-Riemann

system

∂ fR(ζ)

∂χ
=

∂ fI(ζ)

∂ς
(3.11)

∂ fR(ζ)

∂ς
= −∂ fI(ζ)

∂χ
. (3.12)

Being ζ inside a closed contour L ∈ Ω+
C , fA(ζ) can be expressed according to Cauchy’s defi-

nition [71] as

fA(ζ) =
1

2πi

∫
L

fA(ζ
′)

ζ′−ζ
dζ′. (3.13)

Restricting the analytic function at the real axis fA(ζ) = fA(χ,0) the analytic signal of the real

variable x as a complex function can be derived in the limit. The boundary values fR(χ,0) and

fI(χ,0) are related by

fA(x) = fA(χ,0) = fR(χ,0)+ i fI(χ,0) = fR(χ,0)+ iH { fR(χ,0)} , (3.14)

where fI(χ,0) represents the 1D Hilbert transform of fR(χ,0). The mutual relation between fR

and fI can be expressed using Cauchy principal value notation (P
∫

) as [71]

fI(χ,0) =−1

π
P

∫ ∞

−∞

fR(η,0)

η−χ
dη (3.15)

fR(χ,0) =
1

π
P

∫ ∞

−∞

fI(η,0)

η−χ
dη, (3.16)

with χ = x resulting in (3.9).

Regarding these relations from the point of view of system theory equations (3.15) and (3.16)

are representing the mutual dependence of real and imaginary component of the system transfer

function. Considering them from point of view of optics they deliver the well-known Kramers-

Kronig relations, characterizing e.g. the dispersion dependence of complex susceptibilities in

materials. From the mathematical point of view they are applied to deliver the complex extension

of real-valued functions.

The fundamental importance of the 1D analytical signal representation is related to the pos-

sibility to decompose the 1D signal information into its local amplitude as modulus and into its

local phase φA(x) as argument of the complex-valued analytic signal with

AA(x) = abs( fA(x)) =
√

f (x)2 +H ( f (x))2 (3.17)

φA(x) = arctan
H ( f (x))

f (x)
. (3.18)

This decomposition, denoted as so-called ”split of identity” [47] of signal information, allows to

independently extract information about local energy and local phase of the signal. Signal energy

is related with local amplitude (i.e. amplitude and energy are mutually variant quantities) and the
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local structure of the signal is related with local phase (i.e. amplitude and phase being invariant

quantities). This so-called invariance-equivariance principle is fulfilled by decomposing the signal

content into its energetic and structural component by means of the HT as demonstrated in [45]:

The energetic information varies solely with the amplitude, whereas changes in signal structure

find their expression in the local phase.

3.3 2D Monogenic signal

Applications of higher dimensional functional analysis in the field of image processing e.g. phase-

based discrimination between lines and edges, 2D demodulation of arbitrary interferometric sig-

nals or phase-based fingerprint [72] and texture analysis [73] require a generalization of the 1D

Hilbert transform to higher dimensions (in particular to 2D signals).

Regarding such real-world problems, the extension of the analytic signal definition to higher

dimensions results in a generalized 2D analytic image representation [74] and later, in the mono-

genic signal and monogenic scale space theory [77] combined e.g. with quaternionic signal and

wavelet approaches [45, 78].

We want to apply the analytic signal theory for demodulation of our measured 2D PS-OCT

fringe patterns, so higher dimensional approaches for analytic functions are considered by us with

respect to the intended 2D phase retardation and stress reconstruction, performed on real data in

Chapter (5). Here, in Section (3.4), the influence of the different wave shapes and of varying

background on phase and frequency recovery will be regarded at first on simulated 2D signals.

As in literature various understandings and interpretations of the 2D Hilbert transform exist,

differing with respect to the regarded symmetry, to the applied algebra (complex, quaternionic,

geometric algebra), a short overview about used definitions for the 2D Hilbert transform is given

briefly in the following, according to [71, 45, 74].

3.3.1 Hilbert transform approaches in 2D

The property of antisymmetry of the 1D HT operator in Fourier domain poses the question about

the applied symmetry type in 2D applications: Line symmetry or point symmetry, resulting in

directional (half-plane symmetric) definitions or radial approaches for the HT.

Line symmetry

Partial Hilbert transform

with respect to the direction en is defined as:

fHP
(x,y) = H { f (x,y)}= δ(x × en)

πxen

⊗ f (x,y). (3.19)

The equation (3.19) can be regarded as one-dimensional linewise convolution along the

direction en.
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In case of en being the x- or y-direction, (3.19) results in

fHP
(x,y) =

δ(y)

πx
⊗ f (x,y), (3.20)

fHP
(x,y) =

δ(x)

πy
⊗ f (x,y).

In the following the HT according to (3.19) and (3.20) is denoted as directional HT (dHT).

We will regard this approach and apply the dHT on 2D signals and images in comparison

with radial interpretations, but (3.19) remains intrinsically an one-dimensional method (i1D

dHT).

Total Hilbert transform

with respect to the x and y axis is defined as:

fHT
(x,y) = H { f (x,y)}= 1

πxy
⊗ f (x,y). (3.21)

Combining partial and total HT yields the complex HT. However, all these definitions of

HT are performed with respect to a preferred direction and can not represent an isotropic

approach.

Point symmetry

Radial Hilbert transform (RHT)

fR(x,y) = HR { f (x,y)}= hR(x,y)⊗ f (x,y) =− 1

2π(x2 + y2)3/2

[
x

y

]
⊗ f (x,y), (3.22)

or expressed in Fourier domain as

FR(υ,ν) = HR(υ,ν) F(υ,ν). (3.23)

The transfer function HR(υ,ν) is given by the Fourier representation of the convolution

kernel hR(x,y) as

HR(υ,ν) =
i√

(υ2 +ν2)

[υ

ν

]
= i

u

‖u‖ . (3.24)

The kernel hR can be split into its radial and angular component:

hR(r,θ) = hRr(r)hRθ(θ) =− 1

2πr2
exp(i θ), (3.25)

or in Fourier domain as

HR(R,Θ) = HRr(R)HRθ(Θ) = i exp(i Θ), (3.26)

with an angular component describing – both in spatial and Fourier domain – a spherical

harmonics, in the context of optics often denoted as vortex or spiral phase filter.

The RHT can be considered as (complex) analogue to the Riesz transform as defined next

in (3.27), however staying in the complex-valued signal space. Hence, the three charac-

teristic 2D image signal features: Amplitude, phase and orientation can not be decoupled

independently by the RHT. Therefore, an additional orientation estimation is required.
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3.3.2 Riesz transform

Switching from the complex space to the space R3 spanned by the orthonormal basis vectors

(e1,e2,e3), and considering a quaternionic algebra Q with {1, i, j,k}, in which R3 is embedded as

sub-space, a 3D representation of the signal can be derived by f(x) = f1(x) e1+ f2(x) e2+ f3(x) e3

(instead of previously complex algebra C with {1, i}).

Introducing x = ix1+ jx2+x3 and u = iu1+ ju2+u3 and identifying f3e3 with the real-valued

component f (x,y), f1e1 with i-valued and f2e2 with j-valued component,

the Riesz transform (RT) RI , partially also denoted as spherical Hilbert transform [76], can be

described as [75]

fRI(x) = RI { f (x)}= hRI ⊗ f (x) =−(i, j)
x

2π‖(x)‖3/2
⊗ f (x) = (i f1(x), j f2(x)). (3.27)

The representation in Fourier domain is given as

FRI(u) = F {hRI ⊗ f (x)}= HRI(u)F(u) =−(i, j)i
u

‖u‖F(u) = (1,k)
u

‖u‖F(u), (3.28)

with notation (i, j)x = ix1 + jx2, and (1,k)u = u1 + ku2.

Applying the Riesz-transform on f (x,y) allows the definition of the monogenic signal fM(x,y)∈
Q as a vector-valued signal representation according to [45] with

fM(x,y) = f3(x,y)+ i f1(x,y)+ j f2(x,y) = f (x,y)+ fRI(x,y) = f (x,y)− (i, j)fR(x,y), (3.29)

and the corresponding Fourier representation FM(υ,ν) is given by

FM(υ,ν) = F(υ,ν)+FRI(υ,ν) = F(υ,ν)− (i, j)FR(υ,ν). (3.30)

The monogenic signal fM is characterized by its three independent sizes [45]: Local amplitude

AM(x,y), local phase φM(x,y) and local orientation βM(x,y) with

AM(x,y) =

√
f 2(x,y)+ |fRI(x,y)|2, (3.31)

φM(x,y) = arg(fM(x,y)) = eM arctan




√
f 2
1 (x,y)+ f 2

2 (x,y)

f (x,y)


 , (3.32)

βM(x,y) = arctan

(
f2(x,y)

f1(x,y)

)
, (3.33)

with eM =
(0,0,1)T × fM

|fM| .

It should be mentioned that the local phase, according to the definition in [45], is considered as

vector with a direction corresponding to the rotation axis lying in the plane spanned by (i, j).
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3.3.3 Extension: Superposition of 2D AM-FM signals

Demonstrating the applicability of RT for the local description of composed image structures (e.g.

superposition of fringe patterns), recently a generalization of the 2D analytic signal with respect to

multi-component analysis of i2D structures has been suggested including approaches of Clifford

analysis [79] and differential geometry [80, 55]. Using a multivector basis [81] for the description

of oriented structures, this model characterizes the 2D pattern by its amplitude, phase, orientation

and additionally by its apex angle. This generalized theory could finally allow the decomposition

of 2D multi-component signals into their intrinsic i1D signal components.

3.4 Demodulation of 2D AM-FM signals

3.4.1 2D AM-FM signal model for the demodulation scheme

Figure 3.1: 2D AM-FM signal model. a) Simulated 2D AM-FM image, b) simulated ampli-

tude image (describing the amplitude modulating function), c) simulated fringe pattern (being

frequency modulated), d) simulated wrapped phase image, e) simulated continuous (unwrapped)

phase image (describing the phase (or frequency) modulating function), f) continuous phase pro-

file along the line indicated in (e), g) frequency profile as derivative of (f). Image (a) represents

the input for the demodulation scheme, and amplitude (b) and phase (e) should be reconstructed

by demodulation in the following.
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PS-OCT retardation fringe patterns can be described in a simplified way as 2D amplitude and

frequency modulated signals (2D AM-FM signals). A more detailed model of PS-OCT retardation

images including noise simulations is given in Section (5.3).

Here, we introduce a 2D AM-FM signal model for demonstrating the principle of the 2D

demodulation scheme, which is based on analytic and monogenic signal theory. In addition, we

include an additive background term B(x,y). The 2D AM-FM signal IP(x,y), denoted also as the

in-phase component (index P), is represented for signals with harmonic wave shape (index S) as

IP,S(x,y) = B(x,y)+A(x,y)cos(φ(x,y)), (3.34)

with B(x,y), A(x,y) and φ(x,y) ∈ C. The amplitude modulation (AM) function is denoted as

A(x,y), and φ(x,y) represents the phase. This signal model with sinusoidal wave shape is used for

basic considerations and for illustration of the scheme.

A 2D AM-FM signal in terms of

IP,T (x,y) = B(x,y)+A(x,y)tri(φ(x,y)), (3.35)

is applied to describe the expected theoretical triangular (tri) wave shape (index T) of the retarda-

tion fringes.

For the sake of interest we also consider 2D AM-FM signals with a rectangular (rect) wave

shape (index R) expressed as

IP,R(x,y) = B(x,y)+A(x,y)rect(φ(x,y)). (3.36)

The aim of the AM-FM demodulation consists in the determination of the local values of

amplitude A(x,y), phase φ(x,y), and partially in estimating the background B(x,y). Furthermore,

the directional derivatives of the phase, representing the spatial frequencies w(x,y), are of interest.

At the beginning, the additional background is supposed to be constant (here set to zero with

B(x,y) = 0). Later we will consider the influence of a varying background on the phase and

frequency retrieval.

In our approach we apply a 2D demodulation scheme, as originally suggested in the field

of classical interferometry by [43], which computes approximatively the quadrature component

(index Q or q) as IQ(x,y) = A(x,y) sin(φ(x,y)) by the radial Hilbert transform. The applicability

of the (generalized) analytic signal theory and the conditions for the computation of the quadrature

term by means of the Hilbert transform are regarded in the following.

The simulated image, which we will use for illustration of the demodulation, is depicted in

Figure 3.1: The 2D AM-FM signal (as shown in (a)) is composed by its AM-component (as shown

in (b)) and its frequency-or phase modulation (FM or PM) component (as shown in (c)–(e)). The

theoretical phase and frequency profiles along the dashed line are depicted in (f) and (g).

The 2D signal represents a pure theoretical fringe structure, with a bandlimited spectrum,

containing a singularity in the center, and being amplitude and frequency modulated. We have

chosen this pattern, because it describes a chirped and vortex-like signal, which is also of interest

in case of SPM applications. Both spectra for the AM term A(x,y) and for the FM term cos(φ(x,y))
are distinguished by their spectral ranges, whereas in the limit they are slightly overlapping.
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3.4.2 The Hilbert transform and the quadrature component computation

The questions which have to be posed in connection with the applied demodulation scheme are:

Under which conditions analytic signal theory yields a suitable approach for quadrature

computation?

How can the approximation error between Hilbert transform and quadrature component

been estimated?

How can errors due to non-harmonic wave shape, background or noise be limited?

First, considering the mathematical problem in 1D and assuming a single-component signal,

in particular, with the special cases of

a) a sinusoidal (tonal) signal fP(x) = a(x) cos(φ(x)) = a(x) cos(ω0 x+φ0), and

b) a quadratic chirped sinusoidal signal fP(x) = a(x) cos(φ(x)) = a(x) cos(ω0 x+αCh x2).
In Figure 3.2 a) and c), both signals are depicted, where a(x) is supposed to be constant here. The

corresponding spectral magnitudes of the real-valued signal fP(x) = cos(φ(x)) and the complex-

valued signal (index C) fC(x) = exp(i φ(x)) are depicted in Figure 3.2 b) and d). It should be

noticed that for the chirped signal the magnitude of the complex-valued signal has a small contri-

bution also for negative frequencies, (see in the following (3.39)).

Bedrosians theorem [82] states that the HT of a general product term a(x) c(x) can be ex-

pressed as

H {a(x) c(x)}= a(x)H {c(x)} , (3.37)

only if the Fourier spectra for a(x) and c(x) are totally disjoint in frequency space.

Regarding, in particular, a(x) as a weak amplitude modulation due to inhomogeneous illumi-

nation or due to locally varying reference signals in the interferometric setup, and c(x) = cos(φ(x))
as the frequency modulated function containing the encoded phase to be determined, the HT de-

livers only the conjugate component

H {a(x)cos(φ(x))}= a(x)H {cos(φ(x))} , (3.38)

if phase and amplitude spectra are disjoint. Furthermore, the phase modulation has to be assumed

being the high frequency component in contrast to the slowly varying amplitude modulation.

The Nuttall theorem [83] provides a quantitative measure for the approximation error εA be-

tween the Hilbert transform fQ(x) = a(x)H {cos(φ(x))} of a signal (index Q), determined accord-

ing to analytic signal theory, and the ’true’ quadrature component fq(x) = a(x)sin(φ(x)) (index

q). According to [83] the error can be estimated as

εA =
∫ ∞

−∞

∣∣( fq(x)− fQ(x))
∣∣2 dx = 2

∫ 0

−∞
|F(υ)|2 dυ, (3.39)

with F(υ) = F {a(x)exp(i φ(x))} .

I.e. in case of bandlimited energy signals the error is bounded. Furthermore, it has been shown

in [84, 85, 88] that for a signal generated by a wide sense homogeneous process, (i.e. having

zero-mean and an autocorrelation function only dependent on distance), the 1D HT is the optimal
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Figure 3.2: Illustration of the approximation error caused by computation of quadrature signal by

HT according to the Nuttall theorem. a) Sinusoidal (tonal) signal with φ(x) = ω0 x, b) spectral

magnitude of fP(x) = cos(φ(x)) (top) and of fC(x) = exp(iφ(x)) (bottom) having no energy in the

negative frequency range, c) chirped sinusoidal signal with φ(x) = ω(x) x = cos(ω0 x+αCh x2),
d) spectral magnitude of fP(x) = cos(φ(x)) (top) and fC(x) = exp(i φ(x)) (bottom) having a small

amount of the total spectral energy in the negative frequency range.



46 Chapter 3. Fundamentals of Analytic Signal Theory

transform for computing the quadrature component of the signal in the sense of a least-square

problem.

Second, regarding the problem in 2D, the Bedrosian theorem with respect to the 2D Hilbert

transform (i.e. directional HT) is analyzed in [86]. It is shown there, that ”a bounded linear

translation invariant operator satisfies the Bedrosian theorem if and only if it can be represented

as linear combination of partial Hilbert transforms”. This result allows the splitting of local phase

and amplitude by using the generalized analytic signal for the multi-dimensional case, as first

introduced by [87].

If the Bedrosian theorem should be justified in case of applying the radial Hilbert transform

operator (or spiral phase transform according to (3.22)), we argue first that the RHT operator is a

bounded operator (with exception of the origin, but there it is mostly set to zero). Second, RHT

can be interpreted as superposition of linewise 1D Hilbert transforms performed in all angular

directions through the origin. Fulfilling the required condition of disjoint spectral ranges for the

amplitude- and frequency modulation component along these angular directions, also in the 2D

case a decomposition of the AM-FM modulated signal can be applied and the validity of Bedrosian

theorem can be assumed correspondingly. However, it should be mentioned that the 2D signals

have to be (local) zero-mean signals equivalent to the 1D case. Furthermore, a directional depen-

dence is included in this approach, which requires an additional orientation estimation. (To reliably

perform this orientation estimation the amplitude modulation should be weak, i.e. 0 << a(x)≤ 1).

Recently in [88] it has been shown that the spiral phase transform provides the optimal least square

solution for searching a transform approximatively computing the quadrature signal sin(φ(x,y))
from cos(φ(x,y)).

As will be shown in Section (5.3) our simulated or measured and preprocessed PS-OCT retar-

dation fringe patterns exhibit only a slowly varying amplitude modulation (as a result of multiple

light scattering over depth, decreasing SNR and mathematically smoothing in regions with differ-

ent variances). In contrast, the frequency modulation of the fringes is expressed almost everywhere

in a higher spectral range. Under these assumptions and after performing a previous preprocess-

ing (i.e. removing noise and higher harmonics) the 2D demodulation approach for quadrature

component computation, as described in the following, can be performed.

3.4.3 Influence of the algebraic space on the demodulation approach

For computation of the 2D quadrature component we regard two approaches: Supposing B(x,y) =
0 the quadrature component IQ(x,y) = A(x,y) sin(φ(x,y)) from the original signal IP(x,y) =
A(x,y) cos(φ(x,y)) can be determined either by the radial Hilbert transform (RHT) (denoted also

as spiral phase transform in literature) or by the Riesz transform (RT).

3.4.3.1 Computation of 2D quadrature component by the radial Hilbert transform (Spiral

phase transform)

We follow the approach in [43] for interferometric single fringe demodulation and performing the

RHT by a filtering of the fringe pattern in Fourier domain with the spiral filter transfer function

FΘ(υ,ν) = exp(i Θ(υ,ν))≡ HR(R,Θ), (3.40)
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Figure 3.3: 2D demodulation scheme, applied on a 2D AM-FM signal with harmonic wave shape,

based on the radial Hilbert transform approach. a) 2D AM-FM input image, b) reconstructed

amplitude image, c) reconstructed sinusoidal phase image, d) reconstructed wrapped phase image,

e) reconstructed continuous (unwrapped) phase image.
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AM-FM

Figure 3.4: AM-FM signal along the line, indicated in Figure 3.3 e). a) AM-FM input signal with

harmonic wave shape, b) reconstructed phase profile (blue: theoretical value, green: reconstructed

value), c) reconstructed frequency profile (blue: theoretical value, green: reconstructed value).

which is defined analogue to (2.15).

Note: Whereas in Section (2.3) in the context of spiral phase microscopy the operator HR(R,Θ)
is applied to the EM-wave to modify the contrast in imaging, the spiral filter transfer function

FΘ(υ,ν) is applied here to the fringe pattern, i.e. to a scalar-valued quantity, which is described as

2D real-valued function.

According to [43] the quadrature component is approximately obtained by the relationship

F −1 {F {IP(x,y)} exp(i Θ)}= i exp(i β(x,y))IQ(x,y), (3.41)

where β(x,y) represents the direction of the fringes (i.e. β = β2π according to (3)).

This method based on the early work of [89] represents an elegant solution of the computation

of the quadrature component for a closed fringe pattern. It comprehends a different understand-

ing of the Hilbert transform and different interpretation of a 2D signum function, compared to

directional 2D HT approaches [90]. However, it requires an additional orientation/direction esti-

mation step to remove the exponential orientation term exp(−i β(x,y)) in (3.41). Finally, in the

case that the orientation (and direction) estimation of the fringes has been additionally performed,

the quadrature signal IQ(x,y) is obtained as

IQ(x,y) = −i exp(−i β(x,y)) F −1 {F {IP(x,y) }exp(i Θ)} . (3.42)

The amplitude modulation A(x,y) and the wrapped phase φw(x,y) can be determined from

the (measured or simulated) 2D in-phase component IP(x,y) and the computed 2D quadrature

component IQ(x,y) in the usual way as

A(x,y) = |(IP(x,y)+ i IQ(x,y))| , (3.43)

φw(x,y) = ∠(IP(x,y)+ i IQ(x,y)). (3.44)

The steps of the described demodulation scheme ((3.34), (3.43), (3.44)) are depicted in Fig-

ure 3.3 a) – d). As the phase in (3.44) is given in a mapped representation, an unwrapping of
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the wrapped phase φw(x,y) is required to extract the continuous phase φc(x,y), as shown in Fig-

ure 3.3 e). The spatial frequencies can be obtained finally as gradient of the unwrapped phase

signal,

w(x,y) = ∇(φc(x,y)). (3.45)

In Figure 3.4 the the phase and frequency demodulation of an AM-FM signal along the line

indicated in Figure 3.3 is depicted for a better visualization. Theoretical phase and frequency

values and reconstruction values are correctly coinciding in case of an AM-FM model having

sinusoidal wave-shape fringes.

3.4.3.2 Computation of 2D quadrature component by the Riesz transform

Figure 3.5: 2D demodulation scheme, applied on a 2D AM-FM signal with harmonic wave shape,

based on the Riesz transform approach [45, 55]. a) 2D input AM-FM image, b) reconstructed

amplitude image, c) reconstructed phase image, d) estimated orientation image.

Furthermore, as extension to the RHT approach we apply the concept of quadrature compu-

tation by the Riesz transform, defined in (3.27) and (3.28), according to the scheme proposed in

[45, 55]. Therein, in the spatial domain the convolution with the RHT kernel hR, coupling the

radial 1
2πr2 and angular term exp(i β) is replaced by the convolution with the Riesz kernel hRI, de-

fined in quaternionic space. Having now four independent basis elements (i, j,k,1) available, the
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three quantities (amplitude, phase and orientation) can be represented independently, and phase

and orientation are no longer entangled.

Following this approach and using the quaternionic signal representation, the 2D AM-FM

signals may be split into its amplitude, phase and orientation component, as depicted in Figure 3.5.

Additionally, here a bandpass filter has been included. This results in slight fluctuations in the

reconstructed amplitude image (Figure 3.5 b)).

3.4.3.3 Comparison: Radial Hilbert transform and Riesz transform

The results of both approaches (Radial Hilbert transform and Riesz transform) are comparable

with respect to the separation of the amplitude and phase image, compare Figures 3.3 and 3.5.

The monogenic (vectorial) phase (see (3.32)) is represented here by its magnitude (i.e. without

wraps), the sign would be encoded in the direction of the vector eM. The advantage of RT approach

versus RHT consists that no additional orientation estimation is required. However, the switching

to quaternionic algebra is a necessary step for the realization of this method. Comparing both

efforts, we have chosen in the following the RHT as basis for the 2D signal demodulation. It

should be noted that the RT approach seems of advantage in case of considering superposition of

fringe patterns.
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3.4.4 Influence of the wave shape on the demodulation approach

3.4.4.1 1D Signals

First, we demonstrate the influence of the wave shape on the demodulation results and especially

on the frequency estimation for a periodic 1D signal fP(x), being sinusoidal (S), triangular (T)

or rectangular (R) pulse trains, as shown in Figure 3.6. There we have displayed the signal,

its quadrature component fQ(x), computed by the HT (taking into account some approximation

error), and its energy as magnitude of both components | fP(x)+ i fQ(x)|. Only in the case of a

sinusoidal signal we obtain a constant unit energy. In the case of the other chosen wave shapes

deviations from unit energy are recognizable, (i.e. the quadrature does not correspond exactly to

the signal obtained by HT). This can also be explained in terms of Taylor series by the higher

harmonics of the non-harmonic signals.

Figure 3.6: 1D periodic signals of different wave shapes (S,T,R). a) Sinusoidal signal

fPS(x), fQS(x), b) rectangular signal fPR(x), fQR(x), c) triangular signal fPT (x), fQT (x), d)

smoothed rectangular signal fPR̃(x), fQR̃(x). (blue: original signal fP(x), green: Hilbert trans-

formed signal fQ(x), red: magnitude of the analytic signal | fA| ).
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As we can represent the periodic signals by its Fourier series

fPS(x) = sin(ωx) (3.46)

fPT (x) = sin(ωx)− 1

9
sin(3ωx)+

1

25
sin(5ωx)... (3.47)

fPR(x) = sin(ωx)+
1

3
sin(3ωx)+

1

5
sin(5ωx)..., (3.48)

and applying the HT delivers the corresponding conjugate signal terms

fQS(x) = −cos(ωx) (3.49)

fQT (x) = −cos(ωx)+
1

9
cos(3ωx)− 1

25
cos(5ωx)... (3.50)

fQR(x) = −cos(ωx)− 1

3
cos(3ωx)− 1

5
cos(5ωx)..., (3.51)

Hence, by computing the phase directly by the arctan-relation we would obtain a nonlinear phase

function in case of triangular or rectangular wave shapes, as shown in Figure 3.7. Although the

phase error between the nonlinear phase function and the linear phase function is low, as shown

in Figure 3.8 a), and can be estimated by Taylor series expansion (with less than 0.12 rad for

triangular pulses), the frequency as derivative of the phase functions shows erroneous peaks. A

decreasing of the erroneous peaks in the frequency signal can be achieved by a preceding smooth-

ing, e.g. by a low pass filtering or – as later regarded – by a regularization method. Due to the low

pass filtering the higher harmonics are reduced, resulting in a decreasing of the erroneous peaks,

as shown Figure 3.8 b),

For real-world signals these effects demonstrated here by simulations give us the motivation to

combine the denoising and smoothing of wave shapes to obtain an approximately harmonic wave

shape.

3.4.4.2 2D Signals

Similar to our considerations about the influence of wave shape in 1D, the 2D demodulation

scheme has been exemplified on the simulated 2D AM-FM image, being comparably modified

by triangular and rectangular wave shapes. The demodulation scheme works in principle, but,

similar to the 1D case, it leads to frequency peaks in case of a triangular wave shape (as shown in

Figure 3.9 and Figure 3.10) due to the nonlinear phase function. The erroneous frequency peaks

are still more amplified in the case of a rectangular wave shape signal (as can be seen in Fig-

ure 3.11 and Figure 3.12). Due to these artefacts, the direct demodulation scheme without any

preprocessing (i.e. smoothing) seems impracticable.
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Figure 3.7: Illustration of the non-linearity of the phase, obtained by the HT approach. a) Wrapped

phase dependent on wave shape (sinusoidal, rectangular), b) after smoothing the wave shape (si-

nusoidal, triangular), c) unwrapped phase dependent on wave shape (sinusoidal, rectangular, tri-

angular), d) unwrapped phase after smoothing the wave shape.

Figure 3.8: Phase error and frequency deviations in case of non-harmonic signal. a) Phase error

obtained as deviation from linear phase, b) instantaneous frequency as derivative of instantaneous

phase exhibiting erroneous peaks, but being reduced by a prior smoothing.
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Figure 3.9: 2D demodulation scheme, applied on a 2D AM-FM signal with triangular wave shape.

a) 2D AM-FM input image, b) reconstructed amplitude image, c) reconstructed sinusoidal phase

image, d) reconstructed wrapped phase image, e) reconstructed continuous (unwrapped) phase

image.

Figure 3.10: AM-FM signal along the line, indicated in Figure 3.9 e). a) AM-FM input signal with

triangular wave shape, b) reconstructed phase profile (blue: theoretical value, green: reconstructed

value), c) reconstructed frequency profile (blue: theoretical value, green: reconstructed value).
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Figure 3.11: 2D demodulation scheme, applied on a 2D AM-FM signal with rectangular wave

shape. a) 2D AM-FM input image, b) reconstructed amplitude image, c) reconstructed sinusoidal

phase image, d) reconstructed wrapped phase image, e) reconstructed continuous (unwrapped)

phase image.

Figure 3.12: AM-FM signal along line, indicated in Figure 3.11 e). a) AM-FM input signal with

rectangular wave shape, b) reconstructed phase profile (blue: theoretical value, green: recon-

structed value), c) reconstructed frequency profile (blue: theoretical value, green: reconstructed

value).
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3.4.5 Influence of the background on the demodulation approach

Due to different imaging situations (e.g. having varying illumination) or due to inhomogeneous

scattering properties of the sample (e.g. by a moving average over noisy inhomogeneous regions)

an additive background term B(x,y) may occur. It can be considered as an additional offset. First,

the influence of this offset term is estimated for a periodic 1D signal. Second, for our 2D AM-FM

signal model a solution for background removal is presented.

3.4.5.1 Error estimation

Figure 3.13: Influence of signal offset on phase linearity (1D signal). a) Periodic sinusoidal signal

with and without an offset component, b) phase deviations, c) frequency error.

The demodulation method based on analytic signal theory supposes zero-mean signals. In case

that this condition can not be fulfilled in measurements, the recorded signal IP(x,y)= cos(φ(x,y))+
δ(x,y) exhibits an offset due to illumination or also due to local smoothing effects. We want to es-

timate the influence of this offset, assuming here first a constant, normalized amplitude A(x,y) = 1

and an constant offset δ. An additional phase error εφ in the analysis is introduced, as the HT

transform of a constant value yields zero. Hence, an offset would result in an erroneous phase

value of

φO f f (x,y) = arctan
sin(φ(x,y))

cos(φ(x,y))+δ
. (3.52)

As shown in [91] and can be estimated by Taylor series the error is bounded by

εφ = φO f f (x,y)−φ(x,y) (3.53)

= sin(φ(x,y))δ ≤ δ,

as long the modulation depth is higher than the offset value.

Similar to the influence of non-harmonic wave shapes, which causes erroneous frequency

peaks as described before, now frequency errors are resulting due to the offset term, as illustrated

for a periodic 1D signal, having a constant offset, in Figure 3.13 a) – c).
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Figure 3.14: Demonstration of the background correction by empirical mode decomposition

(EMD) method, applied on the 2D AM-FM signal. a) Simulated 2D AM-FM image, superposed

with low frequency modulated background (being a local non-zero mean signal), b) recovered

local zero-mean 2D AM-FM image after background correction with the EMD approach, c) top:

simulated background profile corresponding to the line, indicated in (a), and bottom: estimated

background profile with EMD, d) top: local non-zero mean signal along the line, indicated in (a),

and bottom: local zero-mean (IMF) signal, obtained after background correction.

3.4.5.2 Background correction by the EMD method

In case of a constant additive background the correction becomes trivial by subtracting the DC

component. Closer to reality seems a locally varying background representing a low frequency

offset term. For estimating and correcting this varying background, prior to demodulation, the

empirical mode decomposition is applied as explained in Subsection (3.1.3).

In Figure 3.14 a) our simulated 2D AM-FM image of Figure 3.1 a) is taken, now superposed

by an locally varying offset, which we want to correct. Therefore we apply, in particular, now

for a 2D image signal, the bi-dimensional EMD method for estimating the background as sum of

lower frequency IMFs and the residual of the decomposition. Finally, the estimated background

may be subtracted to yield a local zero-mean 2D AM-FM signal, as shown for the simulated fringe

pattern in Figure 3.14 b)–d) . The resulting almost zero-mean signal can be properly demodulated.

Empirically we tested the level up to which the decomposition has to be performed to obtain a

representative background estimation. Small artifacts can be recognized at the boundary of the

image and would have to be treated additionally by a suitable continuation of the signals.

The influence of the varying offset and especially, the need for a background corrected signal

(Figure 3.15 a)–c)), to obtain smooth phase and frequency signals (Figure 3.15 d)–f)) is illus-

trated here: By the correction of the local non-zero mean signal to an almost zero-mean one, the

phase and frequency errors can be remarkably reduced, (as shown in Figures 3.15 f) and 3.16 a)).

Additionally, the background correction can be combined with a regularized differentiation, (Fig-

ure 3.16 b)), what will be demonstrated for real data in Section (6.3).
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Figure 3.15: Illustration of the EMD method for reduction of demodulation errors, caused by

local non-zero mean signals. (signal along the line, indicated in Figure 3.14 a)). a) Local zero-

mean signal (blue: S0) and background (green: SB), b) local zero-mean signal (blue: S0) and

non-zero mean signal (green: S1) with superposed background, c) background corrected signal

(blue: S0, green: S1, red: corrected signal IMF), d) reconstructed phase (applying the 1D HT),

e) reconstructed phase (applying the 2D RHT), f) reconstructed frequency (red: performed on the

EMD-corrected signal, green: performed on the local non-zero mean signal S1, blue: performed

on the local zero-mean signal S0). IMF denotes the background corrected signal here.
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Figure 3.16: Comparison of estimated frequency along the line as indicated in Figure 3.15 a) and

b). a) Recovered frequency (differentiation of phase performed without regularization), b) recov-

ered frequency (differentiation of phase performed with regularization), (wB with background,

woB without background, wB_EMD with background and EMD corrected).
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3.5 Summary

In this chapter we have derived the required mathematical fundamentals for the demodulation and

phase reconstruction on simulated 2D AM-FM signals. We have demonstrated the chosen 2D

demodulation scheme on a simulated 2D AM-FM image model. Furthermore, we have considered

different limitations, which are to expect for PS-OCT signals with respect to wave shape and

background.

In Section (5.3) we will describe our 2D retardation fringe pattern as locally i1D structures if

considered in a small neighborhoods, but as spatially varying 2D AM-FM signals, if considered

in larger regions. They may be composed by multiple components, which necessitates an appro-

priate decomposition. Especially, as the measured 2D retardation signals and fringe structures can

be disturbed in reality by severe noise, background effects and measurement artifacts, a direct use

of the monogenic signal analysis approach for successful demodulation is restricted. Combining

for the analysis of retardation fringe patterns the analytic (or monogenic) phase concept with an

appropriate preprocessing (e.g. including denoising and background correction) allows finally the

applicability of the described 2D demodulation scheme on noisy retardation signals with origi-

nally non-harmonic wave shape.

In case of PS-OCT imaging the whole procedure will be reviewed for the spatially resolved recon-

struction of phase retardation, frequency and related optical quantities in Section (5.4).



Chapter 4

Conventional OCT and Advanced

Modifications

Complementary to microscopic imaging also optical coherence tomography (OCT) represents an

interesting interferometric imaging technique for the investigation of microstructures. Developed

in the latest decades, nowadays a huge variety of modalities for OCT imaging exists [92]. Preferred

objects, studied by OCT, are turbid or semi-transparent materials, whose backscattering behavior

is exploited in conventional OCT imaging.

In contrast to conventional microscopy, where the probing is restricted to the uppermost sur-

face layer of the sample in case of turbid materials, by OCT structural information from deeper

sub-surface regions inside the material can be obtained. Depending on the specific optical pa-

rameters for the imaging and of the investigated specimen a depth range of up to 1-2 mm can be

probed with an achievable resolution of few micrometers. Therefore, additional knowledge about

interfaces, scattering structures, the 3D distribution of backscatterers and their material-dependent

density can be provided by OCT imaging.

Considering light as electro-magnetic wave and a complex quantity, besides intensity-related

also phase-related quantities can be exploited by OCT, similar to phase contrast microscopy, de-

scribed in Chapter (2). Phase-sensitive modifications of OCT imaging, their basics and their po-

tential for functional and quantitative imaging, will be considered in Chapter (5) and Chapter (6).

In this chapter we will shortly explain intensity-based OCT imaging as the fundamental technique

for the following phase-based versions.

4.1 OCT: Imaging principles

At the beginning, the particular features of OCT imaging, in which it is distinguished from micro-

scopic phase imaging, should briefly be mentioned:

First, the intensity and time-dependence of the backscattered or back-reflected light, de-

pending on the reflectivity of the structures, is used as the measurable quantity.

Second, the backscattered signals are coherently amplified (i.e. by interferometric signal

generation). Thereby, OCT differs from conventional microscopy: Coherent amplification

61
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Figure 4.1: TD-OCT optical setup with indicated wave fields denoting initial (ai), sample (aS),

reference (aR), and interference (a) wave. The reference mirror can be moved along the z-axis.

enables the detection of weak signals from inside the specimen, which can no longer be

detected by microscopic imaging.

Third, OCT uses the low-coherence properties of light for detection. By exploiting specif-

ically this low-coherence property the OCT-imaging can be realized in a depth-resolved

way.

Based on these main characteristics the capability of conventional OCT for gaining structural

information results and will be reviewed in more detail in the following.

4.1.1 OCT: Working principle and optical setup

The working principle of OCT is based on low-coherence interferometry, i.e. OCT enables a

coherent, interferometric imaging, which is additionally highly localized in depth. The optical

setup of a conventional OCT system is sketched in Figure 4.1. The OCT-configuration contains

as essential element an interferometer, here depicted as Michelson-type interferometer, as realized

for our applications. The incident light wave is divided at the beam splitter into a sample and

reference wave. The interference signal between the backscattered sample wave and the back-

reflected reference wave, superposed at the photodetector, is measured. An interference signal can

be obtained only if the optical path lengths of both sample and reference wave match to each other.
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The interference signal is detected as long as the mutual optical path difference is lower than the

coherence length lc of the light source. Thereby, the coherence length describes the axial resolution

range, within (measurable) interference can occur. It depends inversely on the spectral width

∆k of the light source lc ∝ 1/∆k. In contrast to conventional interferometry, in OCT a spectral

broad-band light source (e.g. super-luminescence diodes (SLD) or femto-second pulse lasers (fs-

lasers), usually in the NIR spectral range) is used for illumination. Due to the broad bandwidth of

the source the coherence length is very small (in range of some micrometers). Additionally, the

reference mirror is oscillating. Due to the movable reference mirror the depth position, where both

imaging arms are matching in their distances, is also moved through the sample. This results in an

temporarily altering position of coherence gate, denoted therefore as time-gated signaling. This

time-gated interference signal over depth z is recorded by a point detector. Including further an

incremental lateral shifting of the sample, the specimen can be scanned subsequently by the raster

scanning unit.

The explained time-gated coherent imaging regime of OCT is called Time domain(TD)-OCT.

The later discussed OCT setup for our applications is realized as a TD-OCT in its basic con-

figuration. By including additionally polarization- and phase-modifying optical components the

conventional OCT setup can be extended to become phase-sensitive, as will be described in the

following chapters.

It should be mentioned that beside the depicted time domain (TD) OCT setup also spectral

domain (SD) OCT versions are extensively used, allowing a high-sensitive and high-speed imaging

of the sample. The SD-OCT setup mainly differs from TD-OCT in the points: (1) The reference

mirror is fixed, (2) additionally diffractive elements are included in front of the detector, which

is replaced by a (3) spectrometer. The spectrum of the interference signal is analyzed by inverse

Fourier transform. The strength of the spectral components contains the reflectivity information,

the wave number encodes the corresponding depth. The coherence condition is full-filled for the

individual wavelength components of the source at different depth position. Therefore, by Fourier

transforming the spectrum the depth-resolved reflectivity map can be recovered [93, 94].

Summarizing, as main elements in the conventional TD-OCT setup should be mentioned:

The interferometer, which is required for coherent detection and amplification,

The spectral broad-band light source, which enables the low-coherence imaging,

The movable reference mirror, for obtaining depth-resolved interference signals.

4.1.2 OCT: Reflectivity signal and image generation

Conventional OCT systems are exploiting the backscattering properties of the material and the

wave reflection at interfaces, which depends on the spatial distribution of the refractive index

inside the investigated sample. The backscattering can also be influenced from the size and shape

of the scattering particles. These sub-microscopic scattering effects will not be considered further,

only the general dependence on refractive index and reflectance of the sample will be taken into

account in the following.

First, regarding the OCT-signal generation as a backscattering process the magnitude of the

measured detector signal SD(z) can be related to the refractive index distribution n(z) of the sample
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Figure 4.2: Reflectivity (intensity) signal of a sample with two interfaces at depth z1 and z2. a)

Interference burst signal in OCT imaging, b) reflectivity signal envelope.

over depth [95] by

SD(z) ∝

(
∂n(z)

∂z

)2

+n(z)
∂2n(z)

∂z2
. (4.1)

This relation illustrates that the change of the refractive index represents the essential quantity,

which delivers the recorded signal and explains the capability of OCT for imaging in particular,

interfaces between different material layers.

Now, regarding signal generation in TD-OCT as an interferometric superposition, the gen-

erated detector signal is proportional to the total intensity of the interference signal as SD ∼ ι.

The interference signal results from the superposition of the two wave fields the sample wave

aS = as exp(−iφS), which is back-reflected/backscattered from the sample surface (or interface)

and located at position zS, and the reference wave aR = aR exp(−iφR), which is reflected from the

reference mirror at position zR. The total intensity signal yields

ι ∝ (aS +aR)(aS +aR)
∗

ι = ιR + ιS +2
√

ιRιS cos(∆φ), (4.2)

with ιR ∝ aRa∗R = RR
aia

∗
i

2
and ιS ∝ aSa∗S = RS

aia
∗
i

2
,

being the intensity of reference and sample field. The intensity of the incident wave field is denoted

by ιi ∼ aia
∗
i . RR and RS express the reflectivities of the reference mirror and the sample surface.

The phase difference ∆φ = (φS −φR) = 2 k ∆z is related to the geometrical path length difference

between sample and reference path ∆z = (zR − zS) ≡ z, (by choosing z = 0 appropriately to e.g.

sample surface and assuming monochromatic light with wave number k = n k0).

Regarding now low-coherence interferometry, then the characteristic difference to conven-

tional interferometry consists in the broad-band light source applied for illumination. Whereas in

conventional interferometry the illumination light is described by only an (almost) discrete angu-

lar frequency ω0, now the light source can be characterized by its power spectral density function

G(k), having a broader spectral bandwidth ∆k with the central wave number k(ω0).

Furthermore, the source can also be described in spatial domain by its coherence function γ(z),
which is mutually related to the power spectral density function by the Fourier transform.

γ(z) = F
{

Ĝ(k)
}
, (4.3)
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with Ĝ(k) being the normalized power spectral density of the light source Ĝ(k) [96]. These both

functions γ(z) and G(k) describe the spectral behavior of the light source and give a measure

for the expected coherence length lC, which can be expressed as the full width at half maximum

(FWHM) of the magnitude of the (complex) coherence function

lC = FWHM(|γ(z)|). (4.4)

Integrating –in case of broad-band sources– over all spectral components of the light source,

i.e. including the coherence function γ(z) in (4.2), finally the measured LCI interference signal

yields

ι(z) ∝ ιDC +2
√

RRRS |γ(z)| cos(2 k(ω0) z),

∝ ιDC +2 Re
{

γ(z)⊗
√

RRRSδ(z−2(zS − zR))
}
, (4.5)

with γ(z) = |γ(z)| exp(i k(ω0) z). The DC-component ιDC is proportional to the sum of reflectivi-

ties RR +RS, and is usually removed by bandpass filtering.

Furthermore, in OCT, as a version of LCI technique, the imaging is extended to interfaces or

random scatterers at discrete depth positions zSn
within the sample. We can describe the measured

intensity signal ιAC as sum of all discrete burst-like interference signals by

ιAC(z) ∝ 2Re

{
γ(z)⊗

N

∑
n

√
RRRSn

δ(z−2(zR − zSn
))

}
,

∝
N

∑
n

√
RRRSn

exp(−(zR − zSn
)2 ∆k2) cos(2 k(ω0) (zR − zSn

)), (4.6)

commonly assuming a Gaussian-shaped coherence function

γ(z) = exp

(
−z2 ∆k2

2

)
exp(i k(ω0) z) . (4.7)

Since the reference mirror is moving/oscillating with the speed vR, a Doppler frequency shift

ωD =
2 vR n

c
ω0 = 2 k(ω0) n

zR

t
(4.8)

is introduced and acts as OCT-signal carrier frequency, whose amplitude is modulated by |γ(z)|.
The envelope of the burst signal ιAC(z(t)) can be extracted by applying the 1D HT in the

conventional way (compare 3.9) and taking the magnitude of the analytic signal. The amplitude

a(z) and the maximum position zi of the envelope of the signal burst ιAC(z) characterize both the

reflectivity and the depth of the investigated structures.

Finally the squared amplitude signal ιr ∝ a2 and its course over depth ιr(z) represents the

interesting relation to be investigated by (structural) OCT, describing the backscattering profile

RS(z) = ∑n RSn
δ(z− zSn

) of the sample. It is accordingly called reflectivity signal ιr(z) ∝ a2(z).

In Figure 4.2 a) the typical OCT signal response for a two layer structure is depicted, with

overlaid envelopes in Figure 4.2 b).
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In similarity to ultrasound imaging the depth-resolved reflectivity signal ιr(z) at a fixed lateral

position x is named as A-scan. By sequential scanning at laterally adjacent sites and concatenating

the recorded A-scans to cross-sectional images ιr(x,z), so-called B-scans are obtained. By regard-

ing the (x,y)-field of view, en-face images or C-scans ιr(x,y) are extracted. Therefore, finally by

OCT imaging in total a 3D image stack ιr(x,y,z) can be recorded. For the performed analysis we

consider 2D image slices out of the 3D data stack in the following, chosen either as cross-sectional

or as en-face images.

4.1.3 OCT: Imaging parameters

For the resolving power of OCT the axial-, lateral resolution, depth of focus and sensitivity are the

characteristic quantities. In case of a Gaussian power spectrum of the light source the (temporal)

coherence length determines the axial resolution δz of the system with

δz ∝ lC ∝
1

∆k
∝

λ2
0

∆λ
. (4.9)

The lateral resolution δx, similar to microscopy, results from the numerical aperture (NA) of

the focusing optics with δx ∝ λ0

NA
. In OCT imaging δx and δz are decoupled from each other.

High resolution OCT systems achieve axial resolution around one micron. If samples have to

be investigated over an extended depth range, a trade-off between resolution and depth of focus

has to be found or dynamic focusing techniques may be applied. For the realized conventional

OCT setup the axial resolution in air has been determined as δz ∼ 10–20 µm in case of using

a commercial SLD (with commonly λ =850 nm or 1550 nm, ∆λ =50-100 nm) as illumination

source.

4.2 Artifacts and noise in OCT imaging

OCT images exhibit different imaging artifacts and noise components. Possible artifacts may

be caused by over-exposure of the detectors at glossy or highly specular reflecting structures.

Vibrations during measurements may also result in erroneous signals and may interrupt lateral

structures. For highly dispersive samples dispersion compensation techniques have to be applied.

Multiple scattering and backreflection at nearly parallel structures (comparable with the etalon

effect) leads to delayed signals and ghost images.

With respect to the noise, different contributions have to be considered: Noise caused by

the electronic setup (e.g. photon shot noise, amplification noise, thermal noise at resistors), and

speckle noise, resulting from the fluctuations of the propagating wave field.

In our considerations we want to assume that the speckle noise due to surface roughness,

internally multiple backscattering and random delays of the forward propagating beam inside the

specimen is the dominant noise. In detail the phenomena of speckles and their influence on OCT

imaging will be considered in Section (5.2).



4.3. Advanced modifications of OCT imaging 67

4.3 Advanced modifications of OCT imaging

Conventional OCT, while imaging the structural composition of the sample, can be modified to

obtain additional information about material behavior and functionality. Regarding besides the

OCT-intensity signal also phase and frequency of the interference signal these information can

be exploited for the investigation of dynamical or transient phenomena, for the visualization of

optical anisotropies or for the analysis of stress states inside the specimen.

Exploiting the complex nature of the light as vector wave, i.e. utilizing not only the scalar-

valued intensity, but also the phase, frequency or retardation of the wave for signal generation

allows to extend the information amount obtainable by OCT techniques.

Applying OCT techniques to probing specimens containing moving particles and measuring the

Doppler frequency shift of the backscattered interference signal arising from the moving scatterers

give the base for Doppler OCT methods. Enabling a local characterization of the spatial and

temporal velocity distribution of e.g. particle flows in micro devices, phase or frequency-sensitive

modifications of OCT have been demonstrated both in biological application field (e.g. for in vivo

noninvasive blood flow measurements [106]) and in the field of technical fluid dynamics. These

OCT-versions may be exploited for the investigation of laminar and turbulent flows in micro-

channels [107], for turbulence monitoring [108] or for the evaluation of transient mixture processes

[109].

Extending standard OCT by polarization-sensitive elements (as polarizing beamsplitters, prisms

and wave plates), these techniques can be applied for the investigation of optically anisotropic ma-

terials (i.e. varying with respect to their refractive index or birefringence). Phase-related features

(as optical path length or refractive index, regarded in Chapter (6)) or polarization-related features

(as phase retardation and optical axis orientation, regarded in Chapter (5)) can be extracted by

modifications of conventional OCT setups to phase-sensitive configurations. For phase-sensitive

OCT-techniques different realizations have been described in literature exploiting either phase or

frequency information in the time domain [114, 106], or in the Fourier domain [115].

In general phase information show a much higher sensitivity with respect to deformation,

thickness or refractive index variations of the sample compared to intensity-based measurements.

Based on phase-sensitive techniques an axial resolution corresponding to the (sub-)nanometer

range [110, 112] can be achieved in OCT imaging modalities, whereas the axial resolution of

current intensity-based OCT systems is limited to about one micrometer size range.

In our work we perform phase-sensitive OCT measurements using two optical configurations:

First, by a polarization-sensitive OCT (PS-OCT) setup, enabling two-dimensional depth-

resolved retardation imaging inside the probed specimen, as will be regarded in the follow-

ing chapter.

Second, by a modified differential phase contrast OCT (DPC-OCT) setup, measuring locally

differential phase values and delivering finally the lateral phase derivatives as en-face images

from the recorded 3D sample, as will be regarded in Chapter (6).
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Chapter 5

PS-OCT for Birefringence and Stress

Imaging

In this chapter we focus on a modification of phase-sensitive OCT imaging, which exploits in

particular the state of polarization of the light. The investigated specimens are again turbid, scat-

tering materials, similar as in conventional OCT, but now they exhibit additionally a locally dis-

tributed internal birefringence. The birefringence causes in general a change of the polarization

state, introducing a phase retardation between both orthogonally polarized wave components of

the measured interference signal. This phase retardation represents the main quantity of interest

for PS-OCT imaging, as a type of polarimetric imaging [113], and can be visualized in so called

retardation images. So, imaging the phase retardation becomes a possibility to visualize the mag-

nitude of anisotropy of the investigated specimen. Furthermore, the obtainable information can be

extended by information about the optical axis orientation within the material.

In the following we will briefly describe the PS-OCT imaging technique, the modifications

to conventional OCT and characteristic features of the (phase) retardation images. Especially the

importance of speckles and the interplay between the backscattering signal and the speckle noise

in retardation images will be discussed. A complex speckle noise model, as mostly applied in

coherent imaging, will be adapted to become suitable for modeling of PS-OCT retardation signals

and for simulation of noisy retardation images. Based on these simulated data and furthermore, on

measured data in different real-world test applications we demonstrate a 2D reconstruction method

for the birefringence and stress distribution. We show the capability of the developed procedure

as a comprehensive approach for recovering spatially resolved information and conclusions about

birefringence or stress states within the materials under investigation in PS-OCT imaging.

5.1 PS-OCT: Imaging technique

The striking potential of PS-OCT imaging consists in its applicability for the investigation of op-

tically anisotropic materials. These materials may exhibit an birefringence, being already inherent

or caused due to different external influences (e.g. the effect of stress, load, temperature, extrusion

or moulding in production processes, etc.). The resulting birefringence within the material may

emerge as stress/strain-, flow-, or temperature-induced birefringence [117, 118, 119]. We want

69
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Figure 5.1: Schematic representation of the TD-PS-OCT optical setup. Especially the polarizing

components, both quarter wave plates (under 45◦ and 22.5◦ orientation) and the polarizing beam-

splitter (here realized as a Wollaston prism), introduced in addition to the conventional OCT setup,

should be mentioned. The polarization states of the different wave components are schematically

indicated.

especially to consider induced birefringence states, as they contain the encoded information about

the causing quantities, and focus on imaging of optical anisotropies in materials mainly due to

stress-induced birefringence.

5.1.1 PS-OCT: Optical configuration

As explained in the previous chapter for conventional OCT imaging, for recording a (cross-

sectional) reflectivity image only a single detector is necessary. Now, in phase-sensitive OCT

the phase relations between wave components, having orthogonal polarization directions to each

other, are exploited. Both polarization components of the interference signal therefore are recorded

by two detectors. The depth-resolved change of the initial polarization state, which is caused by

the sample, yields the essential information, measured in PS-OCT imaging. To facilitate the mea-

surement of changing polarization states through the material the OCT setup has to be modified

and extended in the following way [116]:

In contrast to the conventional OCT system light with a defined state of polarization is

required in case of PS-OCT imaging.

By introducing additionally two quarter wave plates (with correct axis orientations) in the
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Figure 5.2: Schematic representation of the SD-PS-OCT optical setup, containing diffractive com-

ponents in addition to the TD setup. (BS beam splitter, QWP quarter wave plate, P polarizer, DG

diffractive grating, RM reference mirror, CCD charge coupled device camera)

imaging setup, a polarization-sensitive interference of sample and reference wave can be

achieved.

Additionally, a polarizing beam splitter in front of the detectors allows the splitting of both

horizontally and vertically polarized wave components, which interfere separately at the two

detectors.

The scheme for a PS-OCT configuration, realized again as a Michelson configuration and

operating in the TD regime, is depicted in Figure 5.1. Similar to the conventional OCT also PS-

OCT imaging may be performed in the spectral domain (SD). The corresponding SD-PS-OCT

setup is sketched in Figure 5.2. In this case the two amplitude and phase signals are given by

computing the inverse Fourier transform of both recorded spectra, and relating both magnitudes

and phases to each other.

The data acquisition for our PS-OCT imaging application has been performed by means of

both versions, as TD-PS-OCT and SD-PS-OCT configuration.

By the described optical setup modifications the acquisition of two individual signals (ι1 and

ι2) is finally enabled. Both signal components, representing the interference signal of both polar-

ization components, can be expressed, as

ι =

(
ι1

ι2

)
∝

(
a1a∗1
a2a∗2

)
=

(
|a1|2

|a2|2

)
(5.1)

∝

(
(aR1 +aS1)(aR1 +aS1)

∗

(aR2 +aS2)(aR2 +aS2)∗

)
, (5.2)

in an analogue way to the conventional OCT.

In Figure 5.3, the schematic PS-OCT signals are depicted for a structure with two interfaces.
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Figure 5.3: Illustration of a PS-OCT signal bursts. a) Conventional OCT interference signal (A-

scan), b) dual channel PS-OCT interference signals (A-scan).

5.1.2 PS-OCT: Image types

Since there are two detectors in use, recording in their both channels the horizontally and the

vertically polarized components of the interference signal, their mutual amplitude ratio (between

a1 and a2) and phase relation between (φ1 and φ2) can be exploited for imaging. These mutual

relations can be regarded either by means of the Stokes vector representation [120] or by means

of the reflectivity, retardation and optical axis orientation OCT image representation [121]. In

the latter case, the dependencies between amplitude and phase signals and the resulting images in

PS-OCT can be expressed as [122]:

Reflectivity (intensity) image: ιr(x,z):
The reflectivity image is obtained as sum of the intensity signals ι1 and ι2 recorded at both

detectors (1) and (2).

ιr(x,z) = ι1(x,z)+ ι2(x,z) ∝ a1(x,z)
2 +a2(x,z)

2. (5.3)

It represents the total intensity comparable with the reflectivity image in conventional OCT.

Retardation image: φr(x,z):
In birefringent materials a phase delay between the two orthogonally polarized wave com-

ponents is caused due to the difference of the refractive indices nO and nE of the ordinary

and extraordinary wave ∆n = nO − nE , resulting in different phase velocities of both wave

component. In general, the delay causes an elliptical polarization state, being here a measure

for the internal birefringence. The ellipticity of the signal is recorded by the two detectors

measuring either the horizontally or vertically polarized interference signal. Regarding the

amplitude ratio of both detector signals the phase retardation between the two components

can be represented as

φrw(x,z) = arctan
|a2(x,z)|
|a1(x,z)|

, (5.4)

with index w denoting the wrapped phase retardation, which is mapped into the interval

[0,π/2). The index c names the cumulative (or continuous) phase retardation, which is
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obtained by the accumulation of all incremental phase retardation values dφrc over depth

caused by the internal birefringence distribution ∆nB(x,z)

φrc(x,z) =
∫ φ(z)

φ(z0)
dφrc ∝

∫ z

z0

∆nB(x,z
′)dz′. (5.5)

Optical axis orientation image: ∆φa(x,z):
The orientation of the fast optical axis of the material can be calculated from the phase

difference between both interference signal as

∆φa(x,z) =
π− (φ1(x,z)−φ2(x,z))

2
, (5.6)

by applying the 1D Hilbert transform on the interferograms of both detector signals.

Birefringence image: ∆nB(x,z)
Retardation images may indicate inherent or induced birefringence distributions. The bire-

fringence can be determined from the slope of the (cumulative) retardation image, which

will be explained in detail in Section (5.3). The birefringence image is given as

∆nB(x,z) =
λ

2π

∂(φrc(x,z))

∂z
. (5.7)

5.1.3 PS-OCT: Fringe pattern parameters

Figure 5.4: PS-OCT imaging examples of injection-molded plastic component. a) Cross-sectional

reflectivity image, b) cross-sectional retardation image with inhomogeneous regions.

If a (continuous) birefringence distribution ∆nB(x,z) causes a phase retardation φrc(x,z), then

the wrapped retardation image φrw(x,z) may show fringe patterns as typical image structure in

PS-OCT imaging, even if the reflection image does not reveal any structural information. In Fig-

ure 5.4 a), the reflectivity image of an injection-moulded plastic component is depicted, charac-

terized by an isotropic backscattering behavior with slightly decaying intensity over depth. How-

ever, the corresponding retardation image exhibits typical fringe patterns, which indicate optical

anisotropies within the specimen, as depicted in Figure 5.4 b) in comparison.

As already explained in Section (3.1), a fringe pattern is characterized by its local amplitude,

its instantaneous spatial frequencies or local phase, and its local orientation as particular features

considered in an local neighborhood.
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Furthermore, the modulation depth MD represents a characteristic parameter for the fringe

visibility or fringe modulation contrast, which in retardation images is strongly dependent on the

probed material and the achievable penetration depth. It can be determined as

MD =
∆I

Im

=
Imax − Imin

Imax + Imin

, (5.8)

as ratio between modulation ∆I and mean Im, where Imax and Imin denotes the (noise-free) extrema

values of the visualized fringes.

The SNR, in case of analyzing fringe patterns, is mostly defined by the ratio of the fringe

modulation to the noise variance σ2 as

SNRFringe = 20 log(
∆I

σ
). (5.9)

The spatial distribution of the retardation fringes, expressed by their local descriptors, especially

phase and frequency, encodes the information about local birefringence and related quantities,

which we want finally to extract by the demodulation methods.

The modeling and the analysis of the fringe pattern will be considered in Section (5.3) and

Section (5.4). The importance of speckles therein for image formation and fringe visibility reduc-

tion in PS-OCT will be explained in Section (5.2). Here, first the investigated specimens and test

situations in PS-OCT imaging are described, and then a comparison with photoelasticity imaging

is drawn.

5.1.4 PS-OCT retardation imaging: Testing and samples

The test samples are chosen with respect to their use for different real-world strain/stress test

applications, as there have been performed: A tensile test, a bending test, and an evaluation for the

optimization of photolithographic patterning process. The materials are probed by PS-OCT with

respect to their internal anisotropies, especially with respect to their inherent or stress-induced

birefringence. They are chosen from different polymer and photo-resist materials. In particular,

we focus on:

Sample PS1: Polyurethane (PU) elastomer test sample,

-being the specimen for tensile testing due to its elasticity property,

-with the dimensions of ∼ 5 x 1 mm2, as shown in Figure 5.5 a),

-investigated by the FD-PS-OCT setup (λ0=1550 nm, δz=19 µm in air).

Sample PS2: Low density polyethylene (LDPE) polymer test sample,

-being the specimen for bending testing due to its bending property,

-with the dimensions of ∼ 10 x 1 mm2, as shown in Figure 5.5 b), -investigated by the

TD-PS-OCT setup (λ0=1550 nm, δz=19 µm in air).

Sample PS3: Photo-resist (PR) mould structure,

-being a transparent specimen for the optimization of the photolithographic patterning pro-

cess,

-with the dimensions of ∼ 3 x 2 mm2, as shown in Figure 5.5 c),

-investigated by an en-face scanning PS-OCT setup (λ0=800 nm, δz=3 µm ).
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Figure 5.5: Representation of specimens utilized in PS-OCT retardation imaging for birefrin-

gence analysis and for strain/stress testing. a) Polyurethane elastomer specimen, b) low density

polyethylene specimen, c) photo-resist mould structure for miniaturized gear wheel production.

5.1.5 Comparison of PS-OCT with conventional photoelasticity techniques

Nowadays, for the characterization of internal birefringence and stress states in loaded or deformed

materials a huge variety of numerical methods based on finite element or boundary element meth-

ods are available [123, 124]. They are also applied as state of the art techniques for the computa-

tion and prediction of local birefringence or stress distributions [125, 126]. But nevertheless, the

experimental verification of the calculated results remains of essential importance.

Photoelasticity (PE) techniques represent the classical experimental method for the analysis

of strain/stress states in materials [127, 128]. However, fully transparent birefringent specimens

are required in PE setups, which work usually in transmission mode. Therefore, PE imaging is

only feasible in connection with transparent birefringent models, which are scaled to the sample

of interest, or for weakly scattering, almost transparent specimens [129].

In contrast, PS-OCT enables especially the investigation of anisotropies and stress states in turbid

birefringent materials. A scheme of the principle optical setup for both PE and PS-OCT imaging

is shown comparatively in Figure 5.6 a) and b).

Furthermore, an important difference of the two methods is given by the specific recording of

the retardation signal. PE measurements allow only the determination of the global, total (T)

retardation φT (x,y) through a (thin) specimen of thickness ∆z in transmission direction, with

φT (x,y) ∝ ∆nB(x,y) ∆z. (5.10)

In comparison, by applying PS-OCT imaging a depth-resolved, cumulative retardation φrc(x,y,z)
is obtained according to (5.5). Hence, in PE measurements the birefringence (or stress) can only be

determined as average value over thickness ∆nB(x,y). Whereas, in PS-OCT the birefringence may

be characterized as a spatially resolved quantity and especially, as the local slope of the cumulative

retardation over depth, as ∆nB(x,y,z) ∝ ∂φrc(x,y,z)
∂z

according to (5.7). In PS-OCT, as a coherent

imaging method and by measuring in particular, turbid scattering samples, retardation images are

much more corrupted, compared to their PE-counterparts, by the inherent speckle patterns. The

speckle character in PS-OCT imaging in comparison to PE is demonstrated in Figure 5.6 c) and d)

for two technical structures under load. Therefore, an additional denoising during birefringence

and stress analysis is almost required for a quantitative analysis of PS-OCT images.

In the following we will review the phenomenon of speckles in coherent imaging, first for

OCT imaging, and second, with emphasis on PS-OCT retardation imaging.
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Figure 5.6: Comparison of PS-OCT with conventional photoelasticity (PE) imaging. a) Scheme

of the classical PE configuration working in transmission mode, b) scheme of the PS-OCT optical

setup working in reflection mode, c) transparent test model under a two point load with photoe-

lastic fringes, imaged by PE technique, [185], d) polymer bending test samples with typical retar-

dation fringes, examined by PS-OCT. (LS light source, P polarizator with indicated orientation,

QWP quarter wave plates, M model, S sample, SC camera, F force/load)
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5.2 PS-OCT: Speckles and speckle noise

Speckles are a phenomena of various coherent imaging techniques, ubiquitously encountered e.g.

in interferometry, holography, or synthetic aperture radar (SAR) imaging. Speckles may further

arise by imaging through the atmosphere or are caused in wave guiding applications. In some

coherent imaging techniques speckles can be considered ambiguously: As noise, degrading the

image, but they can also deliver valuable information, as used e.g. in electronic speckle interfer-

ometry. Being of this twofold nature, they are also a phenomenon of OCT imaging. Here we

want to consider first speckles generally as laser speckles, then speckles in OCT, and based on

this, finally, we want to derive a modeling of speckles in PS-OCT for a homogeneous birefringent

material.

5.2.1 Laser speckles

The speckle formation can be described as a random stochastic process. Speckles are caused

by random interferences due to stochastic fluctuations (in scale of the wavelength) in the wave

propagation path, e.g. by atmospheric fluctuations, by random roughness distributions of the

back-reflecting surfaces or, as in OCT, by the random scatterer distribution inside the investigated

sample. The superposition of these independent random-phased wave components gives rise to

the speckle noise. Speckles can be described statistically with respect to their amplitude and phase

as complex-valued random variables or as scalar-valued random variable with respect to their

intensity. Taking into account that in coherent imaging techniques light is exploited as a complex

quantity, also a complex-valued model and notation for the speckle noise nSp should be chosen.

Assuming a wide-sense stationary stochastic process, fully-developed speckles can be ex-

pressed according to [101] by their random real and imaginary part (RSp, ISp) as nSp = RSp + i ISp.

Usually, speckles can be modeled by a random walk approach as an addition of random phasors

(cSpk
= cSpk

exp(iφSpk
)) with

RSp =
N

∑
k

cSpk
cos(φSpk

), (5.11)

ISp =
N

∑
k

cSpk
sin(φSpk

), (5.12)

provided that amplitudes cSpk
and phases φSpk

are statistically independent from each other and

for each n 6= m. Furthermore, the phase components φSpk
are uniformly distributed in the interval

[−π,π).

For a sufficiently large number of steps N and applying the central limit theorem the joint

probability density function p(RSp,ISp)(RSp, ISp) is given by [101]

pRSp,ISp
(RSp, ISp) =

1

2πσ2
Sp

exp(−
R2

Sp + I2
Sp

2σ2
Sp

) (5.13)

=
1

2πσ2
Sp

exp(−
R2

Sp

2σ2
Sp

)exp(−
I2
Sp

2σ2
Sp

),
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describing a circular complex Gaussian random variable, which can be separated into two inde-

pendent Gaussian probability density functions for the real and imaginary components with equal

variances σ2
Sp.

Considering speckles as phasors nSp = aSp exp(i φSp) with the random magnitude

aSp =
√

R2
Sp + I2

Sp and the random phase φSp = arctan(
ISp

RSp
), the marginal probability density func-

tions for magnitude and phase are given by

paSp
(aSp) =

aSp

σ2
Sp

exp

{
−

a2
Sp

2σ2
Sp

}
, (5.14)

and

pφSp
(φSp) =

1

2π
, (5.15)

representing a Rayleigh density function for the random amplitude and a uniform distribution for

the random phase of the speckle noise.

Characterizing the speckles by their intensity ιSp ∼ (aSpa∗Sp) as scalar-valued random variable

the corresponding density function can be derived from (5.14), yielding the well-known exponen-

tial speckle statistics

pιSp
(ιSp) =

1

2σ2
Sp

exp(− ιSp

2σ2
Sp

). (5.16)

Considering a (conventional) interferometric setup, where sample and reference path show two

independent, almost equal-strength speckle fields ιSp1
and ιSp2

with the mean ιm, and regarding

finally the sum of these two speckle fields ιSp12
= ιSp1

+ ιSp2
, then the probability density function

for the resulting speckle intensity may be approximately described as Gamma-distribution by

pιSp12
(ιSp12

) =
ιSp1

+ ιSp2

ι2
m

exp

(
− ιSp1

+ ιSp2

ιm

)
. (5.17)

5.2.2 Speckles in OCT

With respect to the origin of the speckles two aspects have to be taken into account for OCT

imaging: Laser speckles as general phenomenon in coherent imaging techniques and speckles

determined by the material statistics of the object under investigation.

For the modeling of the specific scattering properties of materials an extensive amount of so-

phisticated methods exists, often including Monte-Carlo based simulations in the model approach

for the description of the random nature of the backscattering process [97]. Exploiting these mate-

rial dependent speckle phenomena in OCT, speckles are not only to consider as noise but they also

provide the OCT image information content, e.g. varying materials may be distinguished by their

different statistics [98], or with respect to their autocorrelation functions [99]. Hence, speckles

in OCT imaging play a twofold role, they are both signal-carrying speckles and signal-degrading

speckles [100].
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5.2.3 Speckle noise in reflectivity images

In general scalar-valued speckle noise nιSp is considered as multiplicative noise [102] in the mea-

sured intensity image ιn(x,y) corrupting the theoretical intensity image ι(x,y) by

ιn(x,y) = ι(x,y)nιSp, (5.18)

assuming a mean value of one.

In literature different probability distributions are suggested for multiplicative speckle noise

depending on the special coherent imaging technique.

In OCT imaging the assumption of superposition of equal-strength speckle fields (as assumed

in (5.17)) is not generally fulfilled. Due to the different reflectivities of the sample structures and

of the mirror surface the reference wave field has often a multiple higher intensity than the sam-

ple wave, but on the other hand a much lower noise variance. Hence, and taking into account

the coherent amplification, the probability density function for the amplitude of the sample wave

can be regarded as essential contribution for the speckle noise in reflectivity images, amplified

by a multiplicative factor due to the reference mirror. Therefore, the speckle noise probability

density function in conventional OCT can be described by an almost Rayleigh-distribution func-

tion [95],[100] (compare (5.14)). Furthermore, for OCT imaging often logarithmic compression

is used [103]. A frequently applied approximation and simplification for the noise in logarithmic

reflectivity image is given by assuming an additive white Gaussian noise.

5.2.4 Speckle noise in OCT retardation images

Whereas reflectivity images are scalar-valued intensity images and the noise is related to the inten-

sity as scalar quantity in a multiplicative way, for the explanation and the modeling of speckles in

retardation images we use a complex-valued noise model. In PS-OCT imaging we have in general

two detector signals, as explained in Section (5.1), which can be considered as real and imagi-

nary component of a complex-valued image. (Note: In the realized measurement configuration,

in general only the ratio of both components, as measured retardation image, had been available.)

Taking into account this complex character, the model supposes that the (complex) noisy retarda-

tion signal can be described as sum of a deterministic known phasor and a random-valued phasor

[101], which is the complex speckle noise.

This model will be explained in the following and is applied for our simulation of retardation

images.

5.3 PS-OCT: Modeling of retardation and birefringence/stress im-

ages

Here we want to derive a model of noisy retardation images, including further relevant stress states.

The model should be typical for the specimens in the regarded test situations, which have been ex-

amined by PS-OCT imaging. Afterwards, based on the theoretical considerations, the simulation

of retardation images is performed. The generated images are used for a first verification of the

reconstruction method in the following.
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5.3.1 Comparison: Retardation and phase

It should be emphasized that retardation images and conventional phase-based images (as would

be obtained e.g. by classical interferometry or SAR imaging) are distinguished in particular in

their characteristic wave shape.

According to (5.4) the retardation signal φrw(z) is given by the relation

φrw(z) = arctan
|a2(z)|
|a1(z)|

= arctan(|tan(φrc(z))|). (5.19)

The physical relevant condition – only be able to measure intensity values ι1,2 at both detectors –

is expressed here by |a1,2|=
√

ι1,2, i.e. only positive values for the measured signals are regarded.

The (phase) retardation definition (5.19) is modified from the standard phase notation,

φw(z) = arctan
a2(z)

a1(z)
= arctan(tan(φc(z))), (5.20)

by the positivity assumption. Hence, we are restricted for the following complex signal notation

to the first quadrant of the unit circle. As the result of this positivity constraint for the measured

signals we obtain a periodicity of π for the wrapped retardation instead of the usual periodicity of

2π in standard phase representation.

Figure 5.7: Comparison of a) wrapped phase and b) wrapped retardation of two sinusoidal signals

with spatially varying frequency.

Furthermore, it should be emphasized that according to (5.19) the wrapped retardation φrw(z)
is shaped as a triangular (tri) wave in contrast to the ’sawtooth’ profile of the conventional wrapped

phase, as illustrated in Figure 5.7. The depth-resolved wrapped retardation we will describe as

phase or frequency modulated triangular wave with

φrw(z) = tri(φrc(z)) (5.21)

with

tri(φrc) = φrc − k π for kπ ≤ φrc ≤ kπ+
π

2
, k = 0,1, .. (5.22)

tri(φrc) = k π−φrc for kπ− π

2
≤ φrc ≤ kπ, k = 0,1, ...

Due to this modification of the wave shape the usual demodulation scheme can not be applied

directly or causes partly erroneous results, as has been demonstrated in Section (3.4). We show for
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our reconstruction task an adaptation of the quadrature computation and demodulation scheme in

the following, taking into account the triangular wave shape and changed periodicity of retardation

signals.

5.3.2 Noise-free depth-resolved retardation signal

The backscattered intensity signals over depth ι1(z), ι2(z) at both detectors can be expressed as

[104]

ι1(z) ∝ cos2(φrc(z)) = cos2(k0 z ∆nB), (5.23)

ι2(z) ∝ sin2(φrc(z)) = sin2(k0 z ∆nB),

assuming at first a homogeneous birefringent material with ∆nB and φrc(z) ∝ k0 z ∆nB.

Starting our simulation, we consider the ’theoretical’ amplitude signals a1(z) and a2(z) with

a1(z) ∝ cos(φrc(z)), (5.24)

a2(z) ∝ sin(φrc(z)).

Furthermore, both signals a1(z) and a2(z) are amplitude modulated over depth by the attenua-

tion function a(z)

a1(z) = a(z) cos(φrc(z)), (5.25)

a2(z) = a(z) sin(φrc(z)),

expressing the internal absorption and scattering processes. As assumed, these processes can be

described by an exponential decay with

a(z) = a0 exp(−α z), (5.26)

characterized by the attenuation parameter α.

For our modeling, both signal components a1/2(z) are interpreted as the real and imaginary

component of a phasor with a complex amplitude a(z) and a phase φrc(z) by

a(z) = a(z) exp(i φrc(z)) = a1(z)+ i a2(z). (5.27)

Taking this interpretation into account, a complex-valued approach for the description of the

retardation signal and a description as phasor will be chosen in the following. First, the noise-free

deterministic retardation phasor is considered, afterwards the noise modeling is included. The

positivity constraint will be included in the statistical formulation (5.32) by the restriction of the

(complex) retardation values to the first quadrant.

The noise-free retardation phasor is depicted as polar plot in Figure 5.8 a) for illustration of

the description. The exponential decaying amplitude a(z) results in a spiral-shaped curve.
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Figure 5.8: Polar plot representation of the (complex) retardation signal phasor. a) Noise-free

signal phasor a(a,φrc), b) noisy signal phasor (with noise-free phase) an(an,φrc), c) noisy signal

phasor an(an,φrc n).

5.3.3 Noisy depth-resolved retardation signal

In the performed PS-OCT experiments the investigated materials show different absorptions and

scattering behavior. In substance the speckle variance depends on the transparency, thickness, or

internal backscatterer distributions of the specimens. Although there is a huge amount of literature

generally related to speckle noise [105], only little literature is available about modeling of speck-

les for especially PS-OCT retardation images. A method based e.g. on Monte Carlo simulation

for PS-OCT noise modeling is described in [130].

In general, images taken by coherent optical imaging techniques and representing intensity

quantities, are modeled to be corrupted by multiplicative speckle noise. Regarding only the phase,

the noise is mostly assumed being uniform distributed. Taking into account an interferometric

modeling of the imaging process, in [131] it is shown that the transition from the multiplicative

noise model to the additive complex noise model can be performed in case of averaging over some

adjacent sites. We suppose that this averaging is fulfilled after some multiple scattering events

within the material.

For simulation of noisy retardation images we incorporate the previously described complex-

valued random walk model of speckles in coherent imaging applications. We assume that the sum

of random phasor components contributes to the speckle formation due to the random scattering of

light inside the material (similar to the speckle formation at rough surfaces). Hereby, in our mod-

eling, our main aim consists in the simulation of retardation images, having a similar appearance

and being comparable in their statistics with the measured retardation data. In our simulated re-

tardation images we want to consider only materials with continuously distributed backscatterers

over depth, i.e. the aim does not consist in modeling material layers or interfaces here. Further-

more, we regard only materials with constant optical axis orientation value in our modeling.

The various material characteristics can be represented in our approach in a simplified way by

different attenuation parameters or changing noise variances of the generated speckles.

In the following a model of noisy retardation image is demonstrated, which allows to simulate
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the observed phenomenon of vanishing retardation fringes over depth in some bulk materials.

This reduced visibility of the fringe pattern is related to the absorption and (multiple) scattering

behavior of the investigated specimens and therefore a strongly material-dependent feature in PS-

OCT imaging.

As already mentioned, for the modeling of OCT retardation images and the speckle noise

nSp therein, we prefer the assumption of a complex-valued speckle noise, described in Subsection

(5.2.4). The complex model, applied in the following, differs from the scalar-valued speckle noise

nιSp approach in Subsection (5.2.3) for reflectivity images, where the noise is regarded as a multi-

plicative one. Considering only the magnitude of the phasor as noisy quantity, the corresponding

(complex-valued) retardation signal over depth is shown in Figure 5.8 b).

Now, the retardation signal is expressed as a (complex) sum of the known (deterministic)

phasor a(z) (modeling the noise-free signal) and a random phasor characterizing the speckle noise

contribution nSp

an(z) = a(z)+nSp. (5.28)

The phasor of the noisy signal an(z), illustrated in Figure 5.8 c), is given as

an(z) = an(z) exp(i φrc n(z)) = an1(z)+ i an2(z). (5.29)

In this approach we assume that the variance σ2
Sp for both complex speckle noise components

represents a constant value.

As we have derived in (5.15) the speckle phase can be assumed to be uniformly distributed,

justifying an angular isotropic model of nSp. Therefore, we can rotate the coordinate system in

an appropriate way. Without loss of generality we suppose that the real and imaginary component

of signal phasor a(z) are degraded by each, the real and imaginary component of the speckles.

According to (5.11)–(5.12) we can derive

an1(z) = a(z)cos(φrc(z))+
N

∑
k

cSpk
cos(φSpk

), (5.30)

an2(z) = a(z)sin(φrc(z))+
N

∑
k

cSpk
sin(φSpk

).

In Figure 5.9, the resulting noisy phasor signal an is sketched. The speckle noise nSp is drawn

as an isotropic ’cloud’ around a deterministic signal phasor a.

According to [101] it can be shown that the marginal probability density function of the noisy

signal amplitude an is described by a Rician density function as

pan
(an) =

an

σ2
Sp

exp

(
−a2

n +a(z)2

2σ2
Sp

)
J0

(
ana(z)

σ2
Sp

)
, (5.31)

with J0 denoting a first order modified Bessel function.

For sufficiently large signal amplitudes a(z) the Rician density function (5.31) tends approx-

imately to a Gaussian distribution, and (5.31) converges to a Rayleigh distribution for signal am-

plitudes a(z)→ 0.
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Figure 5.9: Schematic representation of a noisy signal phasor in polar plot representation. The

noisy signal an can be seen as sum of the noise free phasor a and the complex speckle noise nSp

(with a real and imaginary noise component ISp and RSp), causing a variation of the magnitude and

a rotation of the phase φrn = φrc +δr of the deterministic phasor signal.

The marginal probability density function pφrw n
(φrw n) for the random phase or retardation is

given by

pφrw n
(φrw n)≈

1√
2πσSp/a(z)

exp

(
−(φrw n −φrw)

2

2(σSp/a(z))2

)
, (5.32)

approximately describing again a Gaussian distribution for sufficiently large signal amplitudes

a(z). Its mean value equals φrw, whereas the variance is given by

σ2
φrw

=
σ2

Sp

a2(z)
. (5.33)

For a(z)→ 0 and taking into account the periodicity of wrapped phase or retardation, (5.32) yields

an uniform distribution function for the phase φw n in the interval [−π,π). As we are restricted

to positive values |a1| and |a2|, the measured retardation as random variable φrw n is uniformly

distributed in the interval [0,π/2).

An exponential decay has been assumed for the attenuation function according to (5.26), i.e.

the deterministic phasor is exponentially decreasing with the penetration depth. As a result, in the

retardation signal we obtain with decreasing amplitude a(z) an increasing variance σ2
φrw

(z) over

depth, which is expressed as

σ2
φrw

(z) ∝ σ2
Sp exp(2α z). (5.34)

Hence, this approach allows to model the retardation signal over depth as a random variable with

an increasing noise variance. The increase depends on the attenuation parameter α.

Finally, as shown in (5.13), the real and imaginary part of the speckles, modeled by the ran-

dom walk approach, are normal distributed (N ), independent and identically distributed random
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quantities. Therefore, we can assign them to two Gaussian white noise components

n1 =
N

∑
k

cSpk
cos(φSpk

), (5.35)

n2 =
N

∑
k

cSpk
sin(φSpk

), (5.36)

for a sufficiently high number of steps N. Both noise components n1 and n2, being normal dis-

tributed with n1 ∼ N (0,σ2
1) and n2 ∼ N (0,σ2

2), represent the fluctuations in the two imaging

and detection processes of both channels. As both channels are balanced, the same variances

σ2
1 = σ2

2 = σ2
φSp

may be supposed. Additionally, other additive noise sources, representing e.g. the

amplification or discretization, could be included by an increased variance.

Supposing now that both, real and imaginary signal part, are degraded by two independent ad-

ditive noise components, we can finally show that the measured amplitude signals at both detectors

can be expressed as

an1(z) = a(z) cos(φrc(z))+n1, (5.37)

an2(z) = a(z) sin(φrc(z))+n2.

5.3.3.1 Illustration: Retardation signal generation

Before the formation of a noisy (2D) retardation image with focus on the underlying anisotropy or

stress model will be regarded in detail, here the retardation signal generation over depth, according

to (5.25) – (5.37) for a single line (A-scan), starting from the noisy amplitude and intensity sig-

nals at both detectors in quadrature, should be illustrated in Figure 5.10 a) – c). A homogeneous

birefringent material has been assumed for this illustration of 1D signal generation.

By the preprocessing step, depicted in Figure 5.10 d), an enhanced visibility of the smoothed

retardation signal φ̃rw(z) over depth is achieved. For the 1D scheme the smoothing is performed

by a moving average filter. In generally for the retardation images, the denoising operation can be

realized in a more sophisticated way, e.g. by an adaptive median filter, wavelet filter, anisotropic

diffusion methods, etc., as will be shown in Section (5.4). However, the averaged retardation

signal can represent a non-zero mean signal. To correct the background we apply here the one-

dimensional EMD method of Section (3.1) to imply a local zero-mean signal, as shown in Fig-

ure 5.10 e). After the – here only schematically illustrated preprocessing – a zero-mean retardation

signal φ̃rw(z), with decreasing amplitude and modulation depth, is finally obtained.

Considering now an inhomogeneous internal birefringence (or spatially distributed stress states)

of an anisotropic material, a retardation fringe pattern with a spatially varying amplitude, fre-

quency or phase is expected. After the schematically illustrated preprocessing the signal can be

treated as an AM-FM signal, and (conventional) demodulation methods can be realized. We fur-

ther assume that after the preprocessing, i.e. after denoising, smoothing, and therefore reduction

of the higher harmonics, an almost harmonic wave shape can be supposed for φ̃rw(z). The prepro-

cessed signal can now approximately be described as

φ̃rw(z)≡ IP(z)∼ A(z)cos(φrc(z)), (5.38)

taking into account only the fundamental mode.
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By combining the retardation A-scans φrw(z) in lateral (x) direction to cross-sectional images

(B-scans) the preprocessed (cross-sectional) retardation image IP(x,z), which is used for demodu-

lation, approximately can be described as

IP(x,z)∼ A(x,z) cos(φrc(x,z)). (5.39)

The background B(x,z), being a constant offset or having a locally varying low frequency

baseline, has already been removed prior to the subsequent demodulation step.

Figure 5.10: PS-OCT retardation signal generation (A-Scan) according to the random walk-model,

resulting in increasing noise variance over depth in retardation image. a) Noisy amplitude signal

over depth (parallel and orthogonal polarized E-field components), b) noisy intensity signal over

depth (measured at detector 1 and 2), c) noisy retardation signal over depth, d) smoothed retar-

dation signal over depth, e) zero-mean, normalized retardation signal over depth with overlaid

envelope.

Summarizing, the different steps for retardation image generation with indicated noise behav-

ior and the resulting retardation image are illustrated once more in Figure 5.11. The retardation

φrc(z) is modeled here for representing a locally inhomogeneous birefringence distribution in the

material, (e.g. as would result from an almost point load acting on the material).
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Figure 5.11: Generation of the cross-sectional PS-OCT retardation image according to the mod-

eled sample M1.

a) Simulated cross-sectional amplitude image, corresponding to the cosine component, i.e. in-

phase signal, b) simulated cross-sectional amplitude image, corresponding to (a) with additive

Gaussian noise of constant variance over depth, c) simulated cross-sectional intensity image (at

detector 1) corresponding to (b), d)–f) cross-sectional images, corresponding to the sine compo-

nent, i.e. quadrature signal at detector 2, analog to (a)–(c), g) resulting cross-sectional retardation

image without noise, h) resulting cross-sectional retardation image with noise. White symbols

indicate increasing, constant or decreasing direction of the denoted quantity.

Note: (a) the amplitude signal over depth is decreasing due to attenuation, (b) the SNR is decreas-

ing due to decreasing signal amplitude, (c) the SNR is decreasing, (g) the SNR is constant over

depth.

(h) the resulting variance is increasing and hence, SNR is decreasing over depth. The amplitude

images are only of theoretical nature, but required for modeling. The intensity images are the

measurable quantity.
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5.3.3.2 Comparison: Simulated and measured depth-resolved retardation signals

Figure 5.12: Comparison of cross-sectional retardation images, taken from a) a highly scattering,

bulk polymer material, b) a weakly scattering, thin polymer material.

We compare the generated images with measured retardation data, especially with respect to

the observed and simulated decrease of fringe visibility. Considering a variety of recorded re-

tardation images there can be found examples for both: Retardation images showing a more or

less constant modulation depth of the fringe pattern and having an almost constant noise vari-

ance over depth; and retardation images of specimens showing strongly disappearing fringes over

depth. The first case can be referred to thin or weakly scattering, nearly transparent specimens,

whereas the latter one may occur especially in thick bulk materials with highly multiple scattering

properties, as illustrated in Figure 5.12. We have modified the classical ’sum of known phasor and

noise’ model, which supposes a constant deterministic phasor, in our approach by an exponentially

decreasing signal phasor. Different attenuation parameters are chosen for the various materials.

This varying exponential decay represents the solely additional assumptions, which we need for

simulating a decreasing fringe visibility.

In Figure 5.13, examples for the altering fringe modulation contrast over depth are presented,

comparatively for both measured and simulated data. For the image processing tasks, demon-

strated in the following, retardation scans with an increasing variance over depth are of more

interest.
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Figure 5.13: Comparison of simulated and measured retardation scans for different samples in

PS-OCT. a) Simulated cross-sectional retardation representing a weakly scattering material, b)

simulated cross-sectional retardation scan representing a strongly scattering material, c) and d)

measured retardation image comparable with simulated data of (a), e) and f) measured retardation

image comparable with simulated data of (b).
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5.3.4 Modeling birefringence and retardation image

5.3.4.1 Modulating function: Birefringence and stress

As shown in the previous example of Figure 5.11, retardation images with an underlying stress-

induced birefringence distribution show typically fringe patterns. They can be described according

to (5.39) and Chapter (3) as AM-FM signals.

The amplitude modulation function A(x,z) in (5.39) is supposed as a continuous, weakly de-

creasing function over depth. – From the imaging point the AM modulation is manifested in

a decreased fringe visibility over depth. In the performed image processing, this AM term be-

comes recognizable after the smoothing operation, especially for retardation images, which show

a strongly decreasing SNR over depth.– The frequency (FM) or phase modulation (PM) function

w(x,z) and φrc(x,z), are of main interest for the modeling and the reconstruction. They are given

by the optical anisotropic material itself, which causes a locally changing phase or frequency

modulation of the spatial fringe pattern.

The frequency modulation function w(x,z) or the phase modulation function φrc(x,z), related

by

w(x,z) =

(
wx

wz

)
= ∇φrc(x,z), (5.40)

characterize the inherent or the stress-induced local birefringence ∆nB(x,z). For appropriate spec-

imens, which show an internal stress state

σS(x,z) =
1

Copt

∆nB(x,z), (5.41)

with being Copt the material dependent stress-optical coefficient, both spatial frequencies are de-

termined by

wx(x,z) =
∂(φrc(x,z))

∂x
∝

∫ z

z0

∂(∆nB(x,z
′))

∂x
dz′, (5.42)

wz(x,z) =
∂(φrc(x,z))

∂z
∝ ∆nB(x,z) (or ∝ σS(x,z)). (5.43)

The recovery of the underlying spatially distributed birefringence ∆nB(x,z) or stress distribution

σS(x,z), encoded in the phase or frequency modulated fringes, is the aim of the mathematical

reconstruction to be demonstrated in the following section for the simulated and, moreover, for

the measured data.
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5.3.4.2 Internal birefringence and stress model

For the previously demonstrated 1D signal generation, describing the A-scan signal generation, a

material was supposed with a homogeneous internal birefringence. Thereby, a linear cumulative

retardation φrc(z) = wz z ∝ ∆nB z with a constant spatial frequency component wz(z) = wz in depth

is expected. Now, for expressing the behavior of real materials, an inhomogeneous birefringence

distribution will be supposed.

Figure 5.14: PS-OCT cross-sectional image (B-Scan): Comparison of simulated and measured PS-

OCT retardation scans. a) Simulated retardation scan M1, which models the strained elastomer

sample PS1, b) measured retardation scan of the strained elastomer sample PS1, c) simulated

retardation scan M2, which models the bent sample PS2, d) measured retardation scan of the bent

polymer sample PS2, which exhibits internally strained and compressed regions. z denotes depth

direction. The white/gray bar corresponds to 500 / 250 µm in (b) and 1000 / 500 µm in (d).

The investigated materials, which are inspected by PS-OCT imaging under real-world test sit-

uations (e.g. by tensile and bending test experiments), show an inhomogeneous birefringence and

internal stress distribution in general. This internal stress states should be modeled in a simplified

way in our simulation, however, by including characteristic representations of stress states.

Stress can occur in possible types: as tensile stress (positive stress) in regions which are dilated,

and compressive stress in regions which are compressed. Shear stress will not been regarded in

the realized applications. In case of stress-induced birefringence, the recorded retardation image

describes the local stress difference between both principal components (perpendicular to the wave

propagation) in a cumulative or wrapped way. Modeling the internal birefringence and the internal
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stress we have simulated two main cases of relevant specimen structures:

Simulated sample M1: The underlying model for this simulation is characterized by an

unimodal 2D Gaussian distribution simulating an exponentially varying birefringence inside

the specimen. For materials, which show stress-induced birefringence, it can be assigned to

a 2D positive stress distribution. A tensile stress state, as would be arising e.g. in a tensile

test, may be described by a similar pattern, (compare also Figure 5.14 a) and b)).

Simulated sample M2: Here, the model is characterized by a bi-modal 2D Gaussian dis-

tribution characterizing two differently signed modes of birefringence, (Figure 5.15 a) and

c)). Bending tests may induce similar stress states, (compare also Figure 5.14 c) and d)).

Figure 5.15: Model of the local birefringence distribution inside a material corresponding to the

simulated sample M2. a) Internal birefringence distribution, b) internal continuous retardation ac-

cording to (a), c) birefringence profile along indicated dashed line in (a), d) continuous retardation

along indicated dashed line in (b).

For our simulation we have chosen the model parameters (with respect to the internal birefrin-

gence distribution ∆nB(x,z), fringe frequency w(x,z), depth attenuation function a0(x,z)) to be

comparable to the probed test samples under the relevant test situations. The simulated images are

generated with different SNR and increasing variance over depth by applying speckle statistics as

derived and demonstrated in the previous section. A rectangular cross-section has been supposed

for modeling, neglecting cross-sectional deformations (e.g. volume changes or necking) during

stretching or bending. The birefringence distribution, as shown in Figure 5.14 a) and c), gives
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Figure 5.16: Cross-sectional image (B-Scan) at detector 1 corresponding to the simulated sample

M2. a) Cross-sectional (theoretically supposed) amplitude image without depth attenuation, b)

depth attenuation supposed as exponential decay function, c) cross-sectional (theoretically sup-

posed) amplitude image including the depth attenuation, d) cross-sectional intensity image as

would be measurable at detector 1 according to the stress distribution of Figure 5.15) a.

an example to simulate an anisotropic specimen with an internal compressive and tensile stress

region and a neutral region between. Similar stress states are expected for the real-world specimen

in realized bending beam experiments. A comparable stress distribution is underlying the analyzed

retardation images in the following in Section (5.4).

Integrating the local birefringence values ∆nB(x,z) in depth direction yields the continuous

retardation φrc(x,z), according to (5.5), depicted in Figure 5.15 b) and d).

In Figure 5.16 the depth-resolved (theoretically considered) amplitude and intensity cross-

sectional images, which would be measured at one of the detectors corresponding to the regarded

stress model, are depicted. The cross-sectional (noisy) retardation images, simulated according to

the described approach, now are used for the verification of our 2D reconstruction method.
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5.4 PS-OCT: Reconstruction methods for spatially resolved retarda-

tion, birefringence or stress imaging

In our thesis we develop a two-dimensional reconstruction scheme for local birefringence and

stress distribution recovered from PS-OCT retardation images. Some efforts have been made,

solving this problem by 1D approaches for PS-OCT imaging. However, to the best of our knowl-

edge, no full 2D reconstruction scheme has been performed till now for local birefringence anal-

ysis in PS-OCT. In the context of 2D interferometric signal demodulation similar 2D approaches

exist, however not in the special field of PS-OCT retardation imaging.

The analysis of the strain-stress behavior of the material is also the essential topic in the field

of elastography. In the context of elastography and Moiré pattern displacement analysis the ex-

traction of information from the photoelastic fringe pattern is demonstrated e.g. in [140]. The

described methods therein are based on a time-frequency analysis or on wavelet approaches to re-

cover the local strain tensor field. Although tensor analysis gives a comprehensive representation

of the internal stress field, these approaches are not suitable for PS-OCT imaging, since not the

entire stress tensor field can be imaged by a single PS-OCT retardation image. By rotating either

the sample or the camera for taking several images under different angles, a comparable complete

tensor field representation could theoretically be extracted by PS-OCT. But, this requires an ex-

tended experimental setup and leads to another topic. Here, we will focus on single frame analysis

for PS-OCT imaging and recoverable information from only a single retardation image.

First, existing 1D reconstruction approaches will be considered, and afterwards our 2D procedure

for PS-OCT will be demonstrated.

5.4.1 1D Reconstruction method for continuous retardation

For our special PS-OCT application, the local phase or the instantaneous spatial frequencies of the

fringes encode the anisotropy or birefringence, induced or inherent in the sample, as described in

(5.5) and (5.43). For analyzing the local birefringence states and the underlying inducing quantities

(e.g. stress fields), the reconstruction task consists in an estimation of the instantaneous frequency

or, as they are related, of the local phase.

Regarding the problem of frequency estimation from a more general point of view, the general

task of frequency estimation for a oscillating signal f (x) or f (t), has been extensively investigated

in different fields of applications in recent years, (e.g. in velocimetry [134], or radar techniques

[135]). Different methods, based on zero-crossing analysis [136] or autocorrelation techniques

[150] can be found. Related to interferometric use, one of the most common techniques is sug-

gested in [137], which applies a FFT-based method for the phase recovery. Although these FFT

and autocorrelation methods are optimized for an estimation of the center frequency of the signal,

they can not easily be used for a description of the instantaneous frequency or phase, if they are

not transposed e.g. to a windowed realization or into the wavelet domain.

Other methods of frequency estimation are derivative-based approaches. They use e.g. the 1D

Teager-Kaiser energy operator (TKEO) T for frequency estimation [138]. This operator is defined

by combining first and second order derivatives by

T =

(
d f (x)

dx

)2

− f (x)

(
d2 f (x)

dx2

)
, (5.44)
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and the frequency ω can be obtained by

ω =

√
T

{
∂ f (x)

∂x

}
/T { f (x)}. (5.45)

But especially for noisy signals (5.45) may result in problems.

A further group of frequency estimation methods is based on quadrature demodulation, ex-

ploiting the 1D HT for the analysis of temporal varying 1D signals and for the determination of

their local phase and frequency. We will focus on quadrature demodulation, and especially on

the computation of the quadrature component by HT, as it provides instantaneous phase and fre-

quency with acceptable computational efforts. In [139] the 1D HT analysis is exploited for phase

estimations in time series of speckle interferograms.

With respect to the special application on PS-OCT images a method for stress distribution

measurement and analysis based on Stokes vector images is shown in [141]. Therein an approach

is demonstrated, which is based on a 1D demodulation scheme for oscillating Stokes vector sig-

nals, continued by a numerical differentiation, to obtain the internal stress distribution. In [142]

a 1D phase recovery from wrapped retardation data for an almost straight fringe pattern is per-

formed. The 2D problem is reduced to a 1D solution by regarding only laterally averaged retarda-

tion values. These 1D quadrature signal computation can be applied for the determination of the

instantaneous values of retardation and birefringence as long as the fringes are almost straight. But

in generally, it would result in phase clipping, i.e. the phase values are ’mirrored’ at the symmetry

line, as illustrated in Figure 5.17. Furthermore, these 1D analysis approaches do not exploit the

2D character of the fringes and the contained 2D information of the pattern.

In the following, we want to investigate how elements of 2D quadrature demodulation can be

included in the mathematical analysis of PS-OCT retardation imaging.
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Figure 5.17: Illustration of the phase clipping for a closed fringe pattern structure. a) Simulated

fringe pattern, b) smoothed fringe pattern, c) wrapped phase image. The quadrature image com-

putation in (c) is based on the i1D dHT (according to (3.20)).
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5.4.2 2D Reconstruction method for continuous retardation

Now considering retardation images as 2D signals with inherent 2D information encoded in the

fringes, we aim to extend the concept of intrinsic 1D demodulation of retardation signals [141]

to a true two-dimensional approach. In our method, the main emphasis on the 2D reconstruction

is placed on the computation of a two-dimensional quadrature signal (called quadrature image).

Therefore, we include in the demodulation scheme of retardation images the radial HT (or spiral

phase transform), originally described and demonstrated in [43] in the context of interferometry.

But, in contrast to applications in conventional interferometry or photoelasticity [143], there

are several extensions necessary so that this method is feasible for the birefringence or stress/strain

analysis in the provided PS-OCT retardation images. In addition to the already demonstrated

use in interferometry, for application in PS-OCT several preprocessing steps including scaling,

zero-mean background correction, and denoising are necessary to perform a reliable phase recon-

struction and to fulfill the prerequisites for the 2D demodulation method. As the retardation is

reconstructed in a wrapped representation, furthermore an unwrapping step has to follow. In a

final step a numerical differentiation has to be performed to obtain the 2D internal stress distribu-

tion.

In the following, these steps are described in more detail and some interesting aspects are demon-

strated.

5.4.2.1 Scaling

The measured PS-OCT retardation images are mapped in the interval [0,π/2) . As for the follow-

ing demodulation zero-mean signals are supposed, the retardation data φrw(x,z) are scaled to the

interval [−π/2,π/2) .

The denoised, zero-mean, background corrected (in-phase) retardation image IPr(x,z), for

which we assume a modeling according to (5.29)–(5.39), is normalized to the unit interval [−1,1).

5.4.2.2 Background and riding wave correction

The assumption of zero-mean signal is a necessary, but not a sufficient condition for the application

of the HT for computation of the quadrature component. Real-world fringe pattern (regarded as

multi-component signals) are often a superposition of different components: The main fringe

pattern, interpretable as a 2D AM-FM signal with a locally dominant frequency, some slowly

varying additive background signal, and some kind of speckle noise, as already mentioned in

Section (3.1). The additive background may be caused by inhomogeneous illumination or may

result by smoothing effects in the signal processing.

In our application we are interested in the phase of the dominant frequency signal compo-

nent, as the dominant frequency encodes the information about the local quantities related to the

retardation. A preceding bandpass filtering is performed, a preprocessing approach, which we

have demonstrated in [156]. Additionally, we have tested the EMD method (Section (3.1)) for the

estimation of the background. As this method is more interesting we have focus on it.
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5.4.2.3 Denoising

Retardation fringe patterns, obtained by coherent imaging techniques, mostly exhibit strong speckle

noise. Hence, the denoising of the fringe pattern is a prerequisite for all following steps. Although

in general similar strategies can be applied for different interferometric techniques (as WLI, ESPI,

Digital Holography), additionally, an adaptation to the specific interferometric image features is

required. Especially in case of PS-OCT retardation images, the salient feature can be found in

the material-dependent speckle noise with increasing strength over depth. It is reasoned by the

multiple random scattering effects within the material, as already explained in Subsection (5.3.3).

In literature various methods for removing speckle noise are quoted, starting from simple

median filtering [144] to an extensive collection of wavelet-based methods, e.g. the conventional

wavelet shrinkage method [145] has been tested by us. But they have been proven to be insufficient

for the measured retardation fringe patterns.

Retardation fringe patterns have also in the mathematical sense a strong anisotropy or coher-

ence (of the image structures). The (mathematical) anisotropy may change its strength dependent

on the investigated material to a more isotropic speckle pattern of random backscatterers with in-

creasing imaging depth. Often our applications are featured by especially the diminishing of the

anisotropic character of structures with increasing depth, and the isotropic character of the struc-

tures becomes the dominant behavior, (i.e. being almost i1D structures in surface near regions and

becoming random structures with increasing depth.) Therefore, we investigate denoising schemes,

which are adaptive to the changing anisotropy-isotropy within the image. Although several im-

age enhancing methods, based on anisotropic wavelets or curvelets [146], described in literature

for enhancement of flow-pattern, textures or elongated structures, could be applied, we have es-

pecially chosen coherence enhancing diffusion (CED) methods. CED methods exploit the local

coherence value κ(x,z) of the fringe pattern in a local neighborhood. The anisotropic or isotropic

diffusion behavior (expressed by the diffusivity D(x,z)) is self-adaptive according to this coher-

ence feature. Furthermore, the concept of scale space may be included in the denoising approach

by smoothing the original image and the diffusion tensor image with the Gaussian kernels Kσ and

Kρ at the scales corresponding to σ and ρ.

We follow the approach of [147, 148], based on the anisotropic diffusion equation

∂u

∂t
= div(D∇u) in Ω × T, (5.46)

u(x,0) = f (x) on Ω × 0,

(D∇uen) = 0 on Γ = δΩ × T,

where here u(x, t) denotes a temporal and spatial varying function, which is developed over time.

The measured cross-sectional retardation image φrw(x,z) is represented by f (x)= f (x,z) and gives

the initial condition for the diffusion equation. Here, Neumann boundary conditions are assumed.

In CED methods the local diffusivity D(x,z) is adapted according to the structure tensor Jρ,
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which can be computed as

Jρ(∇uσ) = Kρ ⊗ (∇uσ ⊙∇uT
σ), (5.47)

with Kρ =
1

(2πρ2)
exp

(
−|x|2

2ρ2

)
,

Kσ =
1

(2πσ2)
exp

(
−|x|2

2σ2

)
, (ρ,σ > 0)

uσ = Kσ ⊗u(x, t),

and whose eigenvectors determine the direction of diffusion. The difference of the eigenvalues

c1 and c2 of the structure tensor Jρ(∇uσ), that describes the coherence at each pixel of the fringe

pattern by

κ = (c1 − c2)
2, (5.48)

steers the diffusion character. In case of isotropic structures both eigenvalues, having similar

values, κ tends to zero. In case of anisotropic structures the eigenvalues are different and the

eigenvectors v1 and v2 (i.e. the eigenvector of the smaller eigenvalue) determines the direction of

the diffusion. Therefore, the diffusivity becomes a function of the coherence D(κ,v1,v2), and the

smoothing becomes adaptive to the underlying fringe pattern.

Furthermore, the effect of increasing variance over depth can be treated in our approach by

utilizing a weighted initial function ∇ug in (5.46) as

∂ug

∂t
= div(D∇ug) in Ω × T, (5.49)

ug(x,0) = σ̄(x,z)2 f (x) on Ω × 0,

where σ̄(x,z)2 expresses an locally averaged variance map of the simulated (measured) retardation

φrw(x,z).

We apply the CED method for closing interrupted lines and enhance the information content

of the retardation fringe pattern. Furthermore, having also a slight amount of diffusion in the

direction perpendicular to the fringes leads to a smoothing of the (theoretically triangular) wave

shape. It helps to suppress the frequency components due to the higher harmonics, and therefore

being of advantage for the following demodulation. Therein, in our application the denoising

is slightly different from standard denoising tasks where sharp and preserved edges are usually

desired. We aim for obtaining the zero-crossings.

5.4.2.4 Computation of 2D quadrature image and orientation estimation

For the PS-OCT measurement setup the conditions of Nuttall and Bedrosian (i.e. supposing nar-

rowband signals with bounded energy in general, treating the in average decreasing visibility of

the fringes over depth by a slowly varying amplitude modulation, in contrast to the fast varying

fringes) are approximatively fulfilled for the dominant fringe pattern. However, when working di-

rectly with un-preprocessed data the inherent noise, offset or wave shape would essentially disturb

the demodulation and birefringence/stress extraction, as seen in the simulations of Subsections

(3.4.4), (3.4.5).
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After performing the required preprocessing of PS-OCT retardation images we may apply the

spiral phase transform approach as described in Section (3.4). The CED denoised fringes act as

input for the in-phase signal IP(x,y).

As already mentioned, the computation of the quadrature image by the spiral phase transform

requires an additional estimation of fringe orientation. We pursue two approaches of orientation

estimation:

First, the orientation estimation is performed by means of the complex energy operator EΘ

[149]. The energy operator can be computed in course of the spiral filtering approach by the

subsequent application of the radial Hilbert transform operator HR(R,Θ), as defined in (3.26) and

(3.40) on the fringe image f (x,y) or f (r,θ), as

EΘ { f (r,θ)} = F −1 {HR {HR {F { f (r,θ)}}}} (5.50)

− f (r,θ)
(
F −1 {HR {F { f (r,θ)}}}

)2
.

This approach can be interpreted analogue to (5.44) as radial realization of the Teager-Kaiser

operator. Its argument provides a pointwise estimation of the orientation in case of fringe patterns

exhibiting only low noise levels and sinusoidal wave shapes.

The second possibility for orientation estimation is based on the structure tensor, which deliv-

ers also an orientation estimation. This approach has the advantage that it can be combined with

the CED denoising step, since the orientation estimation is also inherent there.

Both orientation estimations deliver the orientation β = βπ, defined in [0,π). However, for

the application of the RHT, according to [43], the direction β = β2π, defined in [0,2 π), has to be

determined. The mapping WD of the orientation βπ to the corresponding direction β2 π

WD : [0,π)→ [0,2 π) | βπ → β2π , (5.51)

is denoted as so-called orientational unwrapping [75]. The orientational unwrapping step repre-

sents a very instable problem in case of noisy images. It may be performed with an improved

stability working on preprocessed images or by using rather the structure tensor method in com-

parison to the energy tensor approach for the orientation field estimation, as illustrated in the

following.

5.4.2.5 Unwrapping

In our approaches we separate denoising and unwrapping. After performing CED-diffusion filter-

ing to improve the fringe coherence, and the computation of the 2D quadrature signal

IQ(x,z)∼ A(x,z) sin(φrc(x,z)) from the measured, denoised and enhanced (in-phase) signal

IP(x,z)∼ A(x,z) cos(φrc(x,z)) the wrapped phase is determined as

φw(x,z) = arctan
IQ(x,z)

IP(x,z)
. (5.52)

It should be mentioned that the wrapped representation of the retardation, determined accord-

ing (5.52), exhibits no longer the triangular wave shape, but is now transformed into the conven-

tional wrapped phase representation φw, which is restricted to the interval [0,π). We use in the
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following the notation φw and the term wrapped phase image for this computed wrapped retarda-

tion representation to distinguish from the original retardation image φrw with its triangular wave

shape. (But keeping in mind that the retardation is the underlying quantity here – distinguished

from the wrapped phase images in Chapter (6).)

The mapping of the continuous phase to a wrapped one can be described by the wrapping

operator W

W(φc) = φw +2 π n, with n = 1,2..., (5.53)

where the phase φc should be assumed as continuous, smooth function. The aim of unwrapping

consists in the reconstruction of the smooth continuous phase φc.

Considering the unwrapping of (discrete) 1D signals, it can be seen as subsequent removal of

all phase jumps (i.e. discontinuities of 2 π) by performing the following scheme:

φ(m) = φ(0)+
m−1

∑
n=0

∆φ(n) = φ(0)+
m−1

∑
n=0

W{∆(W{φ(n)}} (5.54)

W{∆(W{φ(n)}} = W{∆(φw(n))}= W{φw(n+1)−φw(n)} ,

what can be interpreted as a path integration approach.

Unwrapping of 2D phase images represents an own comprehensive topic. Especially the influ-

ence of noise makes this problem a non-trivial one. Separation of the 2D unwrapping into two 1D

unwrapping processes would be theoretical possible under the condition of irrotational gradient

fields of φ(x,z) guaranteeing the path independence along a contour L ∈ (x× z)

∮
L

∇φ(x)dx = 0, (5.55)

or fulfilling the integrability condition

∂2φ(x,z)

∂x∂z
=

∂2φ(x,z)

∂z∂x
. (5.56)

However, for real data we can not assume this path independence due to the inherent noise. Ad-

ditionally, measuring artifacts can especially cause rotational gradient fields. A subsequent 1D

unwrapping would lead in practice to streaking artifacts. In case of (CED) denoised retardation

images having a higher SNR compared to the original retardation phase images, these streaking

artifacts are reduced, but erroneous stripes due to measurement artifacts, fringe singularities and

specular reflexes can occur. Therefore, we apply in the following a 2D unwrapping scheme.

In literature, a huge amount about phase unwrapping methods may be found, (reviewed e.g.

in [151]). The main 2D unwrapping approaches are distinguished in path-following methods,

minimum norm methods, global FFT-based methods, etc.

We have chosen for the necessary unwrapping step depending on the OCT-application a path

following method as it can be adapted to the specific features of the phase or retardation images.

The path-following approach using an adaptive quality map provides a robust solution as we

have tested on our preprocessed PS-OCT images. It requires a heuristic measure (e.g. derivatives,

variance, or SNR) for the quality and reliability estimation of the phase values.
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The quality criterium Q is determined in our PS-OCT application by (the reciprocal of) the

local variance σ2(x,z) and the deviation ∆(x,z)

∆(x,z) =

∣∣∣∣∣(∇φ(x,z)− ∑
x̃,z̃∈ΩR

∇φ(x̃, z̃))

∣∣∣∣∣ , (5.57)

as distance between the local phase gradient and the averaged gradient within some neighbor-

hood ΩR. Hence, the unwrapping path is determined by the quality criterium Q(σ2(x,z),∆(x,z))
describing the local SNR and signal smoothness. Regions with high SNR and accordingly high

reliability are unwrapped at first, and regions with low SNR are considered afterwards, following

the approach described in [153]. Applying this ordering scheme, the unwrapping is performed as

a path tracking approach [152] and solved finally according to [154] as minimization problem

∑
x̃,z̃∈ΩR

(∇φ(x,z)en)+βR (en(x,z)− en(x̃, z̃))
2

s(x̃, z̃)→ min!, (5.58)

which results in the equation system




∑
x̃,z̃∈ΩR

(φx(x̃, z̃)
2 +βRs(x̃, z̃)) ∑

x̃,z̃∈ΩR

(φx(x̃, z̃) φy(x̃, z̃))

∑
x̃,z̃∈ΩR

(φx(x̃, z̃) φy(x̃, z̃)) ∑
x̃,z̃∈ΩR

(φyz(x̃, z̃)2 +βRs(x̃, z̃))



(

enx
(x,z)

enz
(x,z)

)
(5.59)

=




βR ∑
x̃,z̃∈ΩR

(enx
s(x̃, z̃))

βR ∑
x̃,z̃∈ΩR

(enz
s(x̃, z̃)).




The positions, where en has already been estimated, are indicated with s(x̃, z̃) = 1. The parameter

βR stabilizes the unwrapping. The size of the neighborhood has to be chosen to be small in

comparison to the size of the image structures.

As a second approach for unwrapping a global FFT-based 2D unwrapping approach has been

considered, (especially in case of DPC-OCT imaging), which performs the unwrapping, similar

also to the phase from gradient reconstruction, by solving the Laplace problem, (for details com-

pare Section (6.3)).
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5.4.3 Reconstruction of internal stress distribution

The internal stress distribution σS(x,z) can be derived from the reconstructed cumulative retar-

dation φrc(x,z) by numerical differentiation in z-direction. However, due to the influences of the

wave shape, background and noise the reconstructed retardation signal may still obtain some spu-

rious oscillations. Hence, performing differentiation by a simple difference quotient would result

in an amplification of this erroneous oscillation signals, as demonstrated in Figure 5.18 a). (It

should be referred to the simulations in Section (3.4).)

We have performed the numerical differentiation by additionally including spline interpola-

tion, Tikhonov regularization [168, 184], or a combination of both, to obtain a smooth inter-

nal stress distributions within the material, as shown in Figure 5.18 b) – d). We have optimized

the parameters (i.e. interpolation size and regularization parameter) to find a trade-off between

smoothing and noise suppression in an empirical way, taking into account prior knowledge about

the expected stress profiles. The numerical realization of the stress computation is illustrated in

Figure 5.19 for different strength of regularization.

Figure 5.18: Comparison of the internal stress distribution. The internal stress distribution is

obtained by numerical differentiation of the cumulative retardation image. The numerical differ-

entiation is performed a) on cumulative retardation data (by a straight forward filtering with a [1 0

-1] kernel), b) on regularized cumulative retardation data, c) on cubic spline interpolated cumula-

tive retardation data, d) on cubic spline interpolated and regularized cumulative retardation data;

(The comparison is shown for the tensile test sample PS1.)
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Figure 5.19: Comparison of the internal stress distribution. The regularization parameters βR

is increasing with a) βR=0.001, b) βR=0.002, c) βR=0.005, d) βR=0.008. (Spline interpolated

cumulative phase retardation data have been chosen as input.)
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5.4.4 Further comments on the reconstruction approach

5.4.4.1 Comments on the denoising

Figure 5.20: Illustration of CED-based denoising method on a simulated cross-sectional retarda-

tion image. a) Original retardation image, b) enhanced retardation image, c) residual noise, d)

profile along indicated line (blue: noisy retardation signal, green: reconstructed).

The denoising has been realized in our procedure by CED methods. However, we would

not restrict that CED denoising is the only appropriate denoising possibility. Also a variety of

anisotropic wavelet and directional filtering based approaches have been available and have been

partially tested by us [156]. However, by our experience in PS-OCT applications, CED denoising

gives properly adapted results, as it improves the coherence structure of the fringes and we may

also include the variance-depth dependency. In comparison to the CED-based denoising, shown

in Figure 5.20, also the non-local mean (NLM) approach [157], shown in Figure 5.21, has been

investigated as a further denoising method [184]. A direct comparison between both methods is

given in Figure 5.22. Both approaches show partially restrictions, exemplified on simulated and

measured image data of the tensile test experiment.

The NLM-based denoising yields good results in case of simple fringe patterns, as performed

on the simulations. In case of fringe pattern images with lower SNR, the NLM method have been

proven less adaptive to the varying coherence structure in comparison to the CED method, as

shown in Figure 5.23.

The CED-based denoising may cause in boundary regions with low SNR, (i.e. at regions at
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Figure 5.21: Illustration of NLM-based denoising method on a simulated cross-sectional retarda-

tion image. a) Original retardation image, b) enhanced retardation image, c) residual noise, d)

profile along indicated line (blue: noisy retardation signal, green: reconstructed).

Figure 5.22: Comparison of both denoising methods (NLM and CED). Signal profile along indi-

cated line in Figures 5.20 and 5.21. a) Applying NLM method (blue: theoretical retardation signal,

green: noisy retardation signal, red: denoised retardation signal), b) applying CED method (blue:

theoretical retardation signal, green: noisy retardation signal, red: denoised retardation signal).
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the bottom side of the probed sample), an additional offset term, which results from erroneous

diffusion components of background regions outside the investigated object. It could be restricted

by a properly masking and discretization, but this seems rather complicated on irregularly shaped

objects.

Figure 5.23: CED and NLM denoising results in comparison, considering a representative cross-

sectional retardation scan of the tensile test sample (PS2). a) Measured cross-sectional retardation

image having severe speckle noise, b) denoised cross-sectional retardation image applying NLM

method, c) denoised cross-sectional retardation image applying CED method, d) profile along

indicated lines L1 and L2 (top, middle, bottom are corresponding to (a), (b), and (c)).

With respect to the realized CED filtering, by including a weighting of the initial retardation

image with the average variance map, as described in (5.49), the results could partially be im-

proved. This approach leads to a locally increased gradient and to a stronger diffusion for regions

of higher averaged variance. The incorporation of the variance allows to work with smaller Gaus-

sian kernel parameter in the CED filtering, which otherwise would result in some remaining noise,

which is illustrated in Figure 5.24 b) and c).

However, a limit of SNR exists, where both CED methods erroneously start to enhance random

noise structures, as illustrated in Figure 5.25.
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Figure 5.24: Comparison of CED denoising. a) Simulated noisy retardation image, b) CED de-

noising performed in the conventional way, c) including additionally the variance map as the initial

condition in the CED denoising; otherwise applying the same parameter set as in (b).

Figure 5.25: Illustration of the limits of CED denoising. a) CED denoised image (SNR: >2 dB),

b) CED denoised image (SNR: >0 dB). Increasing variance over depth leads to decreasing SNR

and fringe visibility, which results in erroneous structures after the denoising in (b).
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5.4.4.2 Comments on the demodulation

Figure 5.26: Illustration of phase clipping and the advantage of the 2D approach. The quadrature

image computation is based on a) the directional HT method (as half-plane symmetric approach),

which leads to clearly recognizable phase clipping in the central region, b) the radial HT method

(as isotropic approach), where the phase clipping is avoided; exemplified on a simulated fringe

pattern.

The performance of the suggested 2D approach is manifested in particular for patterns contain-

ing closed fringe structures. For these patterns the application of the directional HT ((i1D dHT),

according to (3.20)), as an intrinsic 1D operation, would result in a phase clipping. In contrast, the

approach based on the radial HT ((2D RHT), according to (3.22)) enables the reconstruction of

the quadrature component of the image in the correct way, under the condition that the orientation

and direction of the fringe pattern have been estimated additionally.

In Figure 5.26, the computed wrapped phase images, each obtained by the 1D directional

or 2D radial HT realization, are depicted in comparison. For almost straight-lined fringes (i.e.

having a defined single direction) the (i1D) directional HT can appropriately be applied. However,

for curved fringes the phase clipping, resulting from the 1D consideration of the fringes, should

be remarked.

In Section (3.4) we have explained the interfering influence of the background as locally vary-

ing offset term, superposed on the fringe pattern. For correcting this additional offset and for

diminishing errors, the EMD approach can additionally be included. The improvements, which

can be obtained by the combination of the radial HT (RHT) approach and the EMD-based back-

ground correction, exemplified again on the measured image data of the tensile test experiment,

are illustrated in Figure 5.27. Especially in regions of lower SNR and curved fringes, which are

typical here for the bottom side of the investigated sample, the differences are recognizable.

5.4.4.3 Comments on the internal stress calculation

The whole birefringence and stress/strain analysis is performed as an 2D approach, including

denoising, background correction and demodulation. But, the numerical differentiation step of the

cumulative retardation is performed only as 1D directional derivative in depth direction. This is

reasoned by the optical measurement principle, where only the cumulative accumulation of phase

retardation in depth direction can be recorded. However, mathematically the potential of more

information – by evaluating the whole gradient field of the cumulative retardation – would be
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Figure 5.27: Comparison of wrapped phase images. The computation of the quadrature image is

based on a) directional HT method, b) radial HT method, c) radial HT method combined with a

bi-dimensional EMD background correction; exemplified on a measured retardation image (sam-

ple PS1), whith curved fringes in the narrowings. An improved wrapped phase representation is

noticeable in (c), especially for the regions, which are indicated by the arrows.

given by the demonstrated 2D approach. This possibility and its use for evaluating inhomogeneous

birefringence in lateral direction should be discussed in the frame of future experiments.

Whereas in simulated data the wave shape is the crucial feature, which finally causes the erro-

neous signals in differentiation, in real data different measurement phenomena and artifacts, e.g.

the decreasing modulation depth and the diminishing SNR, erroneous fringe vortices in deeper ma-

terial regions, optical reflexes and signal drop-outs, may occur and deteriorate the reconstruction,

which especially becomes visible during the differentiation step.



5.5. PS-OCT: Results and discussion 111

5.5 PS-OCT: Results and discussion

We have demonstrated our reconstruction procedure for recovering depth-resolved birefringence

or internal stress information on different technical materials under relevant real-world test situ-

ations. These experimental applications are representative for situations in material testing being

of increased interest, e.g. for the evaluation of elasto-mechanical properties of materials, espe-

cially strain-stress behavior of polymers or composites, and especially for observing the evolving

internal anisotropies.

The samples have been probed and the reconstruction has been performed for three applica-

tions, in particular for:

Dynamical stress/strain experiments, as a tensile test and a bending test,

Evaluation of static strain/stress fields, arising in a photolithographic pattering process.

For the evaluation of the birefringence and stress reconstruction we performed the following

steps:

First, an evaluation of our reconstruction procedure has been performed by simulations.

Second, for testing of technical materials, a homogeneous sample with a well-defined rect-

angular cross-section has been considered. The sample was almost uniformly stressed by

increasing loads and shows an almost homogeneous birefringence. Comparative data [158],

obtained by an additional load cell testing experiment, were available for the evaluation.

Third, after the previous verification of our procedure by the comparative test experiments,

samples of an arbitrary cross-section with locally inhomogeneous birefringence have been

investigated.

5.5.1 Evaluation on simulated fringe patterns

The whole procedure developed for the evaluation and characterization of internal birefringence

and stress distribution has been validated by means of simulated fringe patterns. The simulated

sample M2 with a 2D inhomogeneous birefringence has been investigated, (compare Figure 5.14).

The given internal stress distribution is used as reference and ground-truth, for which the stress

reconstruction has been examined.

The cross-sectional retardation images have been modeled according to the scheme described

in Subsection (5.3.4). The simulated retardation image, used for the reconstruction in the fol-

lowing, is depicted in Figure 5.28 a). We have chosen this sample to illustrate the performance

of the 2D approach versus (intrinsic) 1D approaches. The simulated retardation image has been

degraded according the noise model, described in Subsection (5.3.3), by (complex) speckle noise

of different variances, as shown in Figure 5.28 b) and c). The noise variance in these images in-

creases over depth, and vice versa the SNR decreases with the penetration depth. We have tested

the simulations with noise variances up to reaching the limit, where the fringes starts to disappear

in depth (i.e. up to a SNR ≤ 0 dB according to (5.9)), to emulate the decreasing visibility of the

retardation fringes in highly scattering, bulk materials, (compare Figure 5.13).
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The fringe orientation is calculated using the energy tensor approach for retardation images,

as illustrated in Figure 5.29 a)–c). Especially the orientational unwrapping results in instabilities

in case of higher noise variances, as can be seen in Figure 5.29 d)–f).

These instabilities can be reduced by a denoising step, either performed directly on the noisy

(complex) orientation image, e.g. by a simple median filter as shown in Figure 5.30 b), or applied

on the original fringe pattern. In particular, by using the CED filtering an enhanced orientation

field estimation can be obtained by means of the structure tensor, as shown in Figure 5.30 c).

After the preceding denoising of the fringe pattern, the stability of the orientation estimation and

especially of the orientational unwrapping can be improved remarkably. Hence, for realizing our

whole reconstruction method, we aim at a denoising of the fringe pattern to obtain a smooth

wrapped retardation image, as can be seen in Figure 5.31 a)–f), where a CED filtering has been

successfully applied.

Afterwards the quadrature transform on the smoothed fringe pattern image is determined, ac-

cording to (5.50), which delivers the wrapped phase image φr(x,z), as depicted in Figure 5.28 d)–

f). This wrapped phase data have been unwrapped, yielding the cumulative retardation image

φrc(x,z). Finally, the stress or birefringence distribution ∆nB(x,z) is obtained by means of nu-

merical differentiation of the unwrapped cumulative retardation. The results are shown in Fig-

ure 5.31 g)–i). For the denoising performed by median filtering the recovered stress distribution,

due to the remaining noise is disturbed over depth, whereas the quality of reconstruction is im-

proved remarkably after CED denoising.

The influence of the wave shape on the reconstructed stress distribution is depicted in Figure

5.32 a) and b). As derived in Section (3.4) the triangular wave shape results in additional erroneous

oscillations in the recovered stress image. By including a spline interpolation prior to differenti-

ation this effect has been reduced, as shown in Figure 5.32 c). The reliability of our procedure,

especially the advantage of a preprocessing, could be confirmed by the comparison with the sim-

ulated input data. In Figure 5.33 the corresponding profiles of the reconstructed stress distribution

are shown. As can be recognized in Figure 5.33 b)–d), the erroneous oscillations are reduced in

case of an additional smoothing and denoising.
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Figure 5.28: Cross-section (B-Scan) of the simulated retardation image. Retardation is scaled be-

tween [0,π/2), wrapped retardation is scaled between [0,π). a) Retardation image without noise,

b) retardation image with speckle noise variance σ2
Sp = 0.1, c) retardation image with speckle

noise variance σ2
Sp = 0.4, d)–f) wrapped phase images corresponding to (a)–(c). Speckle noise

variance is related to the amplitude image, according to (5.37).

Figure 5.29: Fringe orientation and direction computed by the energy tensor approach for simu-

lated retardation images with different noise levels. Orientation is scaled between [0,π), direction

is scaled between [0,2π). a) Fringe orientation image corresp. to Figure 5.28 a), b) fringe orienta-

tion image corresp. to Figure 5.28 b), c) fringe orientation image corresp. to Figure 5.28 c), d)–f)

fringe direction image corresp. to a)–c) computed by orientational unwrapping. Orientational

unwrapping artifacts due to increased noise level are clearly recognizable in (f).
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Figure 5.30: Influence of denoising on fringe orientation and direction estimation. a) Noisy orien-

tation image obtained by the energy tensor approach, b) orientation image denoised by (complex)

median filtering, c) orientation image obtained by the structure tensor approach, d) orientation

image after a preceding CED-smoothing on the noisy retardation fringe image, e) direction image

after the orientational unwrapping of (d). Improvement in the orientational unwrapping are visible

in (d) in comparison to Figure 5.29 f). σ2
Sp = 0.4.
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Figure 5.31: CED-based smoothing of noisy retardation image and its influence on resulting re-

constructed internal stress distribution a) Original noisy retardation image, b) retardation image

denoised by averaging, c) retardation image denoised by the CED approach including depth profile

correction, d)–f) wrapped phase images corresp. to a)–c), g) initial stress distribution, h) recon-

structed stress distribution correspond. to (b), i) reconstructed stress distribution correspond. to

(c). σ2
Sp = 0.4.
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Figure 5.32: Demonstration of the influence of the triangular wave shape and noise on the demod-

ulation results. Reconstructed a) cumulative phase retardation, b) stress distribution, c) smoothed

stress distribution; (a)–(c): input data without noise, d) cumulative phase retardation, e) stress

distribution, f) smoothed stress distribution; (d)–(f): input data with noise. In (c) and (f) in com-

parison to (b) and (e), a decrease of the erroneous ripples by an additional smoothing prior to

demodulation can be recognized. σ2
Sp = 0.4.
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Figure 5.33: Comparison of initial and reconstructed stress profiles (along the indicated line in

(a)). a) Simulated input stress distribution. b)–d) Reconstructed stress profiles, recovered from

simulated b) noise-free retardation image, showing small oscillations, c) noisy retardation image,

showing oscillations and small noise artifacts, d) noisy retardation image with a preceding CED-

smoothing. The oscillations are clearly reduced in (d) in comparison to (b) and (c), visualized in

the insets for a relevant signal part, (green: initial input stress profile, red and blue: reconstructed

stress profile in different interpolations). σ2
Sp = 0.4.
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5.5.2 Evaluation on measured cross-sectional retardation images

5.5.2.1 Dilatation test

For the final evaluation of the stress reconstruction procedure experimental data obtained by a

tensile experiment have been regarded in comparison. A tensile test machine, which facilitates re-

producible elongations of the samples under defined applied forces, has been used for the stretch-

ing. During the stretching the sample PS1 (elastomer) has been strained by an externally applied

force up to a maximum stress value (almost reaching the ultimate stress limit) for the elastomer.

Afterwards the sample has been relaxed to its approximate initial state.

Figure 5.34: Representation of evolving internal stress distributions within the stretched elastomer

sample (PS1), imaged under increasing external forces. The probed specimen shows anisotropic

properties and stress-induced birefringence especially in the narrowing regions. a) Measured

cross-sectional reflectivity images at different elongations, b) measured cross-sectional retardation

images according to (a), c) reconstructed cross-sectional wrapped phase image, d) reconstructed

cross-sectional internal stress image, e) measured strain/stress curve, illustrating the elastic behav-

ior of the sample.

The evolving birefringence or stress states are analyzed on the consecutively recorded cross-

sectional retardation images taken during the tensile test experiment. By means of the mathemat-

ical reconstruction procedure, as described in the previous chapter (subsequently by denoising,

quadrature transform, 2D unwrapping and differentiation) on the individual frames, the distribu-

tion of the locally depth-resolved internal birefringence is finally obtained. The corresponding

local stress distribution can be determined according to (5.41) with a stress-optical coefficient
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(Copt = 19× 10−4 MPa−1 [121]) for the investigated specimen. In Figure 5.34 a) and b), the

measured reflectivity and retardation images at different states of elongations are shown. Corre-

spondingly the reconstructed wrapped phase images and stress distributions are depicted in Fig-

ure 5.34 c) and d). The experimentally determined strain-stress behavior of the sample is presented

for comparison in Figure 5.34 e).

First, evaluating the qualitative result, the reconstructed local stress pattern is in accordance

with the physically expected stress distribution, i.e. locally higher stress states are observed at

narrowings or constrictions of the cross-section. With rising strain also the reconstructed local

stress values are increasing in the usual way.

Second, for the quantitative evaluation of the mathematically recovered stress data in this

tensile test experiment, the mean values of the computed internal stress data have been compared

with the experimentally determined global stress data at different elongations. The mean values

of the computed internal stress data are obtained by averaging the reconstructed stress distribution

over the cross-sectional area of the sample in the current frame. These values may be related to

the external forces applied by the tensile test apparatus. The quantitative comparison with the

experimental data at different elongations is depicted in Figure 5.35 a).

Reaching the maximal stretching value and being relaxed afterwards, the internal stress state

returns to almost the initial state at the beginning. It should be noticed, that the investigated sam-

ple, having previously been stressed in other tensile test experiments, exhibits residual anisotropies

within the material. The anisotropies have already been inherent to the sample prior to the val-

idated test experiment. Presumably, the observed remaining anisotropies are connected with the

irreversible uncoiling and reorientations of the polymer-chains inside the sample.

As can be seen from the globally measured strain-stress curve, a mechanical hysteresis loop

is formed, as mostly prevalent in strain-crystallizing and filled elastomers, [174]. The hysteresis

behavior could also be verified by our mathematical reconstruction: Exhibiting a nearly constant

(computed) mean stress value at the beginning of the procedure, running through an hysteresis

loop back at the end of the stretching to almost the initial value. However, in the reconstructed

data (being also recognizable in the corresponding fringe patterns) an offset/bias can clearly be

observed, both at the beginning and at the end of the tensile procedure, as shown in Figure 5.35 b).

As previously explained, the offset is conditioned by the anisotropies within the material. From

the experimental test realization and the mathematical reconstruction both contributions, stress-

induced birefringence and material anisotropies can not be separated completely. A correct ex-

planation of these effects would require an extended knowledge about the elastic behavior of the

specific polymer type, which would go beyond of the scope of the performed experiments and

reconstruction.

5.5.2.2 Bending test

Furthermore, the reconstruction has been tested for the evaluation of internal spatially distributed

stress states emerging in a bending experiment of the sample. The sample (S2) has been chosen

and clamped by its ends during the bending, which results in double ’S’-shape of the specimen. A

more complicated distribution of internal stress with alternating tensile and compressive regions

is expected, as depicted in the scheme of Figure 5.36. This results in a retardation fringe pattern

with closed retardation fringes. The maximum of the cumulative retardation is located close to the
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Figure 5.35: Comparison of applied external and mathematical reconstructed global strain/stress

data during the stretching and relaxation process. a) Measured vs. mathematically reconstructed

global stress data over time, b) stress/strain hysteresis behavior of the investigated polymer mate-

rial.

Figure 5.36: Scheme of a bent slab structure with resulting tensile and compressive stress regions

as expected for the bending test, (F, M acting force and moment, b material thickness)
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center, where the neutral line separates tensile and compressive stress regions. For this application

in particular, the realized 2D demodulation approach shows its performance by exploiting the full

information.

In Figure 5.37, the performed reconstruction steps for internal birefringence and stress distri-

bution extraction are demonstrated. Although the measured data exhibit severe noise and mea-

surement artifacts (in this special case zero-valued data representing measurement drop-outs and

an additional kink, as can be seen in Figure 5.38 a), a qualitative consistence of the reconstructed

stress images with the theoretically expected stress distribution could be verified. The recovered

internal stress distribution, depicted in Figure 5.38 b), is obtained here by numerical differentiation

of the exponentially fitted cumulative retardation. For the central region of the slab the resulting

stress profile in depth direction is visualized in Figure 5.38 c). It shows nicely the altering stress

values between the tensile and compressive region with a neutral region in between.

Figure 5.37: Illustration of the reconstruction procedure for a cross-sectional PS-OCT retardation

scan, exemplified on the bent polymer sample (PS2). a) Original retardation image, b) (CED) de-

noised and wrapped phase image [184], c) cumulative (unwrapped) retardation image, d) resulting

birefringence and corresponding stress image.

5.5.3 Evaluation on measured en-face retardation images

Finally, we have exemplified our reconstruction method for an en-face PS-OCT scanning appli-

cation. The PS-OCT images are taken at the photoresist/wafer interface of test sample S3 rep-

resenting a lithographically manufactured mold structure for miniaturized gear wheels, as shown

in Figure 5.39 a). The mold structures are etched in a thick photo-resist layer. In particular, the

region of interest is located between the neighboring wheel molds. There, by the PS-OCT imaging

technique, the residual stress distribution arising after the exposure of the photo-resist material in

the lithographic process has been investigated [158].
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Figure 5.38: Representation of the measured fringe pattern and resulting stress distribution in the

bent polymer sample of Figure 5.37 a). a) Noisy retardation fringe pattern, the arrow indicates

a kink due to an existing material defect, the fringes are almost closed in the center and running

towards the located material defect, b) cumulative retardation interpolated by a cubic polynomial,

c) stress profile along the indicated line in (b), showing the transition between tensile and com-

pressive stress.

Figure 5.39: Illustration of the internal stress reconstruction performed on en-face PS-OCT retar-

dation scans. A mould structure for miniaturized gear wheels represents the sample (PS3) under

investigation. a) Original intensity (top) and retardation (bottom) images, b) enlarged view of area

indicated in retardation image (a), c) quadrature image, d) wrapped phase image, e) stress image

(plane and 3D view, as well as the profile along indicated dotted line).
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With respect to the reconstruction the crucial point in this application consists in the noise vari-

ance differing locally due to the composition of the imaged materials: Whereas the birefringent

photo-resist regions exhibit almost no noise and the fringes are clearly visible, inside the recessed

regions a high amount of reflected speckle noise can be observed. On the other hand, these noisy

regions exhibit no retardation and hence no fringe patterns, as depicted in Figure 5.39 b). There-

fore, the denoising step of the fringes can be omitted in the reconstruction method. However,

the 2D unwrapping method has been modified by an extended path-following approach, which

exploits not only the local gardient of the retardation as quality measure, but ranks the different

regions by an reliability criterium corresponding here solely to the local variance or SNR of the

region. This ranking guarantees the stability of the unwrapping and quadrature transform compu-

tation over the whole region of interest, as shown in Figure 5.39 c)–e).

This application is more similar to a reflective photoelasticity experiment, and rather different

from the previously considered cumulative cross-sectional PS-OCT imaging with its described

capability of depth-resolved imaging. Here, in case of en-face PS-OCT techniques, the differen-

tiation step need not be performed, as the stress values are averaged over the imaging depth. The

unwrapped retardation value yields directly the birefringence after being scaled with the stress-

optical coefficient of Copt = 2.6× 10−4 MPa−1 for the investigated photo-resist material [155].

The complete quantitative lateral stress map can be obtained, which exhibits stress values up to

2.5 MPa in the narrowing region between the wheel molds.
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5.5.4 Discussion: PS-OCT imaging and reconstruction

5.5.4.1 Consideration about testing and reconstruction

Although all reconstructed data are comparable in their size with stress data obtained by com-

parative analysis techniques, it should also be noticed that different sources of measurement and

reconstruction artifacts may have been occurred in our measurements, which possibly restrict the

accuracy of the procedure.

With respect to the measurements we have to notice that inaccuracies may be introduced due

to

Test sample:

For performing the tensile stress experiment as a dynamical real-world application and for

the following analysis the use of normalized standard tensile test elements would lead to

better comparable and interpretable data.

Using as tensile test material an arbitrarily shaped specimen with a changing cross-sectional

profile and with inherent inhomogeneities only roughly known can lead to different possible

interpretations of the result. But, on the other hand samples with locally anisotropic regions

represent more interesting and relevant specimens for depth-resolved stress measurements

especially in dynamical tensile and fracture test experiments.

Hysteresis:

Residual anisotropies in polymers may occur by previous tensile test experiments resulting

in modified stress-optical coefficient values and in hysteresis behavior.

Irreversible processes:

Combined with the hysteresis behavior of polymers the beginning of flow and plasticity

deformations change the linear relationship between stress and strain. Furthermore, in case

of varying cross-sectional areas of the sample the yield stress may be reached dependent on

the effective local stress distribution at temporally different states.

Sample displacement:

A slight change of the probing volume during the stretching process by the displacement

of the sample may result in a different initial (residual) stress value and can cause a locally

dependent biasing. Therefore, the tensile test setup should be stabilized by a unit allowing

a well-defined reproducible sample position.

For the reconstruction step the noise variance or the SNR mainly determines the limiting factor

for analysis. Only up to a certain material depth, dependent on material and backscatter distribu-

tion, the birefringence measurement and analysis can be reliably performed. With respect to the

mathematical reconstruction of internal birefringence or stress states we have to notice that ar-

tifacts can be introduced due to:

Smoothing:

Inducing vortex-like structures (i.e. singularities) in the fringe patterns may occur during the

CED- or other denoising process in regions of very low SNR, where fringes are no longer
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visible due to multiple scattering and material absorption. From the mathematical point of

view these vortex artifacts can be removed by a preceding Helmholtz decomposition [151].

But, a correct limitation of the possible regions of interest for analysis by appropriate binary

masking can reduce this artifact in an easier way.

Unwrapping artifacts:

Incorrect unwrapping of complicated fringe pattern can be a result of the erroneously in-

duced vortices. However, also partially remaining noise results in instabilities during the

unwrapping procedure. With an adapted regularized unwrapping the influence of noise can

be reduced.

Noise and wavy substructures amplification:

Noise and wavy substructures amplification in the differentiation step can occur in the case

of insufficient regularization or interpolation. On the other hand an over-smoothing may

result in the case of a too strong regularization. A trade-off between both effects has to

be found empirically or in an automatized way considering the backscatter statistics of the

material.

5.5.4.2 Summary: Pros and Cons

For PS-OCT imaging we have demonstrated how spatially resolved birefringence or stress states

can be be analyzed and interpreted in a two dimensional way to obtain qualitative and quantitative

statements about inherent or induced anisotropies in turbid or semi-transparent polymer materials

and about their related optical and elastic properties (e.g. uniaxial directions of polymer chains,

internal birefringence or stress distribution). We have shown how the developed complex image

analysis procedure, exploiting elements of single fringe analysis – as 2D quadrature transform and

phase unwrapping – originally used for interferometric techniques, can successfully be adapted,

extended and combined with image denoising techniques for a meaningful 2D analysis of PS-

OCT retardation images. Both for simulations and for different real-world PS-OCT applications

we have demonstrated the proof-of-principle of a 2D retardation image evaluation in extension to

previously developed 1D analysis of other research groups. In addition, we have investigated the

performance and the limitations of the proposed 2D demodulation technique for PS-OCT.

Advantages

Quantitative and spatial information: The determination and reconstruction of local and

spatially resolved complex birefringence and/or stress states inherent in (non-transparent)

materials allows an advanced evaluation for non-destructive probing of materials in a quan-

titative way.

Information content: As we do not prefer any direction in the quadrature component compu-

tation the exploitation of the full 2D spatial frequency information of the retardation fringe

pattern can be guaranteed.

Complexity: Closed and complicated retardation fringes being not necessarily convex can

be analyzed. Phase stepping approaches requiring an extended experimental setup can be

avoided using single fringe approaches.
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Limitations

SNR: Measurement artifacts and an excessive noise may result that the reconstruction fails,

in particular caused by instabilities in the unwrapping steps (orientational and phase un-

wrapping).

Offset: Locally varying background due to illumination or absorption by the specimen has to

be corrected, e.g. by using empirical mode decomposition methods or partially by preceding

band-pass filtering.

Resolution: Being limited by the resolution of the imaging unit, by the power of the light

source and by the penetration depth of the light, also the performance of mathematical

reconstruction to obtain quantitative local information can be reduced.

Singularities: In case of computation of a (complex) retardation fringe pattern, which ex-

hibits inherent vortex structures, an additional consideration has to be performed, e.g. by

separation of the pattern into its rotational and irrotational (complex) field components.



Chapter 6

DPC-OCT for Optical Path Length

Mapping

Specimens investigated by phase-sensitive OCT techniques are mostly transparent samples and

possess only few or no scattering centers, which are the carrier of image content in conventional

OCT imaging. Hence, imaging contrast can only be obtained at material interfaces with refractive

index differences or steep gradients. Interfaces usual represent embedded structures inside the

sample which we want to investigate by phase-sensitive OCT techniques. Measuring the depth-

resolved phase of the OCT interference signal at these interfaces the phase is an expression of

the OPL according to (5) and it is therefore a measure for the cumulative phase change of the

propagating wave field introduced by refractive index or thickness variations.

Measuring the absolute phase value of the OCT interference signal is often without impor-

tance or irrelevant as there is no continuous signal over the whole depth of the sample and regions

with low intensity (reflectivity) signal and high noise level are situated between the different in-

terfaces. However, a relative phase measure can be obtained at each interface comparing phase

differences at adjacent lateral scanning positions or phase ratios between different interfaces. In

[115] a phase-sensitive OCT setup working in FD is demonstrated measuring the phase shift in-

troduced by the sample in comparison with a reference beam reflected from the sample surface in

a common-path interferometer configuration. Besides measuring the phase difference related to a

reference wave field, the mutual differential phase changes between laterally adjacent sites at the

investigated interface can be exploited, as shown first by [18]. Following this DPC-OCT approach,

in our work we extent the differential phase measuring technique, originally performed only in one

direction (denoted in the following as one-directional (1d)-scanning), to a phase-sensitive OCT-

configuration where both directional phase derivatives can be obtained. By means of the rotatable

probing head a orthogonal-scanning regime, denoted in the following as two-directional (2d)-

scanning, can subsequently been realized. Thereby being now able to measure the entire phase

gradient field for different interfaces inside the sample, finally the total phase or OPL map at the

interface can be reconstructed by classical gradient-based reconstruction schemes.

In the following sections the DPC-OCT measuring setup and the whole OPL reconstruction pro-

cedure will be described.

127



128 Chapter 6. DPC-OCT for Optical Path Length Mapping

Figure 6.1: Optical configuration for DPC-OCT imaging. a) DPC-OCT optical setup scheme with

indicated polarization directions, b) configuration of the probing head with rotatable Wollaston

prism ( f , focal length; αD, divergence angle; ∆x, probing beam shear).

6.1 DPC-OCT: Imaging techniques

6.1.1 DPC-OCT: Optical configuration

For the performed measurements the previously demonstrated PS-OCT setup has been modified

to a (differential) phase-sensitive OCT configuration. The optical setup for differential phase con-

trast OCT imaging is schematically sketched in Figure 6.1. Similar to a conventional OCT the

basic optical setup consists also of a Michelson interferometer operating with a low coherence

light source, in our case a SLD (Superlum SLD 761-MP3-DIL-D-1550) with a center wavelength

λ0=1550 nm and a central bandwidth ∆λ=50 nm, resulting in an axial resolution δz=19 µm in air

according to (4.9). The setup is extended by including two Wollaston prism (WP) as crucial ele-

ments into the interferometric configuration. Due to the splitting and shearing of the probing beam

by WP1 the phase difference between the two displaced wave components can be determined as

phase delay between the two resulting interference signals, which can be separated due to their dif-

ferent polarization states at WP2. In Figure 6.2 a) the developed 2D DPC-OCT system is shown

with indicated interferometric paths for the reference and probing wave. WP1 can be rotated to

change the shear direction, allowing to measure the complete phase gradient field by subsequent

scanning. The rotable part of the stage, consisting of the Wollaston prism (WP1) and the imaging

lens, is enlarged depicted in Figure 6.2 b).

Some crucial points concerning the measurement and imaging procedure in DPC-OCT are

highlighted for a better understanding:
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Figure 6.2: a) DPC-OCT measurement configuration, b) enlarged view of the beam shearing unit.

Beam shearing: The Wollaston prism WP1, which can be freely rotated around the beam axis,

is placed in the back focal plane of the imaging lens L within the probing beam. The investigated

structure has to be located in the front focal plane of the imaging achromatic lens. This arrange-

ment allows a polarization dependent splitting and shearing of the probing beam into two adjacent

parts, separated due to their different polarization states. The WP introduces a lateral shear τ be-

tween the two wave components, so that the two beams are focused at two adjacent sites of the

sample. In the realized setup the lateral displacement of the two focal spot positions is determined

by the deviation angle (αD = 5’) of the Wollaston prism and by the focal length ( f = 4.5 mm) of

the achromatic imaging lens, defining the lateral resolution of the system by

δx = 2 tan(
αD

2
) f , (6.1)

which about 6 µm for the specific setup. As the WP is rotable in our configuration, the shear can

be introduced both in x- or y- scanning direction as τx = ∆x or τy = ∆y. The two slightly displaced

and focused beams are reflected at the depth-resolved interfaces and inhomogeneities within the

sample. Due to refractive index changes over depth or thickness variations an OPL difference and

consequently a phase shift ∆φx,y is introduced between the two sheared beams resulting in general

in an elliptical polarization state after passing the WP1 in the backwards direction.

Polarization steering: It should be emphasized that the incident wave field ai has to be linearly

polarized and oriented at 45◦, as indicated in the scheme, allowing a decomposition of the refer-

ence wave into two orthogonally polarized, equal-valued wave components aR1 and aR2 with zero

phase delay. In the beam splitter BS the backreflected sample wave, having in generally an ellip-

tical polarization, is mixed with the reference wave field. By including a second Wollaston prism

WP2 in front of the two detectors D1 and D2 the interference signal ι ∝ (aRaS) is split into its two

orthogonally polarized components ι1 ∝ aR1aS1 and ι2 ∝ aR2aS2. At both detectors D1 and D2 two

depth-resolved signals S1(z) ∝ ι1(x+ τx/2,z) and S2(z) ∝ ι2(x− τx/2,z) or S1(z) ∝ ι1(y+ τy/2,z)
and S2(z) ∝ ι2(y− τy/2,z) are recorded describing the sheared interference between sample and

reference wave.

Calibration: The probing configuration has to be calibrated to guarantee a horizontal align-

ment of the system. For these purposes we use the plane surface of a mirror as gauging object.
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Furthermore, the changeable additional bias introduced by the WP1 is chosen to be zero. In case

of a plane reflecting surface as reference sample the setup has to be calibrated that both detectors

are balanced, i.e. receiving the same intensity signal.

6.1.2 DPC-OCT: Image types

Similarly to PS-OCT imaging also in DPC-OCT imaging two partial (sheared) reflectivity images

are recorded. The total reflectivity image is obtained as

ιrx(x,y,z) = ιrx1(x,y,z)+ ιrx2(x,y,z) ∝ a2
1x(x,y,z)+a2

2x(x,y,z), (6.2)

in case of the beam shear in x-direction and by an analogous expression for a1,2y and ιry introducing

the beam shear in y-direction.

Figure 6.3: Detail of an A-Scan reflectivity signal. a) Detector signal (reflectivity) S1(z) and S2(z),
b) detector signal (reflectivity) S1(z) and its quadrature signal SQ1(z) = H (S1(z)).

Besides the reflectivity image the directional phase shifts ∆φx and ∆φy between both detector

(reflectivity) signals S1(z) and S2(z) at adjacent lateral positions are of especial interest and can

be obtained as phase difference between the instantaneous phase signals φ1x(z) and φ2x(z) (or as

φ1y(z) and φ2y(z)) by

∆φx = φ2x −φ1x,

∆φy = φ2y −φ1y. (6.3)

For each lateral position (x,y) the depth-resolved instantaneous phase values are given by the

argument of the analytically continued detector signals by application of the 1D HT on S1(z) and

S2(z) as

φ1x(x,y,z) = arctan
H (S1(x+ τx/2,y,z))

S1(x+ τx/2,y,z)
,

φ1y(x,y,z) = arctan
H (S1(x,y+ τy/2,z))

S1(x,y+ τy/2,z)
, (6.4)

φ2x(x,y,z) = arctan
H (S2(x− τx/2,y,z))

S2(x− τx/2,y,z)
,

φ2y(x,y,z) = arctan
H (S2(x,y− τy/2,z))

S2(x,y− τy/2,z)
,
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illustrated in Figures 6.3 and 6.4 for the reflectivity and resulting phase signals at both detectors.

Figure 6.4: Detail of the instantaneous phase of the A-Scan signal in Figure 6.3. a) Instantaneous

wrapped phase φ1(z) and φ2(z) of signal S1(z) and S2(z), b) instantaneous unwrapped phase of

signal S1(z) and S2(z) and phase difference ∆φi (red) corresponding to Figure 6.3.

Choosing a fixed depth position z = z0 and scaling the directional phase shifts ∆φi, i = (x,y)
with the beam shear τi yields approximately the phase gradient ∇φi = (φx,φy) with

φi(x,y) =
∂(φ(x,y))

∂i
∼ ∆φi

τi

=
φ2i(x,y)−φ1i(x,y)

τi

, i = (x,y). (6.5)

Both directional derivatives φx(x,y) and φy(x,y), determined in the described way at each

scanning position (x,y) and over the whole imaging depth z, represent the measured data of the

two DPC-OCT 3D image stacks. Each individual image pair (φx(x,y),φy(x,y)), denoted as en-

face DPC-OCT images, expresses the phase gradient ∇φ, or -after scaling- the optical path length

gradient ∇ϑ. This measured gradient field delivers in the following the input data for the phase

reconstruction, described in Section (6.3). To obtain a robust measurement the raw data of the

A-scan (with a maximal sampling resolution of 40000 pts/mm) are averaged consecutively over

depth.

6.1.3 DPC-OCT: Test samples

Whereas in conventional OCT imaging turbid, scattering samples are mostly under investigation,

in phase-based OCT imaging techniques the specimens are composed of transparent objects with

changing refractive index distribution or with embedded layer structures of varying lateral height

profile.

Therefore, different transparent materials (varnish structures, silicon molded microbeads, wax

particles, etc.), which act mainly as phase objects, have been probed by the developed DPC-OCT

setup. Especially we want to focus on layered and embedded structures.

A set of representative samples has been chosen for demonstration of measurement and recon-

struction with the main focus on validation, SNR or steep phase gradients:
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Figure 6.5: 3D visualization of an embedded microlens array imaged by DPC-OCT, test sample

S1. a) 3D reflectivity data stack, b) 3D reflectivity image view with selected sections, c) 3D

differential phase image view corresponding to (b) with a shear in x-direction.

Figure 6.6: 3D visualization of an oil layer with embedded particles imaged by DPC-OCT, test

sample S2. a) 3D reflectivity image view, b) 3D differential phase image view corresponding to

(a), c) rotated view of b) with selected sections.

Sample S1: Microlens array (Suss MicroOptics, Switzerland), being a specimen with known

dimensions in order to validate our DPC-OCT imaging setup and and the performed OPL-

reconstruction method.

Imaging volume: 0.3 x 0.3 x 2 mm3

Voxel size: 3 x 3 x 5 µm3

Sample S2: Oil layer with embedded microparticles, representing a specimen with a high

noise level due to scattering effects at rough surfaces and impurities.

Imaging volume: 0.5 x 0.5 x 1 mm3

Voxel size: 5 x 5 x 5 µm3

Sample S3: Acrylic, soft polymer film as a structure with an uneven surface and steep

slopes to act as specimen with a high phase gradient resulting in phase wrapping effects.

Imaging volume: 0.2 x 0.2 x 1 mm3

Voxel size: 2 x 2 x 5 µm3

In Figures 6.5 – 6.7 the recorded 3D image stacks of the three test samples are visualized

showing reflectivity and differential phase OCT maps. Layers containing no interference signal

are partly removed for better visualization of relevant structures.
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Figure 6.7: 3D visualization of transparent polymer layer imaged by DPC-OCT, test sample S3. a)

3D reflectivity data stack, b) 3D reflectivity image view with selected sections, c) 3D differential

phase image view corresponding to (b).

It should be emphasized, that not only the surface of the specimen is investigated, but in partic-

ular DPC-OCT enables to visualize embedded phase structures within the sample, as schematically

illustrated for the microlens array in Figure 6.8.

Figure 6.8: Test sample (S1) arrangement in DPC-OCT measurement. a) Microscopic image of

the investigated microlens array, b) sketch of the microlens array, it is turned upside down with

its bulk substrate on top and lenses at the bottom side, c) DPC-OCT cross-sectional image, with

indicated interfaces. (Interfaces: (1) surface, (2) microlenses, (3) glass slide surface, (4) glass slide

bottom side.)
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6.2 DPC-OCT: Measurement performance

6.2.1 DPC-OCT: Raw-data phase drift

The accuracy of our DPC-OCT measurements was determined at first by using a defined test

sample, (here given by a microscope cover glass of known dimensions and roughness), which

represents a two-interface object (air/glass and glass/air). The reflectivity signal bursts at one

detector, resulting from the individual interfaces, are shown in Figure 6.9.

Figure 6.9: a) Reflectivity signal (raw data) of a two-interface test sample (microscope cover glass)

with indicated signals: (1) artifact (ghost), (2) slide front surface, (3) slide bottom side, b) averaged

(log)intensity and differential phase values over depth.

For the evaluation of the phase stability the raw data (i.e. the non-averaged data at a fixed

lateral position (x,y)) of the A-scan signal over the duration of the signal burst are regarded. The

central part of the reflectivity burst, exceeding a predefined threshold and corresponding to about

1–2 pixel in the averaged representation, has been taken into consideration. The dependency of the

phase difference over depth and the variance of the differential phase are depicted in Figure 6.10.

A slight drift in the phase difference over depth is recognizable on the data, averaged over

10 scans, as shown in Figure 6.11. The drift is noticeable as well at the front as at the back side

of the slide (burst (2) and (3)), which may be caused by the side lobes of the SLD spectrum.

The surface signal burst (2) also shows a small oversaturation in its the center. For explaining

the slightly higher degree of the phase drift at the slide bottom side, probably also dispersion

can contribute to an additional drift of the measured phase difference values. This drift could be

corrected by an exponential fitting. After fitting the standard deviation of the phase difference

yields σ∆φD
= 0.016 and σ∆φD

= 0.013 rad (for bursts (2) and (3)) with respect to a mean phase

difference of µ∆φD
= 1.24 rad and µ∆φD

= 1.61 rad.

The influence of noise and dispersion is illustrated by us with the help of a simulation. As

depicted in Figure 6.12 a), first a sinusoidal interference burst simulating reflectivity signals in

materials without dispersion has been assumed.

The interference burst (intensity) signal has been degraded by Gaussian white noise of different

variances. In the differential phase (over depth) the noise results in phase fluctuations and causes a
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Figure 6.10: Deviation of the phase difference over depth (single A-scan). a) Phase difference over

depth corresponding to burst (3), b) phase difference distribution corresponding to (a), c) phase

difference distribution after drift correction.

Figure 6.11: Deviation of the phase difference over depth (red: averaged over 10 A-scans). Phase

difference signal over depth a) corresponding to burst (2), b) corresponding to burst (3), c) phase

difference distribution, corresponding to burst (3), after zero-mean and drift correction with over-

laid red: Gaussian fit.

fanning-out of the phase difference dependent on the value of the intensity envelope (Figure 6.12 b)

and c)), i.e. dependent on the SNR ratio in the reflectivity image. It demonstrates that a reflectivity

signal threshold has to been chosen for a reliable differential phase measurement, as we have done

in our measurements.

Dispersion causes a chirped burst, as depicted in the simulated signals of Figure 6.13 a) and d).

Finally the signal chirp results in a drift of the phase difference between the two interference bursts

and may influence the accuracy of the measurement. However, on real data we have estimated that

the error due to phase drift is almost to neglect, (less than 1% after exponential fitting correction).
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Figure 6.12: Sinusoidal interference burst with additive Gaussian white noise with variance σ2 =
0.003. a) Noisy reflectivity bursts of both detector signals D1 and D2, b) noisy instantaneous

wrapped phase (over depth) φ1 and φ2 of both detector signals, c) noisy instantaneous unwrapped

phase (over depth) of both detector signals and differential phase (red line). The differential phase

signal of (c) is overlaid in (b) (red line) for better visualization.

Figure 6.13: Chirped interference burst with additive Gaussian white noise with variance σ2 =
0.003 (top) and σ2 = 0.015 (bottom). a), d) Noisy reflectivity bursts of both detector signals, b), e)

noisy instantaneous wrapped phase (over depth) of both detector signals D1 and D2, c), f) noisy

instantaneous unwrapped phase (over depth) of both detector signals and differential phase. The

differential phase signal of (c) and (f) is overlaid in (b) and (e) (red line) for better visualization.
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6.2.2 Repetition accuracy

For the estimation of the achievable accuracy of the setup, we have ascertained the phase distri-

bution by repeating 2500 A-scans on a simple glass slide and by evaluating the 40 dB reflection

of the bottom surface. Despite the rather long interferometer arms (>0.5 m), the standard devia-

tion of the phase fluctuations was determined to be only 0.0055 rad corresponding to 0.7 nm OPL

at a center wavelength of 1550 nm. Improvements are expected by switching to 800 nm and by

miniaturizing the setup [173].

6.2.3 Phase unambiguity range

Each depth-resolved OCT-signal S1(z(t)) and S2(z(t)) at both detectors can be regarded as a se-

quence of interference bursts. The instantaneous phase of each burst is determined by the 1D

HT according to (6.4), hence an ambiguity range of 2π, corresponding the peak-to-peak distance

inside the signal burst, is remaining. Although larger phase differences may be considered by

additionally estimating the positions of the envelopes of both signals [150], here rather the prior

knowledge about smooth functions is exploited for the phase reconstruction.
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6.3 DPC-OCT: Reconstruction of phase and optical path length map

The aim of our reconstruction is the recovery of the phase from the two orthogonally scanned

DPC-OCT 3D image stacks. The whole reconstruction procedure for the phase and OPL map,

demonstrated for the extracted 2D en-face DPC-OCT images of the test samples, consists of sev-

eral steps. These steps have to be combined and adapted to each other. Both measurement and

reconstruction are performed with the focus on realizing these methods as 2D approaches. For

comparison also 1D-based reconstruction approaches are regarded, suitable for conventional 1d

DPC-OCT imaging.

In particular, we want to denote three essential steps for the phase reconstruction in the re-

alized DPC-OCT imaging: The extraction of the en-face scans φ
(i)
x (x,y) and φ

(i)
y (x,y) at relevant

interfaces (i) out off the recorded 3D data stacks delivers the input data for the following recon-

struction. A 2D unwrapping task is required in the case of a discontinuous phase gradient field

∇φw(x,y) to recover the continuous gradient field ∇φc(x,y). Finally the reconstruction of the

phase/OPL map from the unwrapped continuous gradient field ∇φc(x,y) can be performed.

These main steps will be discussed in the following. However, it should be mentioned that

for the whole reconstruction procedure also further preprocessing steps may be required, e.g. reg-

istration of the mutual orthogonal scans, removal of imaging artifacts, or scaling of the finite

differences (i.e. scaling of the discretized derivatives).

6.3.1 En-face DPC-image extraction

Applying the scheme for instantaneous phase computation of the A-scan signal by 1D HT, accord-

ing to (6.3)–(6.5), we can obtain the local phase value for each position (x,y,z) in the recorded 3D

data stack. Therefore, the local phase difference between laterally adjacent sites at a fixed depth

position z can be determined. To select both en-face scans φ
(i)
x (x,y) and φ

(i)
y (x,y) at the interface

position (i) properly the reflectivity signal (over depth) at the considered layer is taken as refer-

ence. Inside the axial resolution range (extended in depth to about 2–3 pixel) the corresponding

en-face DPC-OCT image is chosen with respect to the maximum value of the reflectivity signal,

as illustrated in Figure 6.14.

Figure 6.14: En-face DPC-image extraction, illustrated for the microlens array. a) cross-sectional

reflectivity scan, b) cross-sectional DPC-OCT image, c) en-face image as indicated by the arrows.
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6.3.2 2D Unwrapping

Due to the unambiguity range in the DPC-OCT measurement the data are recorded as wrapped

values mapped to the interval [−π,π). This can lead to a discontinuous, wrapped phase gradient

field ∇φw(x,y). Thereby we have to distinguish between single erroneously wrapped pixels, aris-

ing e.g. due to noise and scattering effects in the measuring system, and larger wrapped regions.

We want to assume, that the wrapped regions are closed domains without phase singularities.

For the unwrapping of single wrapped pixels we apply a median filter for preprocessing. Me-

dian filtering has proven to be sufficient in our applications in case of moderate scattering samples,

although a slight blurring by the filtering is introduced. In case of unwrapping a larger connected

region we pursue two approaches:

A) An unwrapping method is performed based on solving the Laplace equation on the domain

Ω for the phase φ̂(x,y), to be recovered, which can be described as

∂2φ̂(x,y)

∂x2
+

∂2φ̂(x,y)

∂x2
= ρ(x,y) on Ω, (6.6)

ρ(x,y) =
∂φx(x,y)

∂x
+

∂φy(x,y)

∂y
,

∼ ∆wx(∆φwx(n,m))

∆x
+

∆wy(∆φwy(n,m))

∆y
,

with ∆wx(∆φwx(n,m)) = 0.5∗W (∆φwx(n+1,m)−∆φwx(n−1,m)),

∆wy(∆φwy(n,m)) = 0.5∗W (∆φwy(n,m+1)−∆φwy(n,m−1)).

The measured data φx(x,y) and φy(x,y) are partially derived. Their derivatives are being re-

garded mod (2π), denoted by the wrapping operator W , yielding the right hand side of the (6.6).

Here we want to assume Neumann boundary conditions

(∇φ(x,y)en) = 0 on δΩ, (6.7)

with en, denoting the normal direction on the boundary δΩ. Practically, the boundary condition

can be fulfilled by a mirrored continuation of the image.

B) A path-following unwrapping approach is chosen, as described in [151], depending on a

quality criterium to be defined. The quality criterium can be adapted according to relevant image

features (in our case variance, SNR, gradient, or deviation of the gradient from the local mean of

a gradient). In Figure 6.15 the wrapped and unwrapped en-face scans of the microlens test sample

are depicted.

6.3.3 Phase map reconstruction

Here we consider the reconstruction of the phase/OPL map from the unwrapped continuous gra-

dient field ∇φc(x,y). For our reconstruction we suppose smoothness and differentiability of the

phase map (i.e. φ(x,y) ∈C2), to be recovered, although this assumption is not always completely

fulfilled for all regions in the measured data. First, the reconstruction is regarded under the initial

condition, that only one differential phase image (e.g. φx(x,y)) is available from measurements
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Figure 6.15: Illustration of the 2D phase unwrapping for the extracted en-face DPC-OCT images.

For the unwrapping of the microlens test sample data the path-following method is chosen here.

a) Wrapped DPC-OCT image φwx(x,y), containing wrapped domains in case of the steeper curved

boundary, b) wrapped DPC-OCT image φwy(x,y), c) unwrapped DPC-OCT image φx(x,y), d)

unwrapped DPC-OCT image φy(x,y).

and the phase map has to be recovered. This leads to the 1D line-integration methods being de-

scribed in the following. Second, the reconstruction is shown under the condition, that now -by

the realized DPC-OCT imaging setup- both differential phase derivatives are given, which will be

considered after the 1D reconstruction approaches.

6.3.3.1 1D phase reconstruction approaches

In literature several line-integration approaches [159] are described for signal reconstruction from

its differential signal. They can be applied here for reconstruction of phase or generally of topo-

logical surface maps. The approaches explicitly suppose that only one directional derivative is

known, or that the derivative in perpendicular direction can be neglected by considering plane ob-

jects. Partially they assume smoothness of the recovered function in the direction orthogonally to

the scanning direction [167].

Originally we applied these 1D reconstruction methods for enhanced segmentation of DIC

images, where due to optical DIC-microscope limitations – being equipped with Wollaston prism

under a fixed shear direction – only a single directional phase derivative image is recordable.

Here, we will regard in a common approach the measured differential phase images, which in

the context of DPC-OCT are the measured differential phase contrast images φx(x,y), and in the

context of DIC imaging these are the measured DIC images IDIC. Deviations from the common

approach are accordingly noticed in the following passages. However, one main difference should

be emphasized already here: In DIC imaging a nonlinear relationship between measured intensity

and phase gradient (or OPL gradient) is given according to (2.13), which can only be linearized

under the assumption of weak phase objects. On the other hand, in DPC-OCT imaging the phase

gradient is obtained directly, as expressed in (6.3) and (6.5). Therefore, the phase gradient scales

linearly with the measured differential phase images.

We have tested different 1D reconstruction approaches, namely forward/backward line- in-

tegration, exponential line-integration, 1D Hilbert transform, deconvolution, and optimization,

which will be regarded now. For illustration of their reconstruction potential the microlens test
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sample is chosen as representative input data. Since having radial symmetric specimen structures,

the strength of asymmetry, caused by 1D reconstruction, is nicely visualized.

Forward/backward line-integration

We will assume that the measured DPC-OCT image φx(x,y) is recorded with a shear in x-

direction. The total phase φ(x,y) is reconstructed by numerical linewise integration of the

(zero-mean) directional phase derivative (φx(x,y)− φ̄x), where

φ̄x = (
∫ B2

B1

φx(x,y)dx)/(
∫ B2

B1

dx)

denotes the linewise average of φx(x,y). The integration is performed in forward and back-

ward direction between the image boundary B1 and B2 as

φ(x,y) = 0.5(
∫ x

B1

(φx(x
′,y)− φ̄x)dx′−

∫ B2

x
(φx(x

′,y)− φ̄x)dx′) (6.8)

to balance the errors. The integration of (6.8) in shear direction could theoretically be used

for retrieving φ(x,y), but measurement errors are propagating in integration direction by

this straight-forward integration. Furthermore, the boundary values are not properly known,

the assumption of having a constant boundary value is not fulfilled for real structures, being

extended over the whole scan, and resulting in additional error terms therefore, as illustrated

in Figure 6.16 a).

Exponential line-integration

To improve the numerical integration an iterative line-integration method by exponential

averaging in shear direction is proposed in [159], expressed as

φ(x,y)=
1

2
(
∫ x

B1

(φx(x
′,y)− φ̄x)exp(−γA

∣∣x− x′
∣∣)dx′−

∫ B2

x
(φx(x

′,y)− φ̄x)exp(−γA

∣∣x− x′
∣∣)dx′),

(6.9)

as shown in Figure 6.16 b). The parameter γA > 0 in the exponential decay term acts as

attenuation factor for reducing the error propagation over spatial distance.

As this bi-directional attenuated integration can be interpreted as a convolution with an ex-

ponential decay function, we perform the computation for all line-integrational approaches

in Fourier domain speeding up the computing time in comparison to integration in spatial

domain.

φ(x,y) = F −1

{
F
{

φx(x,y)− φ̄x

} i υ

(γ2
A +υ2)

}
. (6.10)

In the limit of γA → 0 (6.10) results in the conventional integration in FD

φ(x,y) = F −1

{
F
{

φx(x,y)− φ̄x

} i

υ

}
for υ 6= 0. (6.11)

1D Hilbert transform-based method



142 Chapter 6. DPC-OCT for Optical Path Length Mapping

Figure 6.16: Qualitative comparison of line integrational methods for phase map recovery. Com-

putation performed by a) line integrational method, b) exponential line integrational method, c)

(i)1D Hilbert transform approach (1iteration).

In [160] the application of the directional HT on (DIC) differential phase images is sug-

gested, which may be properly realized in Fourier domain,

φ(x,y)∼ F −1
{

i sign(υ)F
{

φx(x,y)− φ̄x

}}
. (6.12)

(Figure 6.16 c)).

In [161] we propose an iterative Hilbert Transform (IHT)- algorithm for differential phase

contrast images recorded by DIC microscopy. Regarding in general the measured differ-

ential image IM(x,y) being the DIC or DPC-OCT image, the IHT approach consists in the

initial step:

Hα,0 {I0} = hI0 = HI0 with I0(x,y) = φx(x,y),

D {hI0} = I1,

∆I1 = I0 − I1 for n = 0, (6.13)

and the following iteration scheme:

Hα,n {∆In} = hIn,

D {hIn} = hIn+1,

∆In+1 = ∆In −hIn+1,

φn(x,y)∼ HIn = HIn−1 +hIn for n = 1,2, ..., (6.14)

with Hα,n denoting the Hilbert operator with an additionally included low pass filtering and

D standing for the convolution with the differential operator

Hα,n {.} = F −1

{
F {.}− i sign(υ)

α

α+n |υ|

}
with α > 0 and n = 1,2, ...,

D {.} = [1 0 −1]⊗{.} .

Deconvolution approaches

Furthermore a deconvolution approach is tested, describing the measured DIC/DPC image
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Figure 6.17: OPL reconstruction of the microlens sample applying a Wiener filter-based deconvo-

lution, βR = 0.001. a) 3D view of reconstructed OPL map of the microlens array, b) OPL profile

in x-direction, c) OPL profile in y-direction.

as convolution of the (phase) image to be recovered with an intensity-PSF hI , as otherwise

used in conventional microscopy.

IM(x,y) = hI(x,y)⊗φ(x,y)+n(x,y), (6.15)

with the intensity-based PSF hI = hIx (or hIy) for a shear either in x- or y- direction given as

hIx(x,y) = (δ(x+
∆x

2
,y)−δ(x− ∆x

2
,y))⊗hσ, and

hIy(x,y) = (δ(x,y+
∆y

2
)−δ(x,y− ∆y

2
))⊗hσ, (6.16)

with IM(x,y) denoting the measured (zero-mean) DIC/DPC image and n(x,y) being some

additive noise. In comparison to (2.11) and (2.12), where the convolution of the complex

transmission function by a complex PSF hDIC is performed, here scalar-valued sizes are

convolved. (For DIC imaging again phase objects with a weak phase gradient are supposed.)

In our DPC-OCT setup the illumination beam diameter is much smaller than the aperture of

the imaging lens and therefore diffraction effects can be neglected assuming hσ = δ(x,y).
But, for DIC microscopy working in a wide-field regime we have to consider diffraction at

microscope apertures by assuming a Gaussian kernel for hσ (with an estimated spread of

4-5 pixels for the considered images).

By solving the inverse problem

φ(x,y) = F −1 {F {IM(x,y)}/H(υ,ν)} (6.17)

to recover the phase map φ(x,y) from the measured image IM(x,y), we have the obvious

problem of a zero-crossing in the DIC/DPC optical transfer (OTF) function: The OTF of

our differential phase measuring setup is approximatively described for this approach by

H(υ,ν) =−2i sin(π υ∆x+φ0) Hσ(υ,ν), (6.18)

where Hσ(υ,ν) being the OTF of a diffraction limited microscope system. Additionally

also the influence of the noise at higher frequencies as usually occurring in conventional

(non-coherent) microscopic systems should be noticed.
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In [163] a deconvolution approach is suggested based on Wiener filtering for phase retrieval.

In this case the reconstruction is performed in Fourier domain as

Φ(υ,ν) =
H∗(υ,ν)

|H(υ,ν)|2 +βR

Φx(υ,ν) with βR ≥ 0, (6.19)

where Φ(υ,ν), Φx(υ,ν) and H(υ,ν) are the Fourier transform of φ(x,y), φx(x,y) and hI(x,y).

The Wiener filter, which can be related in Fourier domain to a Tikhonov regularization

functional [164], improves the stability of the solution reducing the influence of noise and

avoiding division by zero by adding a regularization parameter βR > 0. We have tested this

method in [161] for DIC images, and here for a single DPC-OCT scan, (Figure 6.17).

Optimization approaches

In [165] we have suggested a positive projection P+ based Landweber iteration [166] for

solving the minimization problem

(Hφ− IM)2 → min! with Hφ = hI ⊗φ (6.20)

to recover the phase map from the measured DPC/DIC image. This approach exploits the

prior knowledge about the positivity constraint of the OPL map. It varies from the in [166]

Figure 6.18: OPL reconstruction for ML array performed by P+ Landweber iteration. a) 3D view

of reconstructed OPL map of the microlens array, b) OPL profile in x-direction, c) OPL profile in

y-direction.

described approach that the reconstruction to be performed uses in our case the first deriva-

tive of the measured phase instead of the signal reconstruction based on the second derivative

there. The following iteration is performed:

φ̂k+1 = P+

[
φ̂k + γ (HT IM −HT Hφ̂k)

]

φ0 = 0

IM = H φ with IM ≺ I′DIC(x,y) or IM ≺ φx(x,y), (6.21)

where φ is the theoretical phase value to be reconstructed and φ̂k is the estimated phase

value at iteration step k. The matrix H representing the differential imaging contains the



6.3. DPC-OCT: Reconstruction of phase and optical path length map 145

discrete differences of two Gaussian kernels, here γ denotes the step size. IM and φ̂k have to

be interpreted as vectors in (6.21). The operator P+ is adapted to the DIC/DPC problem by

the application of a combined median and minimum filter (med and min) and threshold step

between the iterations

P+

{
φ̂k

}
=

{
φ̂k if φ̂k ≥ c

c if φ̂k < c
, (6.22)

where the threshold c is chosen as a weighted sum

c = c1med(φ̂k)+ c2 min(φ̂k) with c1 + c2 = 1 (6.23)

to suppress the stripe-like artifacts (Figure 6.16) during integration, as shown in Figure 6.18.

Furthermore, for objects about which we have the prior knowledge of (partially) smooth-

ness, we follow the approach of [167] and have included in (6.20) an additional penalization

term to imply the smoothness in the direction perpendicular to the shear direction and solv-

ing the minimization problem

(Hφ− IM)2 +βR(B φ)2 → min! with B φ = hIy ⊗φ. (6.24)

An appropriate value for βR needs additionally to be determined, adapted to the measure-

ment/sample configuration, the SNR and/or the noise type. A trade-off between smoothing

properties and noise removal has to be found, [168]. We have chosen, as also in the other

regularized reconstruction methods, an empirical way adapting this parameter to our prior

knowledge about the samples. In Figure 6.19, in our opinion, the best result of all the

1D reconstruction methods is shown, the stripes are suppressed and the lens shape is only

slightly asymmetric.

Figure 6.19: OPL reconstruction for ML array performed by constrained (P+) Landweber itera-

tion and additional regularization perpendicular to the shear direction, βR = 0.5. a) 3D view of

reconstructed OPL map of the microlens array, b) OPL profile in x-direction, c) OPL profile in

y-direction.

6.3.3.2 2D phase reconstruction approaches

Real images often do not fulfill the integrability condition of (5.56) due to the inherent noise

or imaging artifacts. Furthermore, discretization effects may deteriorate the reconstruction by
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line-integration methods. Therefore we have realized an 2D DPC-OCT system delivering two

orthogonally sheared images as directional derivatives of the phase/OPL map. The phase recovery

task, having now two orthogonally scanned DPC-OCT images available, leads to the (well-known)

mathematical problem of reconstruction an image from its gradient field.

There are different methods described in the literature, mainly based on the algorithms of Horn

and Brooks [169], Chellappa [170], Agrawal [171] and Weickert [172]. We have investigated

components of these methods for the phase reconstruction from the measured differential phase

images.

Phase map reconstruction of the phase map as Laplace problem (Frankot-Chellappa

method)

Having both measured DPC scans φx,φy given we can reconstruct the phase/OPL map as

Figure 6.20: OPL reconstruction for ML array performed by Frankot-Chellappa method. a) 3D

view of reconstructed OPL map of the microlens array, b) OPL profile in x-direction, c) OPL

profile in y-direction.

an optimization problem in the Fourier domain as suggested originally in [170]. There the

energy functional (or distance function) E(φ̂(x,y)) on the domain Ω

E(φ̂(x,y)) =
∫

Ω

∣∣(φx(x,y)− φ̂x(x,y))
∣∣2 +

∣∣(φy(x,y)− φ̂y(x,y))
∣∣2 dxdy (6.25)

has to be minimized in Fourier domain to enforce the integrability of the function φ̂(x,y) to

be reconstructed. The minimization of (6.25) can be achieved for

Φ(u) = Φ(υ,ν) =
−i υΦx(υ,ν)− i νΦy(υ,ν)

υ2 +ν2
(6.26)

with φx(x) = ∑
u

Φx(u)exp(i ux),

φy(x) = ∑
u

Φy(u)exp(i ux),

where Φx(u) and Φy(u) are the Fourier coefficients of φx(x) and φy(x).

Equation (6.26) can be considered as the Fourier domain formulation of the Laplace problem

∇2φ̂(x,y) = φ̂xx(x,y)+ φ̂yy(x,y) = f (x,y) on Ω (6.27)

with f (x,y) = ∇2φ(x,y) = φxx(x,y)+φyy(x,y),
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being φxx(x,y) and φyy(x,y) the derivatives of the measured differential phase images.

It can be solved on the discretized images by a Fast Fourier Transform (FFT)-based approach

taking into account the periodicity of the image, which is in general not fulfilled. However,

boundary artifacts, inherent to FFT-based methods, can be reduced by image continuation

and windowing. But this will at the same time deteriorate the results for extended sample

features, as can be seen in Figure 6.20.

Reconstruction by Shape-from-Shading (Shape-from-Gradient field) method

A further method for reconstruction of a function φ(x,y) from its derived quantities is

Figure 6.21: OPL reconstruction for ML array performed by SFS method, βR = 0.01. a) 3D view

of reconstructed OPL map of the microlens array, b) OPL profile in x-direction, c) OPL profile in

y-direction.

described in [172].

In this approach the function φ(x,y) can be mathematically reconstructed on the domain

Ω with a regularized Shape-from-Shading (SfS) (or Shape-from-Gradient (SfG)) method.

The advantage of this method is given by the fact that both measured directional derivatives

can symmetrically be included and further being free of boundary assumption as would

be required for the previously described FFT-based reconstruction method. This allows to

reconstruct the phase structure in an isotropic way, as can be shown in Figure 6.21.

The SfS method can be performed by minimizing the energy functional

E(φ̂(x,y)) =
∫

Ω

(
f (x,y)−R(φ̂x, φ̂y)

)2
+βR (φ̂2

xx +2 φ̂2
xy + φ̂2

yy) dxdy (6.28)

with scalar-valued functions f (x,y) and R(x,y) =
(
eL(φ̂x, φ̂y,1)

)
, describing the ”illumina-

tion” from the direction eL.

Using both measured orthogonal DPC images φx(x,y) and φy(x,y) of the individual layers

(corresponding to an ”illumination” eL = (1,0,0) and eL = (0,1,0) from x- and y- direc-

tions), we add this energy functional in combination of both directions to

E(φ̂(x,y)) =
∫

Ω

(
f(x,y)−R(φ̂x, φ̂y)

)2
+βR (φ̂2

xx +2 φ̂2
xy + φ̂2

yy) dxdy (6.29)

with the vector-valued function of the measured data f(x,y) =

(
f1(x,y)
f2(x,y)

)
=

(
φx

φy

)
and
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the vector-valued function R
(
φ̂x, φ̂y

)
=

(
R1(φ̂x, φ̂y)

R2(φ̂x, φ̂y)

)
=

(
φ̂x

φ̂y

)
denoting the derivatives

of the total phase φ̂ to be reconstructed.

Hence, according to the approach of [172] we have to solve the following partial differential

equation

0 =
∂

∂x

(
( f1 −R1(φ̂x, φ̂y))R1φ̂x

(φ̂x, φ̂y)
)
+

∂

∂y

(
( f1 −R1(φ̂x, φ̂y))R1φ̂y

(φ̂x, φ̂y)
)

+
∂

∂x

(
( f2 −R2(φ̂x, φ̂y))R2φ̂x

(φ̂x, φ̂y)
)
+

∂

∂y

(
( f2 −R2(φ̂x, φ̂y))R2φ̂y

(φ̂x, φ̂y)
)

+ βR (φ̂xxxx +2φ̂xxyy + φ̂yyyy), (6.30)

where φ̂x...y... denote the higher order derivatives.

With

R1φ̂x
(φ̂x, φ̂y) =

∂R1

∂φ̂x
= 1,

R2φ̂x
(φ̂x, φ̂y) =

∂R2

∂φ̂x
= 0,

R1φ̂y
(φ̂x, φ̂y) =

∂R1

∂φ̂y
= 0,

R2φ̂y
(φ̂x, φ̂y) =

∂R2

∂φ̂y
= 1,

the equation system (6.30) can be simplified to

0 =
∂

∂x

(
f1 − φ̂x

)
+

∂

∂y

(
f2 − φ̂y

)
(6.31)

+ βR (φ̂xxxx +2φ̂xxyy + φ̂yyyy)

= (φxx(x,y)− φ̂xx(x,y))+(φyy(x,y)− φ̂yy(x,y))

+ βR (φ̂xxxx +2φ̂xxyy + φ̂yyyy).

It is solved by a Jacobi-like iteration scheme. As stopping criterium we apply the defect

norm.

φ̂k+1 = φ̂k − γD((φxx(x,y)− φ̂k
xx(x,y))+(φyy(x,y)− φ̂k

yy(x,y))) (6.32)

+ βR (φ̂k
xxxx +2φ̂k

xxyy + φ̂k
yyyy)

φ̂0 = 0

D = (diagH)−1,

where H is the resulting system matrix.

In case that the regularization parameter βR → 0, equation (6.29) results in (6.25).
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6.4 DPC-OCT: Results and discussion

Originally line-integration methods were investigated by us with respect to their potential for qual-

itative analysis and for enhancement of segmentation of huge cell populations imaged by DIC

techniques, as demonstrated in [161]. In the thesis we have regarded these approaches anew in the

context of phase reconstruction for one-directionally scanned DPC-OCT images in comparison to

the orthogonal-scanning DPC-OCT and 2D reconstruction approaches.

The phase reconstruction based on the described 1D and 2D approaches of Section (6.3)

are evaluated on the DPC scans recorded by the realized DPC-OCT setup. The improvements,

achieved due to the included 2D approaches for measurement and reconstruction in combination

with image processing, against 1D methods are discussed in the following.

6.4.1 Results: 1D reconstruction

Figure 6.22: DPC image phase recovery: Comparison of 1D line-integration methods with dif-

ferent decay factor γA. a) DPC image with a shear in x-direction, b) phase reconstruction by for-

ward/backward line-integration (γA = 0), c) phase reconstruction by exponential line-integration

(γA = 0.5), d) phase reconstruction by exponential line-integration (γA = 0.8).

As can be seen in Figure 6.22 all line-integration approaches, explained in Subsubsection (6.3.3.1),

are showing more or less artifacts, especially streaking effects along the integration path due to

Figure 6.23: DPC image phase recovery: Comparison of different 1D reconstruction methods. a)

DPC image with a shear in x-direction, b) phase reconstruction by exponential line-integration

(γA = 0.9), c) phase reconstruction by Hilbert transform method, d) phase reconstruction by

Landweber iteration method.
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Figure 6.24: OPL reconstruction for the oil layer/embedded particle sample (S2) applying a

Wiener filter-based deconvolution, βR = 1. a) Reconstruction performed on the basis of directional

phase derivative φx(x,y), b) reconstruction performed on the basis of directional phase derivative

φy(x,y), c) enlarged view of indicated region showing the asymmetry of the microparticle peak

(expected to be almost conical shaped).

the accumulation of noise and due to imaging irregularities, which may be caused by specular re-

flexes, oversaturation of the detector or partial absorption in real samples. These occurring stripes

can be reduced by using the exponential line-integration approach or the (half-plane) HT method

as demonstrated in Figure 6.22 c) and d) in comparison to straight-forward line-integration, shown

in Figure 6.22 b). But, especially exponential line-integration and the Hilbert transform methods

are only qualitative approaches usually applied only for better visualization [160] and as prepro-

cessing for intensity-based segmentation methods [162]. By performing the deconvolution and

optimization approach, including additionally regularization terms in the iteration, the streaking

artifacts can be reduced, as depicted in Figure 6.23. However, a higher regularization parameter

may also cause a too extended smoothing and a height reduction of the phase map.

A further drawback of 1D methods consists in the asymmetry of the reconstructed phase ob-

jects, e.g. for microparticle sample being originally almost symmetric. Here in the 1D reconstruc-

tion, the peaks are shrunk in the shear direction and elongated in perpendicular direction, as can be

seen in Figure 6.24 c). This disadvantage is inherent for all 1D reconstruction approaches, since

the information about the derivative in the direction orthogonal to the beam shearing is lost. To a

certain amount this effect can be reduced, taking additional constraints (and regularization terms)

in the approach, as it can be seen in Figure 6.25 for the reconstruction based on the Landweber

iteration method. (Compare also Figures 6.18 and 6.19.) But on the other hand, due to the posi-

tivity constraint and choosing an arbitrary threshold therefore, the full quantitative information is

lost due to these constraints.

In our opinion and based on the experience on measured data, 1D reconstruction only delivers

insufficient results: Especially they do not provide quantitative information, but they can be ex-

ploited for qualitative results and visualization tasks.
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Figure 6.25: OPL reconstruction for the oil layer/embedded particle sample (S2) applying the

constrained and regularized (P+) Landweber iteration method. a) Reconstruction performed on

basis of directional phase derivative φx(x,y), b) reconstruction performed on basis of directional

phase derivative φy(x,y).

6.4.2 Results: 2D reconstruction

The 2D reconstruction of the DPC-OCT images is performed on the set of test sample (S1)–(S3).

In particular, we have regarded the Shape-from-Shading (SfS)-based reconstruction approach and

its performance for phase reconstruction from two orthogonal DPC-OCT scans.

The validation of the performed imaging and reconstruction method with respect to its quanti-

tative character is exemplified on a well-defined test sample. (Here represented by the microlens

array test sample S1 with known dimensions, compare also Figure 6.5.) The procedure of com-

plete 2D OPL reconstruction from the recorded en-face DPC-OCT scans is depicted in Figure 6.26.

The reconstruction starts from the unwrapped data here, as already shown in Figure 6.15. We per-

form the SfS-based reconstruction individually for each interface. The representative layer for

each interface is chosen according to the depth position of the maximum reflectivity signal at each

interface. Finally a scaling of the numerical results with respect to the realized beam shear, the

lateral resolution of the DPC-OCT scanning unit and the wavelength has to be performed. After-

wards the results can be interpreted in a quantitative way.

In case of the microlens array, the mathematical reconstruction of the OPL map at interface (2)

yields – for a sample refractive index n = 1.449 at λ = 1550 nm – a total geometrical height of the

individual lenslets of 1.64 µm, closely matching the technically specified value of 1.63 µm.

Under the assumption that the system is properly aligned and refraction at the interfaces can

be neglected (i.e. approximately perpendicular incident waves are supposed) the ratio rn of the

optical path lengths ϑi at different layers (i) provides a measure for the refractive index of the

material nM. Especially for the microlens array we can derive for the ratio at interfaces (2) and (3)

rn =
ϑ2

ϑ3

=
nM

nM −n0

with n0 = 1 in air, (6.33)

according to the sketch in Figure 6.27 a) and b). This yields an estimation for the refractive

index as

nM =
rn

rn −1
. (6.34)
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In Figure 6.28 both OPL profiles and the ratio between them are depicted, having an almost con-

stant value rn ∼ 3 (corresponding to nM ∼ 1.5) in the central range of the microlens. In the outer-

most regions the ratio is slightly increasing. This weak increase can be explained by the influence

of diffraction and reconstruction artifacts due to the non-smooth contour at the border line between

microlens and bulk material.

To demonstrate the performance of the realized 2d-scanning setup and 2D reconstruction pro-

cedure, in comparison to 1d-scanning and 1D reconstruction methods, we have chosen a sample

being imaged with a low SNR. (Here represented by the oil layer/microparticle test sample S2,

compare also Figure 6.6.) The recorded, relatively noisy scans in Figure 6.29 a) and b) are visu-

alizing the top reflection of the thin corrosion inhibiting oil layer with small embedded abrasion

particles. Using both DPC scans (Figure 6.29 a) and b)), first we reconstructed the OPL map

with a global Fast Fourier Transform (FFT)-based approach by solving the Laplace problem in the

Fourier domain [170]. A slight blurring and haze is present in the reconstructed images, as shown

in Figure 6.29 d), partly caused by the low pass characteristics of the inverse Laplace filtering.

Furthermore, boundary artifacts, inherent to FFT-based methods, are recognizable. They can be

reduced by image continuation and windowing.

The reconstruction by the SfS-method yields the best result, as shown in Figure 6.29 e) and

f) with no streaking artifacts and less blurred features and areas, in comparison to Figure 6.29 c)

and Figure 6.22. Furthermore, also the improved symmetry of the recovered objects against 1D

approaches should be mentioned, as depicted in Figure 6.30 a) and b).

Finally, a specimen with steep phase derivatives has been investigated by us to show the po-

tential of the procedure for imaging and reconstruction for samples with a higher phase gradient.

(Here represented by the polymer film test sample S3, compare also Figure 6.7.) The difference to

DIC imaging should be emphasized here again, where a weak phase gradient for the specimen has

to be assumed for a quantitative phase imaging and reconstruction. Here, in DPC-OCT imaging,

the measured phase differences, in case of exceeding the unambiguity range, are mapped into the

interval [−π,π), leading to wrapped regions in the DPC-OCT scans, as depicted in Figure 6.31 a)

and b). Therefore, an additional phase unwrapping has been included in the reconstruction proce-

dure. We assume again, a smooth continuous phase map for the investigated test sample, although

being a simplification of real data. Likewise, a quality guided 2D unwrapping approach or an

global FFT-based unwrapping approach [151] has been realized for this application to obtain the

two orthogonal unwrapped DPC-OCT en-face scans as shown in Figure 6.31 c) and d). The

further OPL reconstruction, as previously described for the other samples, is performed on both

unwrapped phase derivative images. Finally, the 2D phase map at the chosen depth is computed

and as 3D view depicted in Figure 6.31 e).

6.4.3 Discussion: DPC-OCT imaging and reconstruction

At the beginning, we have developed an optical DPC-OCT setup and demonstrated the feasibility

of phase-sensitive imaging by this 2d-scanning modality for different specimens. Here, the po-

tential for quantitative phase recovery by the performed mathematical reconstruction algorithms

on the measured data could be shown. For different phase objects the performance of the whole

procedure was tested by reconstructing the lateral phase map, extracted at different interfaces from

the recorded DPC-OCT data. Quantitative results, which are spatially resolved in lateral and depth

direction, can be obtained by the realized setup: for samples of larger elongated embedded phase
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structures, for layered transparent materials (partially containing separated microstructures as par-

ticles or air bubbles) and for samples with steep phase gradients.

We have demonstrated, that the 2d-scanning DPC-OCT imaging technique, combined with

2D reconstruction approaches (especially SfS approaches) and -in case of high phase gradients-

with phase unwrapping techniques, is a robust method coping with steep and extended phase

structures, as well as handling low SNR images. Nevertheless, restrictions are given in case of

observing rough surfaces or imaging through scattering interfaces.

Advantages and recognizable limitations of the performed DPC-OCT imaging and reconstruc-

tion system are summarized in the following:

Advantages

Quantitative measure:

The whole phase information is contained in both directional phase derivative images.

Hence, it is in principle possible to determine a quantitative OPL map from two orthog-

onal shear directions at different depth positions.

Linearity:

The phase gradient is related in a linear dependence to the measured intensity gradient.

Therefore, in DPC-OCT we are not restricted to a small phase gradient approximation for

performing a quantitative reconstruction, as required for DIC imaging. Unwrapping ap-

proaches can be included in the analysis; however, they require a prior knowledge about

interface smoothness.

Robustness:

Reconstruction artifacts due to noise and phase discontinuities can be diminished in com-

parison to 1D approaches. Especially this robustness combined with a correct adjustment of

the optical system finally allows that the quantitative phase map or optical path length can

be properly reconstructed from two orthogonal shear directions.

Limitations

Scattering effects:

Limitations of the realized DPC-OCT setup are given for highly scattering samples (e.g.

microspheres) disturbing the fixed phase relationship between the adjacent probing waves

by scattering.

Refraction effects:

Investigating interfaces with very steep slopes can additionally result in refraction artifacts,

which have to be compensated (e.g. by index matching) or have to be otherwise regarded as

a restriction of the general measurement performance.

Phase stability:

It has to be guaranteed that the intensity of the reflected signals is sufficiently high to obtain

reliable phase information.
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Birefringence:

Since the measuring system is exploiting mutual phase information between the adjacent

beams, resulting in an altered/rotated polarization of the back-reflected sample wave, bire-

fringent specimen, introducing an additional rotation, can not be investigated by this optical

setup.

Parametrization:

For the mathematical reconstruction different parameters have to be adapted according to

the SNR, (e.g. regularization parameter, discretization sizes). This requires an adaptation

for different measurement situations.

Summarizing, we have demonstrated in this chapter a complete procedure for phase recovery

in DPC-OCT imaging. We focused on both, the phase-based imaging and the reconstruction in

a two-dimensional way. We could demonstrate by our developed DPC-OCT setup, containing a

rotable probing head, that phase-sensitive measurements and reconstruction of spatially resolved

lateral phase maps can be performed at different depth positions. The performance could be im-

proved by the chosen 2D shape-from-shading (or shape-from-gradient) method outperforming 1D

integrational methods, as previously applied in the field of DPC-OCT imaging.
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Figure 6.26: 2D phase map reconstruction for two different depth positions. The microlens array

test structure, with a total of four imaged interfaces ((1)–(4)), is placed upside down on the micro-

scope slide. a) Sketch of the sample, b) cross-sectional DPC-OCT image, c), d) en-face DPC-OCT

images in x- and y-direction at interface (2), e), f) en-face DPC-OCT images at interface (4), g)

reconstructed cumulative phase map at interface (2), h) cumulative phase map at interface (4).

White scale bar: 100 µm

Figure 6.27: Scheme of microlens array reference test sample (S1) with indicated interfaces. a)

Sketch of embedded microlens array, b) interface (1): air/quartz glass of the bulk material, inter-

face (2): microlens front site quartz glass/air, interface (3): air/glass of plane microscope slide.

The optical path lengths ϑ2 and ϑ3 are indicated and nM is the refractive index of quartz glass

substrate.
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Figure 6.28: OPL profile of microlens reconstructed at interface (2) and (3) and the ratio of both

(red line).

Figure 6.29: DPC-OCT image of an oil layer with embedded particles (S2). a), b) DPC images

with shear in x- or y-direction, c) OPL reconstruction by numerical line-integration using the

single scan displayed in (b), d) FFT-based OPL reconstruction from scans (a) and (b), e), f) OPL

reconstruction with SfS method using scans (a) and (b). White scale bar: 100 µm
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Figure 6.30: Detail of OPL reconstruction (resulting signal peak, expected to be conical, caused

by a microparticle). a) OPL reconstruction performed by 1D Landweber iteration method, b) OPL

reconstruction performed by 2D SfS-method.

Figure 6.31: DPC-OCT image of a soft and uneven acrylic polymer film (S3) having a wrapped

phase gradient map. a), b) Wrapped DPC images (shear in x- and y-direction), c), d) unwrapped

phase of (a) and (b), e) total phase map reconstructed from (c) and (d). White scale bar: 40 µm
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Chapter 7

Conclusions & Outlook

7.1 Conclusions

In this thesis we have considered different phase-sensitive imaging methods suitable for investi-

gation and visualization of structures in the micrometer range. Questions and interesting aspects

about qualitative and quantitative phase measurements and reconstruction approaches in the field

of phase contrast microscopy and optical coherence tomography, about suitable approximations,

similarities between phase-imaging techniques and about analogies between Fourier plane phase

filtering techniques (especially spiral phase filter) in imaging and image processing have been

discussed. We have incorporated components for differential phase imaging from PCM into the

DPC-OCT imaging system, allowing the use of these elements in a two-dimensional way. Fur-

thermore, interferometric fringe pattern analysis techniques have been successfully included for

the two-dimensional analysis of PS-OCT applications.

In particular, the potential of OCT for obtaining detailed quantitative information with respect

to phase-related quantities, arising from the combination of phase-sensitive OCT techniques with

mathematical and signal processing approaches, has been demonstrated. We have developed and

exemplified new approaches consisting of different steps for quantitative depth-resolved analysis

both for PS-OCT and DPC-OCT. We have shown that improvements can be achieved by trans-

posing the 1D phase-sensitive OCT technique to a 2D technique: On the one hand by modifying

the imaging part (as realized in the developed 2d-scanning TD-DPC-OCT setup), and on the other

hand by the mathematical reconstruction (as performed for PS-OCT retardation image analysis).

The whole imaging and reconstruction tasks are discussed as a 2D problem taking into account

the whole image content at once. This 2D consideration represents an improvement on the well-

established 1D analysis approaches in the field of phase-sensitive OCT imaging. The developed

setup and methods have been validated for different materials and test situations in real-world

applications.

In our thesis we have presented how advanced methods of 2D signal analysis and image pro-

cessing, originally developed in the field of interferometry, can be adapted and exploited for

phase-based OCT imaging to extract inherent qualitative and quantitative information about in-

ternal anisotropic material states (in PS-OCT) or embedded phase structures (in DPC-OCT), to

obtain interpretable and quantifiable results about specimens under investigation. The whole local

information about spatially resolved stress states or birefringence distribution inside the material

159
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can been used for a quantitative analysis, in extension and partially in contrast to previously ap-

plied 1D analysis techniques exploiting these features only in an one-dimensional or averaged

way. Therefore, complicated and closed fringe patterns can now also be evaluated.

Finally, we could demonstrate that different limitations of previously applied 1D approaches

(clipping and noise preventing automatized analysis) can be reduced or be removed by utilizing

2D techniques for image enhancement and demodulation.

In conclusion, the following results and improvements can be summarized for both realized

and analyzed phase-sensitive OCT configurations:

7.1.1 PS-OCT imaging system

The potential of the PS-OCT imaging system in combination with image processing for

a 2D quantitative and depth-resolved stress/strain analysis could be demonstrated for the

investigation of birefringent turbid materials. To the best of our knowledge, for the first

time the 2D reconstruction approach in the field of PS-OCT retardation imaging has been

performed.

The exploitable depth and application range for analyzing PS-OCT retardation images could

be extended by the suggested 2D reconstruction procedure. Hence, the information content

of the PS-OCT images could be increased. We have verified our method on different tech-

nical samples and could demonstrate the feasibility of the proposed approach, including 2D

demodulation schemes and image processing techniques, for the retardation and birefrin-

gence analysis in PS-OCT.

7.1.2 DPC-OCT imaging system

A quantitative reconstruction of lateral OPL or phase maps at different depth positions from

depth-resolved DPC-OCT signals is feasible and has been demonstrated by us.

The recorded images contain the whole phase information, in contrast to DIC imaging. Fur-

thermore, for suitable layered sample structures they may include additional approximative

information about the refractive indices of the embedded structures.

A reduction of reconstruction artifacts (in comparison with 1D approaches suffering from

stripes, noise artifacts, etc.) could be achieved by the 2D approach which enables the recon-

struction of meaningful lateral phase maps in 3D OCT imaging.

Although the suggested method shows potential to be enhanced in its single components

(e.g. with respect to the optical setup, with respect to mathematical performance), the work-

ing principle of the whole procedure – from measurement till phase map reconstruction –

could be demonstrated. To the best of our knowledge, for the first time a 2D approach for

orthogonal scanning DPC-OCT and phase reconstruction has been performed.

The current DPC-OCT setup has been realized with conventional optical elements, e.g. a

rotatable Wollaston prism for beam shearing. The incorporation of electro-optical beam

shearing would further increase the performance of the DPC-OCT system. A more precise
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positioning system and an increase of the A-scan rate of the measurement would enable an

improved imaging modality.

7.2 Outlook

Figure 7.1: Illustration of FF-OCT imaging. a) Scheme of the optical setup for full-field OCT

(FF-OCT) imaging. In contrast to conventional OCT the sample is moved over depth and the

mirror is sinusoidally modulated by the piezo transducer (PZT), b) 3D visualization of a glass

fiber-composite (GFC) structure embedded in epoxy resin imaged by FF-CPM techniques.

Upcoming full-field OCT (FF-OCT) techniques, depicted schematically in Figure 7.1 a), allow

a further extension of the realized DPC-OCT and PS-OCT configurations [177]. Compared to the

previously applied raster scanning OCT techniques FF-OCT will remarkably improve the speed

of the measurement procedure also in time domain. As the sensitivity of the FF-imaging system

will be limited, these techniques require either powerful broadband light sources or methods for

additional contrast enhancement, which can be provided by mathematical image processing or

programmable optics. Recent developments in Fourier plane filtering (FPF) techniques, nowadays

often realized dynamically by addressable spatial light modulators [175, 176] enable a flexible or

multiplexed realization of different phase filters by computational optics. Remembering the ideas,

initially described in Chapter (2), where FPF is applied for influencing the image contrast in PCM,

now we aim to combine FPF with OCT methods to modify the contrast similar to the application in

PCM. We expect that the combination of electro-optical FPF, sophisticated modulation methods

and FF-OCT techniques will provide further potential for the exploitation of phase information

and contrast enhancement in coherent microscopic imaging.

Current experiments, utilizing FF-OCT techniques for imaging of technical materials, show

the potential for extending these methods again in the field of 3D material investigation. Recently,

we have demonstrated first results in coherent full-field imaging of technical micro-structures

[178]. In Figure 7.1 b) a technical glass fiber-reinforced material imaged by our current FF-OCT

setup is depicted. Thereby also the bridge to the field of coherent probe microscopy is opened

by including microscopic components (microscope objectives) in the full-field OCT configura-

tion. Full-field techniques are considered by us to become useful 3D imaging tools for advanced

structural and functional material characterization, e.g. in the field of polymer or fiber-composites

material research.

From the point of view in signal processing, FF-OCT will demand advanced fringe pattern

analysis procedures in 3D to obtain both intensity and phase information encoded in the amplitude-
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and phase-modulated 3D image stack. Conventional phase-stepping approaches in FF-OCT imag-

ing, as realized in [179], may be replaced by single frame approaches.

Furthermore, with the new possibilities of computational optics, as realized by compressive

sensing techniques in case of sparse data imaging [180] or by coded and sparse aperture techniques

[182] for illumination, new perspectives for sampling and reconstruction open up. Phase shaping

arrays [183] and the combination of OCT techniques with nonlinear optical microscopy could add

new possibilities for a selective, enhanced visualization of microstructures in materials.
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[62] N. E. Huang, S. S. Shen, ”Hilbert-Huang Transform and its applications”, Interdisciplinary mathematical
sciences 5, (World ScientificPublishing Co, Singapore, 2005).

[63] B. Shen, ”Estimating the instantaneous frequencies of a multicomponent AM-FM image by bidimensional
empirical mode decomposition”, Proc. IEEE 283-287(2005)

[64] C. Damerval, S. Mignen, V. Perrier, ”A Fast Algorithm for Bidimensional EMD”, IEEE Sign. Proc. Lett. 12,
701-704 (2005).

[65] D. Gabor, ”Theory of communications”, Proc. Inst. Electr. Eng. Part III 93,, 29-457 (1946).

[66] A. A. Oswald, ”Early history of single-sideband transmission”, Proc. IRE 44, 1676-1679 (1956).

[67] S. A. Cohen, ”Spectrum Conservation and characteristics of single-sideband phase modulation”, IEEE Trans.
Electromagnetic Compatibility, EMC-212, 69-77 (1970).

[68] J. Czarske, F. Hock, H. Müller, ”Quadrature demodulation: a new LDV burst-signal frequency estimator”,
Proc. SPIE 2052, 79-86 (1993).



168 Bibliography

[69] D. Evans, W. McDicken, R. Skidmore, J. Woodcock, ”Doppler Ultrasound: Physics, Instrumentation and
Clinical Applications”, (Chichester, UK: Wiley, 1989).

[70] G. H. Granlund, H. Knutsson, ”Signal processing for computer vision”, (Kluwer Academic Publisher, Dor-
drecht, 1995) 165-167.

[71] S. L. Hahn, ”Hilbert transforms in signal processing”, (Artech House, Inc., Norwood, MA, 1996).

[72] K. G. Larkin, P. A. Fletcher, ”A coherent framework for fingerprint analysis”, Optics Express 15, 8667-8677
(2007).

[73] L. Qiao, W. Guo, W. Yuan, K. Niu, L. Peng, ”Texture analysis on bidimensional empirical mode decompositions
and quaternions”, Proc. of the 2009 International Conference on Wavelet Analysis and Pattern Recognition,
(2009).

[74] J. P. Havlicek, J. W. Havlicek, A. C. Bovik, ”The Analytic Image”, IEEE Proc. ICIP, Santa Barbara, CA, Oct.
26-29, 446-449 (1997).

[75] T. Bülow, D. Pallek, G. Sommer, ” Riesz Transforms for the Isotropic Estimation of the Local Phase of Moiré
Interferograms”, Mustererkennung 2000, ed. G. Sommer et al., Springer Verlag, Berlin, DAGM 2000, 333-340
(2000).

[76] M. Felsberg, G. Sommer, ”Structure multivector for local analysis of images”, Techn. Report 2001, University
Kiel, (2000).

[77] M. Felsberg, G. Sommer, ”The monogenic scale space: A Unifying Approach to Phase-Based Image Processing
in Scale-Space”, J. Mathematical Imaging and Vision 21, 5-26 (2003).

[78] G. Metikas, S. C. Olhede, ”Multiple Multidimensional Morse Wavelets”, IEEE Trans. Signal Processing 55,
921-936 (2007).

[79] L. Wietzke, O. Fleischmann, G. Sommer, ” The Solution of the Interference-problem of 2D Waves by Means of
Clifford Structures”, Proc. ICNAAM 1168, 817-820 (2009).

[80] D. Zang, G. Sommer, ”Signal modeling for two-dimensional image structures”, J. Vis. Commun. Image R. 18,
81-99 (2007).

[81] L. Wietzke, G. Sommer, C. Schmaltz, J. Weickert, ”Differential geometry of monogenic signal representa-
tions”, Proc. 2nd Workshop "Robot Vision", Auckland, New Zealand, Gerald Sommer and Reinhard Klette
(Eds.), LNCS, 4931, Springer-Verlag Berlin, Heidelberg New York, 454-465 (2008).

[82] E. Bedrosian, ”A product theorem for Hilbert transforms”, Proc. IEEE 51, 868-869 (1963).

[83] A. H. Nutall, ”On the Quadrature Approximation to the Hilbert Transform of Modulated Signals”, Proc. IEEE
54, 1458-1459 (1966).

[84] L. Mandel, ”Complex representation of optical fields in coherence theory”, J. Opt. Soc. Am 57, 613-617 (1967).

[85] L. Mandel, E. Wolf, ”Optical Coherence and Quantum Optics”, (Cambridge University Press, 1995).

[86] M. Venouzio, H. Zhang, ”Characterizing the Hilbert transform by the Bedrosian theorem”, J. Math. Anal.
Appl. 338, 1477-1481 (2008).

[87] T. Bülow, G. Sommer, ”A Novel Approach to the 2D Analytic Signal”, Proc. CAIP, (1999).

[88] K. Khare, ”Complex signal representation, Mandel’s theorem, and spiral phase quadrature transform”, Appl.
Opt. 47, E8-E12 (2008).

[89] D. G. Fulton, G. Y. Rainich, ”Generalizations to higher dimensions of the Cauchy integral formula”, Am. J.
Math. 54, 235-241 (1932).

[90] J. Ojeda-Castaneda, E. Jara, ”Isotropic Hilbert transform by anisotropic spatial filtering”, Appl. Opt. 25, 4035-
4038 (1986).

[91] S. Equis, P. Jacquot, ”Phase Extraction in Dynamic Speckle Interferometry with Empirical Mode Decomposi-
tion and Hilbert Transform”, J. Strain 1-9 (online 2008).

[92] A. F. Fercher, ”Optical coherence tomography-developments, principles, applications”, Zeitschrift für Medi-
zinische Physik, in print, online Dec.2009.



Bibliography 169

[93] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, ”Improved signal-to-noise ratio in
spectral-domain compared with time-domain optical coherence tomography”, Opt. Lett. 28, 2067-2069 (2003).

[94] R. Leitgeb, C. Hitzenberger, A. Fercher, ”Performance of Fourier domain vs. time domain optical coherence
tomography”, Opt. Express 11, 889-894 (2003).

[95] A. F. Fercher, ”Inverse scattering, dispersion and speckle in optical coherence tomography”, in ”Optical co-
herence tomography”, W. Drexler, J. G. Fujimoto, ed., (Springer, Berlin, Heidelberg, 2008), 119-146.

[96] J. A. Izatt, M. A. Choma, ”Theory of Optical Coherence Tomography”, in ”Optical coherence tomography”,
W. Drexler, J. G. Fujimoto, ed., (Springer, Berlin, Heidelberg, 2008), 47-72.

[97] Xueding Wang, Gang Yao, and Lihong V. Wang ”Monte Carlo Model and Single-Scattering Approximation of
the Propagation of Polarized Light in Turbid Media Containing Glucose”, Applied Opt. 41, 792-801 (2002).

[98] J. M. Schmitt, A. Knuttel, M. Yadlowsky, R. F. Bonner, ” Optical coherence tomography of a dense tissue:
statistics of attenuation and backscattering”, Phys. Med. Biol., 42, 1427-1439 (1994).

[99] Y. Cheng, K. V. Larin, ”Artificial fingerprint recognition by using optical coherence tomography with autocor-
relation analysis”, Appl. Opt. 45, 9238-9245 (2006).

[100] J. M. Schmitt, S. H. Xiang, K. M. Yung, ”Speckle in optical coherence tomography”, J. Biomed. Optics 4,
95-105 (1999).

[101] J. W. Goodman, ”Random phasor sums”, in ”Speckle phenomena in optics”, (Roberts and Comp., Englewood,
2007), 7-25.

[102] G. Steidl, T. Teuber, ”Removing multiplicative noise by Douglas-Rachford splitting methods”, Preprint, Uni-
versity of Mannheim, (2009).

[103] H. M. Salinas, D. C. Fernandez, ”Comparison of PDE-Based Nonlinear Diffusion Approaches for Image En-
hancement and Denoising in Optical Coherence Tomography”, IEEE Trans. Medical Imaging 26, 761-771
(2007).

[104] J. F. de Boer, T. E. Milner, M. J. C. v. Gemert, J. S. Nelson, ”Two-dimensional birefringence imaging in
biological tissue by polarization-sensitive optical coherence tomography”, Opt. Lett. 22, 934-936 (1997).

[105] J. M Huntley, ”Random Phase Measurement Errors in Digital Speckle Pattern Interferometry”, Optics and
Lasers in Engineering 26, 131-150 (1997).

[106] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, ”Noninvasive
imaging of in vivo blood flow velocity using optical Doppler tomography”, Opt. Lett. 22, 1119-1121 (1997).

[107] Z. Xu, L. Carrion, R. Maciejko, ”A zero-crossing detection method applied to Doppler OCT”, Opt. Express 16,
4394-4412 (2008).

[108] M. Bonesi, D. Y. Churmakov, L. J. Ritchie, I. V. Meglinski, ”Turbulence monitoring with Doppler Optical
Coherence Tomography”, Laser Physics Letters 4, 304-307 (2007).

[109] Y. C. Ahn, W. Jung, J. Zhang, Z. Chen, ”Investigation of laminar dispersion with optical coherence tomography
and optical Doppler tomography”, Opt. Express 13, 8164-8171 (2005).

[110] D. C. Adler, R. Huber, J. G. Fujimoto, ”Phase-sensitive optical coherence tomography at up to 370,000 lines
per second using buffered Fourier domain mode-locked lasers”, Opt. Lett. 32, 626-628 (2007).

[111] J. A. Izatt, A. M. Rollins, R. Ung-Arunyawee, S. Yazdanfar, ”System Integration and Signal/Image Process-
ing”, ”Handbook of optical coherence tomography”, ed. B. E. Bouma, G. J. Tearney, (Marcel Dekker AG, New
York, 2002), 143-174.

[112] R. K. Wang, S. Kirkpatrick, M. Hinds, ”Phase-sensitive optical coherence elastography for mapping tissue
microstrains in real time”, Appl. Phys. Lett. 90, 164105-164107 (2007).

[113] M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, Y. Yasuno, ”Imaging Polarimetry in
Age-Related Macular Degeneration”, Investigative Ophtalmology & Visual Science 49, 2661-2667, (2008).

[114] M. Sticker, M. Pircher, E. Götzinger, H. Sattmann, A. F. Fercher, C. K. Hitzenberger, ”En face imaging of single
cell layers by differential phase-contrast optical coherence microscopy”, Opt. Lett. 27, 1126-1128 (2002).

[115] C. Joo, T. Akkin, B. Cense. B. H. Park, J. F. de Boer, ”Spectral domain optical coherence phase microscopy
for quantitative-phase contrast imaging”, Opt. Lett. 30, 2131-2133 (2005).



170 Bibliography

[116] D. Stifter, A. D. Sanchis Dufau, E. Breuer, K. Wiesauer, P. Burgholzer, O. Höglinger, M. Pircher, C. K. Hitzen-
berger, ”Polarisation-sensitive optical coherence tomography for material characterisation and testing”, In-
sight 47(4), 209-212 (2005).

[117] D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, C. K. Hitzenberger, ”Polarisation-sensitive optical co-
herence tomography for material characterisation and strain-field mapping”, Appl. Phys. A 76, 1-5 (2003).

[118] J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, J. S. Nelson, ”Imaging thermally damaged tissue by
polarization-sensitive optical coherence tomography”, Opt. Express 3, 212-218 (1998).

[119] J. Young, G. Vargas, M. Ducros, S. A. Telenkov, B. J. F. Wong, T. E. Milner, ”Thermally induced birefringence
changes in cartilage using polarization-sensitive optical coherence tomography”, Proc. SPIE 4257, 213-220
(2001).

[120] J. F. de Boer, T. E. Milner, ”Review of polarization-sensitive optical coherence tomography and Stokes vector
determination”, J. Biomed. Opt. 7, 359 (2002).

[121] K. Wiesauer, A. D. Sanchis Dufau, E. Götzinger, M. Pircher, C. K. Hitzenberger, D. Stifter, ”Non-destructive
quantification of internal stress in polymer materials by polarisation-sensitive optical coherence tomography”,
Acta Materialia 53, 2785-2791 (2005).

[122] C. K. Hitzenberger, E. Götzinger, M. Sicker, M. Pircher, A. F. Fercher, ”Measurement and imaging of birefrin-
gence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography”, Opt.
Express 9, 780-790, (2001).

[123] O. C. Zienkiwicz, R. L. Taylor, ”Finite element method for solid and structural mechanics”, Elsevier (2005).

[124] C. A. Brebbia, J. Dominguez, ”Boundary element techniques: Theory and applications”, (Springer-Verlag,
Berlin, 1984).

[125] G. Shyu, A. I. Isayev, H. Li, ”Numerical simulation of flow-induced birefringence in injection molded disk”,
Korea-Australia Rheology Journal, 15, 159-166 (2003).

[126] C. M. OBradaigh, G. B. McGuinness, R. B. Pipes, ”Numerical analysis of stresses and deformations in com-
posite materials sheet forming: central indentation of a circular sheet”, Composites Manufacturing, 4, 67-
83(1993).

[127] H. T. Jessop, F. C. Harris, ”Photoelasticity: Principles and Methods”, Dover Publications Inc., New York
(1950).

[128] K. Ramesh, ”Digital photoelasticity: Advanced techniques and applications”, (Springer-Verlag, Berlin, 2000).

[129] Q. D. Liu, N. A. Fleck, J. E. Huber, D. P. Chu, ”Birefringence measurements of creep near an electrode tip in
transparent PLZT”, J. Eur. Ceram. Soc. 29, 2289-2296 (2009).

[130] P. A. Williams, N. J. Kemp, D. Ives, J. Park, J. C. Dwelle, H. G. Rylander, T. E. Milner, ”Noise model for
polarization-sensitive optical coherence tomography”, Proc. SPIE 6079, 607929-1-607929-7 (2009).

[131] M. Servin, J. C. Estrada, J. A. Quiroga, J. F. Mosiño, M. Cywiak, ”Noise in phase shifting interferometry”,
Opt. Exp. 17, 8789-8794 (2009).

[132] B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, P. Lambelet, ”Multiple scattering in
optical coherence tomography. I. Investigation and modeling”, J. Opt. Soc. Am. A 22, 1369-1379.

[133] J. M. Schmitt, S. H. Xiang, K. M. Yung, ”Handbook of optical coherence tomography”, ed. B. E. Bouma, G.
J. Tearney, (Marcel Dekker AG, New York, 2002), 175-181.

[134] B. Lehmann, H. Nobach, C. Tropea, ”Measurement of acceleration using the laser Doppler technique”, Mea-
surement Science and Technology 13, 1367-1381 , (2002).

[135] A. Stelzer, M. Pichler, ”Resolution Enhancement with Model-Based Frequency estimation”, Subsurface Sens.
Techn. Appl. 4, 241-261 (2003).

[136] A. Björnham, L. Georg, ”Frequency estimation from crossings of an observed mean level”, Biometrika 63,
507-512 (1976).

[137] M. Takeda, H. Ina, S. Kobayashi, ”Fouriertransform method of fringe-pattern analysis for computerbased
topography and interferometry”, J. Opt. Soc. Am. 72, 156-160 (1982).

[138] F. T. Wang, S. H. Chang, J. C. Lee, ”Hybrid wavelet-Hilbert-Huang Spectrum Analysis”, Proc. Oceans-Europe
(2005).



Bibliography 171

[139] F. A. M. Rodriguez, A. Federico, G. H. Kaufmann, ”Hilbert transform analysis of a time series of speckle
interferograms with a temporal carrier”, Appl. Opt. 47, 1310-1316 (2008).

[140] C. Sciammarella, T. Kim, ”Determination of strains from fringe patterns using space-frequency representa-
tions”, Opt. Eng. 42, 3182-3193 (2003).

[141] J. T. Oh, S. W. Kim, ”Polarization-sensitive optical coherence tomography for photoelasticity testing of
glass/epoxy composites”, Opt. Express 11, 1669-1676 (2003).

[142] B. H. Park, M. C. Pierce, B. Cense, S. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. de Boer, ”Real-time
fiber-based multi-functional spectral domain coherence tomography at 1.3µ m”, Opt. Express 13, 3931-3944
(2005).

[143] D. Crespo, J. A. Quiroga, J. A. Gomez-Pedero, ”Fast algorithm for estimation of the orientation term of a
general quadrature transform with application to demodulation of an n-dimensional fringe pattern” Appl.Opt.
43, 6139-6146 (2004).

[144] N. C. Gallagher, G. L. Wise, ’Median filters: a tutorial”, Proc. IEEE ISCAS 88, 1737-1744 (1988).

[145] D. L. Donoho, I. M. Johnstone, ”Ideal spatial adaptation by wavelet shrinkage”, Biometrika 81, 425-455
(1994).

[146] A. Federico, G. Kaufmann, ”Denoising in digital speckle pattern interferometry using wave atoms”, Opt. Lett.
32, 1232-1234 (2007).

[147] J. Weickert, ” Anisotropic Diffusion in Image Processing”, ECMI Series, (Teubner, Stuttgart, 1998) 127-129.

[148] J. Weickert, ”Coherence-enhancing diffusion filtering”, Int. J. Comput. Vision 31, 111-127 (1999).

[149] K. G. Larkin, ”Uniform estimation of orientation using local and nonlocal 2-D energy operators”, Opt. Express
13, 8097-8121 (2005).

[150] H.-E. Albrecht, M. Borys, N, Damaschke, C. Tropea, ”Laser Doppler and Phase Doppler Measurement Tech-
niques”, (Springer, Berlin, Heidelberg, 2003).

[151] D. C. Ghiglia, M. D. Pritt, ”Two-dimensional Phase Unwrapping”, (Wiley, New York, 1998).

[152] J. A. Quiroga, M. Servin, F. Cuevas, ”Modulo 2pi fringe orientation angle estimation by phase unwrapping
with a regularized phase tracking algorithm”, J. Opt. Soc. Am. A 19, 1524-1531 (2002).

[153] B. Stroebel, ”Processing of interferometric phase maps as complex-valued phasor images”, Appl. Opt. 35,
2192-2198 (1996).

[154] J. Villa, I. De la Rosa, G. Miramontes, J. A. Quiroga, ”Phase recovery from a single fringe pattern using an
orientational vector-field-regularized estimator”, J. Opt. Soc. Am. A 22, 2766-2773 (2005).

[155] M. Nordström, D. A. Zauner, A. Boisen, J. Hübner, ” Single-mode waveguides with SU-8 polymer core and

cladding for MOEMS applications”, J. Lightwave Technol. 25, 1284Ű1289 (2007).
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